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ICA: setting

Independent component analysis:

e S a vector of [ unknown, independent sources: Pg = Hi’:1 Ps.
e X vector of mixtures

e A is ! x [ mixing matrix (full rank)
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ICA: setting

Independent component analysis:
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e B is estimated A~!, we solve for this

e Y vector of estimated sources

Neglect time dependence: m 1.1.d. mixture observations



ICA: another example
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ICA examples

e We've seen:
— Sounds mixed together (“cocktail party” problem) (myvirinen et al., 2001]
— EEG recordings (brain, fetal heartbeat) (jung et a1, 2000, Stégbauer et al., 2004
e Some further examples:
— Extracting independent activity from tMRI [camoun et a1, 2003
— Financial data [kiviluoto and Oja, 199g]

— Linear edge filters for image patch coding? (Possibly not: sethge, 2006))



A toy example

Two distributions: Pg, is uniform, Pg, is bimodal
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A toy example

e T'wo distributions:

Source 2, bimodal
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A toy example

Two distributions: Pg, is uniform, Pg, is bimodal

Source 1, bimeodal (X) Input sources Observed mixtures
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e Initial unmixed RVs in red

source 2

First indeterminacy:

ordering

Input sources
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First indeterminacy: ordering

e Initial unmixed RVs in red

Input sources

Rotation n/6

Rotation w/4 Rotation n/3 Rotation m/2
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e Independent at rotation /2

Ignore source order




Second indeterminacy: sign

e Initial unmixed RVs in red

e Source 2 sign reversed in blue
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Second indeterminacy: sign

e Initial unmixed RVs in red

e Source 2 sign reversed in blue

source 2

Input sources Mixture
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Second indeterminacy: sign

e Initial unmixed RVs in red

e Source 2 sign reversed in blue

Input sources

source 2
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e More generally: S and Ss independent ift

aS7 and S> independent for a # 0

— Assume sources have unit variance



Third indeterminacy: Gaussians

Both sources Gaussian

Source distribution P, P
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Third indeterminacy: Gaussians

Both sources Gaussian

Source distribution P, P
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Meaningless to “unmix” Gaussians




Things that are impossible for ICA

Using independence alone, we cannot . ..

e recover signal order,
e recover signal sign (or amplitude) ,

e separate multiple Gaussians.



Things that are impossible for ICA

Using independence alone, we cannot . ..

e recover signal order,
e recover signal sign (or amplitude) ,

e separate multiple Gaussians.

We can recover
B*=PDA™!
e [ is a permutation matrix
e D diagonal, d;; € {—1,1}

(as long as no more than one Gaussian source)



First step in ICA: decorrelate

e [dea: remove all dependencies of order 2 between mixtures X



First step in ICA: decorrelate

Idea: remove all dependencies of order 2 between mixtures X
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First step in ICA: decorrelate

Idea: remove all dependencies of order 2 between mixtures X

New signals have unit covariance:
T=B,X C;=1
We thus break up B as follows:
B =B,B,

— B, is a whitening matrix
— B, is remaining demixing operation

Use the SVD of mixture covariance C, = UAU':

Bw _ A—l/QUT



What does decorrelation achieve?

e T'wo distributions: Pg, is uniform, Pg, is bimodal

Input sources
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Problem remaining: rotation

e Assume correlation has already been removed

e To recover original signal, need to rotate

Input sources After decorrelation
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e In remainder: unmixing matrix B is rotation,

B'B=1I



[ICA: maximum likelihood

e Model for mixtures parametrised by (B, P s)

Source distribution P81 P82

Source S2
(@)

) _1 0 1 2
Source S1



[ICA: maximum likelihood

AN

e Model for mixtures parametrised by (B,Pg)

Source distribution PS1 P82

Source S2
Log likelihood
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[ICA: maximum likelihood

AN

e Model for mixtures parametrised by (B,Pg)

Source distribution PS1 P82
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[ICA: maximum likelihood

AN

e Model for mixtures parametrised by (B,Pg)

Source distribution PS1 P82
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[ICA: maximum likelihood

AN

e We have a model for the observations, parametrised by (B,Pg)
— Model must have Pg = Hi:l Ps,



