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Introduction: observation vs intervention
Conditioning from observation: E|Y|A = a| = >, E[Y]a, e|p(c|a)

% @ ﬁLJ-T

From our observations of historical hospital data:
m P(Y = cured|A = pills) = 0.80
m P(Y = cured|A = surgery) = 0.72
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Introduction: observation vs intervention

Average causal effect (intervention): E[Y ()] = S E[Y|a, €]p(e)

From our intervention (making all patients take a treatment):

P(Y®1s) = cyred) = 0.64
P(Yy(sureery) — cured) = 0.75

Richardson, Robins (2013), Single World Intervention Graphs (SWIGs): A Unification of the 2/46
Counterfactual and Graphical Approaches to Causality



Questions we will solve

/



Questions we will solve
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Outline

Causal effect estimation, robust to hidden covariates:

m [nstrumental variables

m Proxy variables

What's new? What 1s it good for?

m Treatment A, covariates X, etc can be multivariate, complicated...

m ...by using or feature representations
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Model assumption: linear functions of features

All learned functions will take the form:

1(z) =" p(z) = (7, p(z))s
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Model assumption: linear functions of features

All learned functions will take the form:

1(z) =7 0(z) = (7, 0(2))y
Option 1: Finite dictionaries of learned neural net features ps(z)
(linear final layer )

Xu, G., A Neural mean embedding approach for back-door and front-door adjustment.
(ICLR 23)

Xu, Chen, Srinivasan, de Freitas, Doucet, G. Learning Deep Features in Instrumental
Variable Regression. (ICLR 21)

Option 2: Infinite dictionaries of fixed kernel features:

(p(z:), (z))gy = k(zi, )

Kernel is feature dot product.

Singh, Xu, G. Kernel Methods for Causal Functions: Dose, Heterogeneous, and
Incremental Response Curves. (Biometrika, in revision)

Singh, Sahani, G. Kernel Instrumental Variable Regression. (NeurIPS 19)
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Model fitting: ridge regression

Learn o(z) := E|Y|X = z]| from features ¢(z;) with outcomes v;:

n
7 = argmin (Z(%—(% w(w¢)>H)2+A\!7!\%>-
1—1
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Model fitting: ridge regression

Learn o(z) := E|Y|X = z]| from features ¢(z;) with outcomes v;:

Yy = argmin (Z(yz'—w, ¢($¢)>H)2+>\H’YH%>-

TEH \ 1

Neural net solution at z:
Y(z) = Cyx(Cxx + A) o(z)

Cyx = %Z[% o(z:) ']

Cxx = %Z[‘P(fﬂi) o(z;)'] R X
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Instrumental variable regression
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Illustration: ticket prices for air travel
Ticket price A, seats sold Y.

What is the effect on seats sold Y (%) of intervening on price a?

Simplification of example from Hartford, Lewis, Leyton-Brown, Taddy (2017): Deep IV: A Flexibleg /46
Approach for Counterfactual Prediction.



I[1lustration: ticket prices for air travel

Ticket price A, seats sold Y.
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Simplification of example from Hartford, Lewis, Leyton-Brown, Taddy (2017): Deep IV: A Flexibleg /46
Approach for Counterfactual Prediction.



Illustration: ticket prices for air travel

Unobserved variable € =desire for travel, affects both price (via airline
algorithms) and seats sold.

B\

.

m Desire for travel:

e~ N(p,0.1)

o) umu{-10,1)
T
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Illustration: ticket prices for air travel

Unobserved variable € =desire for travel, affects both price (via airline
algorithms) and seats sold.

\\\

m Desire for travel:

AR 4 Nu 1 l
pntt{-1,0,3}
m Price:
A=c¢c¢+ Z,
@ # Z ~ N(5,0.04)
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Illustration: ticket prices for air travel

Unobserved variable € =desire for travel, affects both price (via airline
algorithms) and seats sold.

\\\

m Desire for travel:

AR 4 Nu 1 l
pntt{-1,0,3}
m Price:
A=c¢c¢+ Z,
@ # Z ~ N(5,0.04)

m Seats sold:

Y =10—- A + 2¢
"
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Illustration: ticket prices for air travel

Unobserved variable € =desire for travel, affects both price (via airline
algorithms) and seats sold.

\\\‘#\\\i\\\\\\k\ m Desire for travel:
- e ~N(u,0.1)
. MNM{—%,O,%}
m Price:
A=¢e+ I,
Z ~ N(5,0.04)

m Seats sold:
Y =10— A+ 2¢

Average treatment effect:

ATE(a) = E[Y (4] = /(10 —a+2)dp(e) =10—a 4



Illustration: ticket prices for air travel

Unobserved variable € =desire for travel, affects both price (via airline
algorithms) and seats sold.

\ \‘\\ m Desire for travel:
N\
\\‘\“\\\\\\ e ~N(u,0.1)

sl 03]

e
7\ m Price:
/\ A=¢e+ Z,
Z ~ N(5,0.04)

@ @ m Seats sold:

Kﬁi’ﬂ Y =10 — A+ 2¢

Z is an instrument (cost of fuel). Condition on Z,

E[Y|Z] = 10 — E[A|Z] + 2E[¢| Z]

N—_——
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Illustration: ticket prices for air travel

Unobserved variable € =desire for travel, affects both price (via airline

algorithms) and seats sold.

m Desire for travel:

L e~ N(p,0.1)
™ p~uUd{—1ol
e (1)
7 m Price:
u%” \ A:8+Z1
N\, Z ~ N (5,0.04)
] ."'\. m Seats sold:
Y =10 — A+ 2¢

4.6 4.8 5.0 5.2 5.4

EIA|Z]

Z is an instrument (cost of fuel). Condition on Z,

E[Y|Z] = 10 — E[A|Z] + 2E[¢| Z]
=0

Regressing from E[A|Z] to E[Y|Z] recovers ATE! 9/46



Instrumental variable regression

The Sveriges Riksbank Prize in
Economic Sciences in Memory of
Alfred Nobel 2021

© Nobel Prize Outreach. Photo: © Nobel Prize Outreach. Photo: © Nobel Prize Outreach. Photo:
Paul Kennedy Risdon Photography Paul Kennedy

David Card Joshua D. Angrist Guido W. Imbens
Prize share: 1/2 Prize share: 1/4 Prize share: 1/4

The Sveriges Riksbank Prize in Economic Sciences
in Memory of Alfred Nobel 2021 was divided, one
half awarded to David Card "for his empirical
contributions to labour economics", the other half
jointly to Joshua D. Angrist and Guido W. Imbens
"for their methodological contributions to the
analysis of causal relationships"
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Instrumental variable regression with NN features

Definitions:

m ¢: unobserved confounder.

m A: treatment
m Y : outcome

B Z: Instrument

Assumptions
Ele] =0 Ele|Z] =0
Z X A
(Y L Z|A)eg,
Y =7"¢s(A) +¢

ny

PAGIRY
1 €

O—O—0O
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Instrumental variable regression with NN features

Definitions:

.

m ¢: unobserved confounder.

m A: treatment
m Y: outcome \
m Z: instrument @/
Assumptions '

Ele] =0 Ele|Z] =

Z LA Average treatment effect:

(Y L Z[A)g,

a) — a — T a
Y = ¢e(A) +¢ ATE(a) /E(Y\e, )dp(e) =7 ¢o(a)
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Instrumental variable regression with NN features

Definitions:

ny

m ¢: unobserved confounder.

.:‘a :l
m A: treatment
m Y: outcome / \
m Z: instrument C C
Assumptions @
Ele] =0 E[g|Z] =0 Average treatment effect:

Z LA
(Y L Z|A)¢, ATE(a) = /E(Y\e, a)dp(e) = 7' ¢s(a)

Y =7 ¢s(A) +e
[V regression: Condition both sides on Z,

E[Y|Z] = v El¢e(A)|Z] + Ele| Z]
—0 11/46



Two-stage least squares for IV regression

Kernel features (NeurIPS 2019): NN features (ICLR 2021):

arXiv.org > c¢s > arXiv:1906.00232

a I'<1V > cs > arXiv:2010.07154

e e e L L Ll Computer Science > Machine Learning

[Submitted on 1 Jun 2019 (v1), last revised 15 Jul 2020 (this version, v6)]