[ICA: maximum likelihood

AN

e We have a model for the observations, parametrised by (B,Pg)
— Model must have Pg = Hi:l Ps,

e With this model, our estimated density of observations is

Px = |det(B)| Ps(BX)



[ICA: maximum likelihood

AN

e We have a model for the observations, parametrised by (B,Pg)
— Model must have Pg = Hi:l Ps,

e With this model, our estimated density of observations is

Px = |det{BJ[Ps(BX)



[ICA: maximum likelihood

AN

e We have a model for the observations, parametrised by (B,Pg)
— Model must have Pg = Hi:l Ps,

e With this model, our estimated density of observations is
Px = Ps(BX)
e Maximise the expected log likelihood,

L = EX [10g ﬁx}



Maximum likelihood: where it fails

e Model as before, but true source densities are Laplace.

e Why is this so wrong?
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Maximum likelihood: where it fails

e Model as before, but true source densities are Laplace.

e Why is this so wrong?
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Back to original setting: independence

e Ideally: contrast ¢(Y ) = 0 if and only if all components of Y mutually

independent:

l
Py =]]Py.
1=1

— Under our mixing assumptions: Y are original sources S besides

permutations, sign swaps



Back to original setting: independence

e Ideally: contrast ¢(Y ) = 0 if and only if all components of Y mutually

independent:

l
Py =]]Py.
1=1

— Under our mixing assumptions: Y are original sources S besides

permutations, sign swaps

e How it’s really used: contrast should be “smallest” when random

variables are “most independent”



Mutual information

e The mutual information:

I(Y) = Dk, (Py

ﬁ"n>

1=1

e Dy, > 0 with equality iff Py = Hé:l Py,



Mutual information

e The mutual information:

I(Y) = Dk, (Py

ﬁ"n>

i=1
e D1, > 0 with equality iff Py = Hézl Py,

e Simplification: when B is a rotation,

D, (PY

l l
HPYi> :Zh(Y}) — h (X)) — log |det B] .

1=1

where h(Y') = —Ey log(Py (y))



Mutual information

e The mutual information:

I(Y) = Dk, (Py
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e D1, > 0 with equality iff Py = Hézl Py,

e Simplification: when B is a rotation,
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where h(Y) = —Ey log(Py (y))



Mutual information

e The mutual information:

I(Y) = Dk, (Py

ﬁ"n>

i=1
e D1, > 0 with equality iff Py = Hézl Py,

e Simplification: when B is a rotation,

[ [
Dxr, (PY HPYZ.> = > h(Yi) = h(X)—log|det B|.
1=1 e

1=1

constant

where h(Y) = —Ey log(Py (y))

Contrast: ¢oxp(Y) := Zé:l h (V)



Maximum likelihood revisited

e Mutual information contrast: minimize

[

ok(Y) =) —Eylog(Py(y))

1=1
e Maximum likelihood: maximize
L = Ex [1og Ps(BX)
[
Y Eylog(Py(y))
i=1

e Same thing!



Maximum likelihood revisited

Mutual information contrast: minimize

[

ok(Y) =) —Eylog(Py(y))

1=1

Maximum likelihood: maximize

L = Ex [1og Ps(BX)

[

Y Eylog(Py(y))

i=1
Same thing!
The difference is in approach:

— For max. likelihood we assumed a model IADS

— Now we assume no model for Py (though we still make assumptions)



Contrast tunctions with fixed nonlinearities

e Entropies hard to compute/optimize: replace with

for some other nonlinear f(y)



Contrast tunctions with fixed nonlinearities

e Entropies hard to compute/optimize: replace with

for some other nonlinear f(y)
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Contrast

Our example again

Input sources

After decorrelation
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Kurtosis: an important concept

e Kurtosis definition: when mean is zero,
ke =E(x*) —3(E ()",

e Source densities can be super-Gaussian (positive kurtosis) or

sub-Gaussian (negative kurtosis)

e Zero kurtosis does not mean Gaussian!