Kernel Instrumental Variable Regression

[Submitted on 14 Oct 2020 (v1), last revised 1 Nov 2020 (this version, v3)]

Learning Deep Features in Instrumental Variable Regression

Rahul Singh, Maneesh Sahani, Arthur Gretton Liyuan Xu, Yutian Chen, Siddarth Srinivasan, Nando de Freitas, Arnaud Doucet, Arthur Gretton

Code for NN and kernel IV methods:
https://github.com/1liyuan9988/DeepFeaturelV/
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Two-stage least squares for

IV regression

Kernel features (NeurIPS 2019):

arXiv.org > c¢s > arXiv:1906.00232

Computer Science > Machine Learning
[Submitted on 1 Jun 2019 (v1), last revised 15 Jul 2020 (this version, v6)]

Kernel Instrumental Variable Regression

Rahul Singh, Maneesh Sahani, Arthur Gretton

NN features (ICLR 2021):

d I'(lv > ¢s > arXiv:2010.07154

Computer Science > Machine Learning
[Submitted on 14 Oct 2020 (v1), last revised 1 Nov 2020 (this version, v3)]

Learning Deep Features in Instrumental Variable Regression

Liyuan Xu, Yutian Chen, Siddarth Srinivasan, Nando de Freitas, Arnaud Doucet, Arthur Gretton

Code for NN and kernel IV methods:

https://github.com/1liyuan9988/DeepFeaturelV/
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IV using neural net features

Stage 2 regression (IV): learn NN features ¢s(A) and linear layer v to
obtain Y with RR loss:

Evz [(Y =7 Elgs(4)|2))°| + Al

Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021) Learning Deep Features in Instrumental Variable
Regresion 14/46



IV using neural net features

Stage 2 regression (IV): learn NN features ¢s(A) and linear layer v to
obtain Y with RR loss:

Evz (Y — 7 Elge(A)Z])?| + Azl
learn NN features ¢/(Z) and linear layer
Elgs(A)|Z] = F¢:(2)
with RR loss
Ellge(A) — F¢c(Z)I1* + Ml Flzs
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IV using neural net features

Stage 2 regression (IV): learn NN features ¢s(A) and linear layer v to
obtain Y with RR loss:

Evz (Y — 7 Elge(A)Z])?| + Azl
learn NN features ¢/(Z) and linear layer

Elgs(A)|Z] ~ F'pc(Z)
with RR loss
Ellgs(A) — Foc(Z)]1* + Ml Flas
Challenge: how to learn 67

From Stage 2 regression?
...which requires E|¢g(A)|Z] from regression
...which requires ¢y(A)... which requires 6...

Use the linear final layers! (ie. v and 7)

Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021) Learning Deep Features in Instrumental Variable
Regresion 14/46



Neural IV in reinforcement learning

¢

(a) Catch (b) Mountain Car (c) Cartpole

(a) Cartpole Swingup ) Cheetah Run (¢) Humanoid Run ) Walker Walk

Policy evaluation: want Q-value:

6. 0]

s _ t _ —
Q"(s,a) =E E Y R¢|Sg=s,A0 = a
t=0
for policy m(A|S = s).
Osband et al (2019). Behaviour suite for reinforcement learning.https://github.com/deepmind/bsuite

Tassa et al. (2020). dm control:Software and tasks for continuous control. 15/46
https://github.com/deepmind/dm_control



Application of IV: reinforcement learning

Q value is a minimizer of Bellman loss
LBellman = Esar [(R +9[E[Q™(S", A")|S, A] — Q"(S, A))2] :
Corresponds to “IV-like” problem
Loenman = Eyz [(Y — E[f(X)|2])?]

with
Y = R,
X =(58,A85,A4)
Zz =(8,4),

fo(X)= Q"(s,a) —7Q"(s", a')
RL experiments and data:
https://github.com/1iyuan9988/IVOPEwithACME

Bradtke and Barto (1996). Linear least-squares algorithms for temporal difference learning.
Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021)

Chen, Xu, Gulcehre, Le Paine, G, De Freitas, Doucet (2022). On Instrumental Variable Regressionlésmﬁ
Deep Offline Policy Evaluation.



Results on mountain car problem

mountain_car
|
| 2
I
| .
10] —
S — — | Algorithm
— - ———
u‘i ' ° E E ~—— DeepGMM
E J BH FQ
© 1 : =9 KIV
8 : — — e )
1 &~ |
< ; o ! DFIV
I
|
10 ‘J
i B
| £
l T T T T v v
0.0 0.1 0.2 0.3 0.4 0.5
Noise Level

Good performance compared with FQE.

Warning: IV assumption can fail when regression underfits. See
papers for details.

Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021)

Chen, Xu, Gulcehre, Le Paine, G, De Freitas, Doucet (2022). On Instrumental Variable Regressior&-fy;gm
Deep Offline Policy Evaluation.



Proxy/Negative Control Methods
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The proxy correction

Unobserved € with (possibly) complex nonlinear effects on A, Y

The definitions are:
m ¢: unobserved confounder.
m A: treatment

m Y: outcome

If ¢ were observed (which it
isn’t),

E[Y(4)] = /]E[Y\s, a]dp(e)

.~

S
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The proxy correction

Unobserved ¢ with (possibly) complex nonlinear effects on A, Y

The definitions are:

g: unobserved confounder.
A: treatment Visited bike website Interest in cycling Gym member
Y : outcome TIREIC - g -—» \
cannondale Se .
Z . treatment proxy
W outcome proxy
Viewed ad Bike purchase

Miao, Geng, Tchetgen Tchetgen (2018): Identifying causal effects with proxy variables of an unmeasured
confounder.

Tennenholtz, Mannor, Shalit (2020), OPE in Partially Observed Environments.

Uehara, Sekhari, Lee, Kallus, Sun (2022) Provably Efficient Reinforcement Learning in Partially
Observable Dynamical Systems.

19/46



Unobserved confounders: proxy methods

Kernel features (ICML 2021): NN features (NeurIPS 2021):

arXiv.org > cs > arXiv:2105.04544 Search arXiv.org > cs > arXiv:2106.03907
Help | Advan

Computer Science > Machine Learning Computer Science > Machine Learning

[Submitted on 10 May 2021 (v1), last revised 9 Oct 2021 (this version, v4)] [Submitted on 7 Jun 2021 (v1), last revised 7 Dec 2021 (this version, v2)]

Proximal Causal Learning with Kernels: Two-Stage Deep Proxy Causal Learning and its Application to
Estimation and Moment Restriction Confounded Bandit Policy Evaluation
Afsaneh Mastouri, Yuchen Zhu, Limor Gultchin, Anna Korba, Ricardo Silva, Matt J. Kusner, Liyuan Xu, Heishiro Kanagawa, Arthur Gretton

Arthur Gretton, Krikamol Muandet

Code for NN and kernel proxy methods:
https://github.com/1liyuan9988/DeepFeatureProxyVariable/ 29/46



The proxy correction

Unobserved € with (possibly) complex nonlinear effects on A, Y

The definitions are:
€: unobserved confounder.

A: treatment

Y : outcome
Z: treatment proxy

W outcome proxy

Structural assumption:

Y UL Z|(A,¢)

— Can recover E(Y (%) from observational data!

21/46



Main theorem

If ¢ were observed, we would write (average treatment effect)

p(y|do(a)) = / p(yla, e)p(e)de.

....but we do not observe ¢.
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Main theorem

If ¢ were observed, we would write (average treatment effect)

p(y|do(a)) = / p(yla, e)p(e)de.

....but we do not observe ¢.

Main theorem: Assume we solved:
p(yla,2) = [ hy(w,a) dw

Both p(y|a, z) and are in terms of observed quantities.
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Main theorem

If ¢ were observed, we would write (average treatment effect)

p(y|do(a)) = / p(yla, e)p(e)de.

...but we do not observe ¢.