Super—Gaussian (Laplace)

Sub-Gaussian (uniform)
0.25 ‘
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Demo: contrasts with fixed nonlinearities

e Super-Gaussian (Laplace) and sub-Gaussian (Uniform) sources

e Unmixed sources in red

e Mixture (angle 7/6) in black

Super—Gaussian sources Sub-Gaussian sources




Demo: contrasts with fixed nonlinearities

Results for Jade, Infomax, and Fast ICA contrasts
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Care needed when using fixed contrasts!



Contrast functions using entropy estimates

e Simplest option: convolve with spline kernel, then compute discrete

entropy via space partition [pham, 2004]

MICA contrast
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Contrast functions using spacings entropy estimate

e More sophisticated option: spacings estimate of entropy
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Contrast functions using spacings entropy estimate

More sophisticated option: spacings estimate of entropy
Sort sample Y7, ..., Yy, in increasing order: Y(; < Y(;11)
Prob. density estimate based on spacings

. 1
P(ya Y17 7Y ) (m _|_ 1)(Yv(z—|—1) L i/(z)) ( ) y < ( +1)

Entropy estimate based on spacings

m—1

, 1

MY) = —— log(m+1)(¥s1) — Y)
1=1

Smoothing: add “extra” mixture points (noisy copies of original

mixtures)

Hard to optimize



Other independence measures as contrasts

e Why mutual information?
— Same as maximum likelihood (good if model is correct)

— Contrast function is sum of entropies: fast

e Other independence measures?



Other independence measures as contrasts

e Why mutual information?
— Same as maximum likelihood (good if model is correct)

— Contrast function is sum of entropies: fast
e Other independence measures?

e Most common: kernel/characteristic function-based

— Characteristic function-based ICA [Eriksson and Koivanen, 2003, Chen and Bickel,
2005]

- Kernel ICA (COV&I’ial’lCG): COCO, KMI, HSIC [Gretton et al., 2005, Shen et al.,

2007, 2009]

— Kernel ICA (correlation): KCCA, KGV [Bach and jordan, 2002

e HSIC same as characteristic function-based (for the purposes of ICA) [Shen et al.,

20009]



Kernel contrast function: HSIC

e Dependence measure:

2
HSIC(PUv, F) = (SUP [EUVf — EUEVf])
feF

Dependence witness and sample
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HSIC: empirical expression

e Empirical HSIC:

1
HSIC := —tr(KHLH)
m
— K Gram matrix for (uy,...,uy,)

— L Gram matrix for (vi,...,vn)

— Centering H =1 — %17%1;



Contrast functions: a small selection

Contrast functions

e Sum of expectations of a fixed nonlinearity

— Fast ICA, Infomax, Jade

e Sum of entropies/mutual information. ..
— ... using fast, smoothed entropy estimates

— ... using spacings/k-nn entropy estimates

e Kernel/characteristic function dependence measures



Contrast functions: a small selection

Contrast functions

e Sum of expectations of a fixed nonlinearity

— Fast ICA, Infomax, Jade

e Sum of entropies/mutual information. ..
— ... using fast, smoothed entropy estimates

— ... using spacings/k-nn entropy estimates

e Kernel/characteristic function dependence measures

How do we optimize?



Optimization (Jacobi)

e For two signals, the rotation is expressed

B =

cos(6)
sin(6)

e Higher dimensions, eg for [ = 3,

-COS(QZ)
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0| x
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-cos(Qy)
0

| sin(6y)

0
1
0

— sin(0)
cos(6)

— sin(Hy)-
0

cos(0y) |

e Coordinate descent, exhaustive search, etc...

0
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cos(6z)
sin(60y)

—sin(60,)
cos(0z)




Optimization (Newton)

e Unmixing matrix B satisfies B' B = I

e Local parameterisation {2 about B: at iteration k,
Bji1 = Brexp(Q) Q=-Q'

e How to choose direction and size of €27



Optimization (Newton)

Unmixing matrix B satisfies B' B = I

Local parameterisation () about B: at iteration k,
Bji1 = Brexp(Q) Q=-Q'

How to choose direction and size of €27

Newton-like method: solve the linear system for Q € R™(m—1)/2

Hp,(9)Q2 = =V, (9)