Main theorem: Assume we solved:
p(yla,2) = [ hy(w,a) dw

Both p(y|a, z) and are in terms of observed quantities.

Average treatment effect via

(y|do(a /h a,w) dw

22/46



Proof (1)

Because €, we have

:/ e)p(ela, z)de @<_' € e }@
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Proof (1)

Because €, we have
:/ e)p(ela, z)de . ‘ ':f_c'*"""f@
\ / \
Because Y 1l Z|(A,e) we have @ =®

p(yla,2) = [ p(yla,e)p(ela, 2)de

23/46



Proof (3)

Given the solution A, to:

pvle,2) = [ hy(w,a)p(wla,2)du

(well defined under identifiability conditions for Fredholm equation of first kind)
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Proof (3)

Given the solution A, to:

p(y\a,z):/hy(w,a) dw

(well defined under identifiability conditions for Fredholm equation of first kind)
From last slide

/p(y|a,6)p(6\a,z)de: /hy(w,a)/ e)p(ela, z)dedw
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Proof (3)

Given the solution A, to:

pvle,2) = [ hy(w,a) dw

(well defined under identifiability conditions for Fredholm equation of first kind)
From last slide

/p(y|a,6)p(6\a,z)de: /hy(w,a)/ e)p(ela, z)dedw

This implies:
p(y\a,s) — /hy(w,a) €)dw

under identifiability condition

Elf(e)|]A=a,Z =2]=0,V(z,a) <= f(e) =0, Pgja=qas. (4Q)

24 /46



Proof (4)

From last slide,

p(v1ae) = [ Byl @)oo )
Thus

p(vldo(a) = [ p(vla,e)p(e)du
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Proof (4)

From last slide,

Thus



Proof (4)

From last slide,
p(vla,e) = [ hy(w, a)s(ule)du
Thus
p(vldo(a) = [ p(vla,e)p(e)du
=/u [/hy(w,a) e)dw| p(e)de
_ / hy(w, a)p(w)das



Feature implementation

Stage 2: minimize

e = agminEy,a,. (v - b7 (4. ®(a))) +Xallh I

which is conditional feature mean implementation of

p(yla, z) = / by (w, a) du

Deaner (2021).
Mastouri, Zhu, Gultchin, Korba, Silva, Kusner, G., Muandet (2021). 26,46
Xu, Kanagawa, G. (2021).



Feature implementation

Stage 2: minimize

2
: T 2
P, = argminEyq; (y—n" ( ® ¢(a))) + XallAll3,
which is conditional feature mean implementation of
p(vla,2) = [ hufw,0) dw

Stage 1: ridge regression

p— a.I'g IIEI%].S Ew,a,z

$(w) - 7Tg(a) @ 4, + Ml Flks

which gives us

'¢(a) ® ¢(2)]

Deaner (2021).
Mastouri, Zhu, Gultchin, Korba, Silva, Kusner, G., Muandet (2021). 26,46
Xu, Kanagawa, G. (2021).



Feature implementation

Stage 2: minimize

2
: T 2
P, = argminEyq; (y—n" ( ® ¢(a))) + XallAll3,
which is conditional feature mean implementation of
p(vla,2) = [ hufw,0) dw

Stage 1: ridge regression

p— a.I'g IIEI%].S Ew,a,z

T 2 2
p(w) = 17 [$(a) @ ()], + Ml 7 s
which gives us

=, ' [¢(a) ® ¢(2)]

Average treatment effect estimate:

Ey(yldo(a)) = hy, ' (4(a) ® pw),
where pyw = Eyw¢( W)

Deaner (2021).
Mastouri, Zhu, Gultchin, Korba, Silva, Kusner, G., Muandet (2021).

26 /46
Xu, Kanagawa, G. (2021).