Approximate Hessian as diagonal: FastICA [shen and Hiiper, 2006)



Gradient descent vs Newton
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What if we have time dependence?

e We can get extra information from sources not being i.i.d.
e Mixture x(¢) now stationary random process, depends on x(t — 7)

e Define mixture covariances
Co = E(x(t)x(1)), C,=Ex{)x(t—1)),

— C, indpendent of ¢ (stationarity)



What if we have time dependence?

e We can get extra information from sources not being i.i.d.
e Mixture x(¢) now stationary random process, depends on x(t — 7)

e Define mixture covariances
Co = E(x(t)x(1)), C,=Ex{)x(t—1)),

— C, indpendent of ¢ (stationarity)

e Decorrelate:

~

BC,B'=A BC,B' =A
— A and A diagonal

e Combining both requirements:
BC,C:! = (AK—l) B

e Greater number of delays: joint diagonalisation



What’s the best method?



A basic benchmark

[ = 8 sources

m = 40,000 samples
Benchmark data from
[Bach and Jordan, 2002]

Average over 24 repetitions
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A basic benchmark: results




A basic benchmark: results

Adaptive contrasts outperform fixed nonlinearities

Demixing quality
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100x Amari error
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A basic benchmark: computational cost
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A basic benchmark: computational cost

Best runtime (adaptive): fast entropy estimates
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A basic benchmark: computational cost

Kernel methods: Newton outperforms Gradient Descent
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A basic benchmark: computational cost

Spacings/k-nn entropy contrasts slowest
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High frequency perturbations

e T'wo sources, sinusoidal perturbations to Gaussian

e Random mixing angle.

e Results averaged over 25 datasets, m = 1000
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High frequency perturbations
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High frequency perturbations

Spacings/k-nn methods perform best

(but slow)
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High frequency perturbations

Fast entropy estimates: narrowest range
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High frequency perturbations

Fast Kernel ICA: peforms in between

(good performance/runtime tradeoff)
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Outlier resistance

Two sources, outliers added to both mixtures
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Outlier resistance

Kernel ICA performs best

250

100 x Amari error

—
o
T

m FKICA

N
o
T

—
(6}
T

MICA

KDICA

MILCA

RAD
Vﬂ*

10 15
number of outliers

20

25



Outlier resistance

Fast entropy estimates: less good

KDICA initialized with kernel ICA solution!
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ICA algorithm choice

e Choosing kernel ICA approach
— Fastest (by faI'): Fast ICA [Hyvérinen et al., 2001], Jade [Cardoso, 1998]

— Good tradeoff between speed and performance: MICA (pram, 2004]

— Tricky cases (outliers, non-smooth sources): Fast KICA [shen et a1, 2007,

20009]

— Small sample size: KGV very good [Bach and Jordan, 2002]
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e Some further hints:
— Use multiple restarts (non-convex)

— Independence test to check answer



ICA algorithm choice

e Choosing kernel ICA approach
— Fastest (by f&f): Fast ICA [Hyvérinen et al., 2001], Jade [Cardoso, 1998]

— Good tradeoff between speed and performance: MICA (pram, 2004]

— Tricky cases (outliers, non-smooth sources): Fast KICA (shen et a1, 2007,

20009]

— Small sample size: KGV very good [Bach and Jordan, 2002]

e Some further hints:
— Use multiple restarts (non-convex)

— Independence test to check answer

e Comparing (usually fixed contrast) algorithms:
— One approach “better” than another?

— Example: sources [ very large, samples m small (wrt [), e.g.

microal“l“a'y data [Lee and Batzoglou, 2003]



Selected ICA references

Start with Cardoso’s excellent introduction [cardeso, 1998), and the book by

Hyvarnll’len et a/l. [Hyvéarinen et al., 2001]

Stogbauer et al., 12004, (Chen, 2006]
Classic algorithms for time series separation with second order methods
(nOt Covel“ed mU.Ch n thlS talk) [Molgedey and Schuster, 1994, [Belouchrani et al., 1997]

An important paper for optimising over orthogonal matrices: [Edeiman et al.,

1998]. The NeWtOn—like methOd: [Hiper and Trumpf, 2004].
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