Synthetic experiment, adaptive neural net features

dSprite example:

B ¢ = {scale,rotation, posX, posY} = =
B Treatment A is the image generated (with W 20,
Gaussian noise) 2 = o
m Outcome Y is quadratic function of A with %_ All%cp)\sithm
multiplicative confounding by posY. % = PMMR
W 10 - CEVAE
B 7 = {scale,rotation, posX}, © : = DFPV
W = noisy image sharing posY g
m Comparison with CEVAE (Louzios et al.
2017)
5‘ )
0 1000 5000
Data Size
20
40
60
0 25 50

Louizos, Shalit, Mooij, Sontag, Zemel, Welling, Causal Effect Inference with Deep Latent—Variab1e27/46
Models (2017)



Confounded offline policy evaluation

Synthetic dataset, demand prediction

for flight purchase. o] =+ -
m Treatment A is ticket price. _ ﬁ %
(@)
m Policy A ~ 7(Z) depends on fuel 5
: Y (Z) dep "é')' Algorithm
price. £ 1 : KPV
2 = PMMR
a = DFPV
>
O
<
0.1
1500 7500
Data Size

28/46



Conclusions

Neural net and kernel solutions:

m ...for instrumental variable regression
m ...for proxy methods

m .. with treatment A, covariates X, V, proxies (W, Z) multivariate,
“complicated”

m Convergence guarantees for kernels and NN

20/46
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Questions?
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IV regression using neural net features
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Ell¢o(A) — F'oc (217 + Al 7| %s

Challenge: how to learn 67

From Stage 2 regression?
...which requires E|¢g(A)|Z] from regression
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From Stage 2 regression?
...which requires E|¢g(A)|Z] from regression
...which requires ¢y(A)... which requires 6...
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IV using neural net features

Stage 2 regression (IV): learn NN features ¢s(A) and linear layer v to
obtain Y with RR loss:

Evz (Y — 7 Elge(A)Z])?| + Azl
learn NN features ¢/(Z) and linear layer

Elgs(A)|Z] ~ F'pc(Z)
with RR loss
Ellgs(A) — Foc(Z)]1* + Ml Flas
Challenge: how to learn 67

From Stage 2 regression?
...which requires E|¢g(A)|Z] from regression
...which requires ¢y(A)... which requires 6...

Use the linear final layers! (ie. v and 7)
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IV using neural net features

learn NN features ¢/(Z) and linear layer
Elgs(A)|Z] = "¢ (2)
with RR loss

E |[|¢s(A) = Fe(Z)IP] + Al %
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IV using neural net features

learn NN features ¢/(Z) and linear layer
Elgs(A)|Z] = "¢ (2)
with RR loss
E |[|¢s(A) = Fe(Z)IP] + Al %
g, 1n closed form wrt ¢g, ¢ :

0.0 = Caz(Czz + M I)7} Caz = E[¢s(A)p/ (2))
Czz = El¢(2)9/ (2))
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IV using neural net features

learn NN features ¢/(Z) and linear layer

El¢o(A)|Z] ~ F'¢c(Z)
with RR loss

E |[|¢s(A) = Fe(Z)IP] + Al %
g, 1n closed form wrt ¢g, ¢ :

0,0 = Caz(Czz + MI)™" Caz = Elgs(4)¢] (2)]
Czz = El¢:(2)$! (2)]
Plug g into 51 loss, take gradient steps for ¢ (...but not 6...)
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Stage 2: IV regression

Stage 2 regression (IV): learn NN features ¢s(A) and linear layer v to
obtain Y with RR loss:

Ls(7,6) =Bz [(Y = 7 E[ge(A)|Z])*] + Aall7|I?
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Stage 2: IV regression

Stage 2 regression (IV): learn NN features ¢s(A) and linear layer v to
obtain Y with RR loss:

Ls(7,6) =Bz [(Y = 7 E[ge(A)|Z])*] + Aall7|I?
=Eyz[(Y =7 Fo,6:(2))%] + Aallvl?

g in closed form wrt ¢s:

Y := Cyaz(Canjz + X2I)™  Cyaz =E [Y [Fo,c (Z)]T]
Cuaz =E|[[Fo ¢:(Z)] [Focp(2)]]

From linear final layers in Stages 1,2:
Learn ¢9(A) by plugging 9, into S2 loss, taking gradient steps for ¢

...but ( changes with 6
...s0 alternate first and second stages until convergence.
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