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Two-Sample Test for Random Processes
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Outline

Testing for differences in marginal distributions of random processes (MMD):
e Markov chain convergence diagnostics
e Change point detection
Testing for independence between random processes (HSIC)
e Dependency structure in financial markets
e Brain region activation
Why time series-based tests needed:
e Most real data (in the brain!) are time series

e MCMC diagnostics require tests on time series (or throwing out most of
the data)



Maximum mean discrepancy, two-sample test



Prob. density

Feature mean difference

e Two Gaussians with same means, different variance
e Idea: look at difference in means of features of the RVs

o In Gaussian case: second order features of form ¢(x) = z°

Two Gaussians with different variances
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Prob. density

Feature mean difference

e Two Gaussians with same means, different variance

e Idea: look at difference in means of features of the RVs

e In Gaussian case: second order features of form ¢, = x

Two Gaussians with different variances
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Densities of feature X°
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Feature mean difference

e Gaussian and Laplace distributions

e Same mean and same variance

e Difference in means using higher order features

Gaussian and Laplace densities
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... so let’s explore feature representations!



Kernels: similarity between features

Kernel:

e We have two objects x and 2’ from a set X' (documents, images, ..

How similar are they?

).



Kernels: similarity between features

Kernel:

e We have two objects x and 2’ from a set X' (documents, images, .

How similar are they?
e Define features of objects:

— ., are features of x,

— . are features of

e A kernel is the dot product between these features:

bz, 2') = o ) 5

).



Probabilities in feature space: the mean trick

The kernel trick

e Given x € X for some set X,

define feature map ¢, € F,

e For kernel k(z,z’),

k(xv CE’) — <90x7 90:1:’>.7-"



Probabilities in feature space: the mean trick

The kernel trick The mean trick

e Given z € X for some set X, e Given probability P define

define feature map ¢, € F, mean embedding up € F

903;:[6@($)] ,up:[Ep[ez(X)]]
e For kernel k(x,x'),
e For kernel k(x,z’), (up, nQ)F = Epqk(X,Y)
k(z,2') = (@o, u) F for X ~P and YV ~ Q.

Need to ensure Bochner integrability of ¢y for x ~ P:

true for bounded kernels.



The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature means:

MMD*P,Q) = ||up — pqll> = (up, 1p) = + (1Q, Q)+ — 2 (P, Q) £
— Ppk(xa X/Z + PQk(ya ylz T 2EP,Qk(X7 y)

(a) (a) (b)

(a)= within distrib. similarity, (b)= cross-distrib. similarity



The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature means:

MMD*P,Q) = ||up — pqll> = (up, 1p) = + (1Q, Q)+ — 2 (P, Q) £
— Ppk(xa X/Z + PQk(ya ylz — 2EP,Qk(X7 y)
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(a) (a) (b)

(a)= within distrib. similarity, (b)= cross-distrib. similarity
A biased empirical estimate (V-statistic):
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The maximum mean discrepancy




The maximum mean discrepancy




Statistical test using MMD

e Two hypotheses:
— Hy: null hypothesis (P = Q)
— Hy: alternative hypothesis (P # Q)

e Observe dependent samples  := {x1,...,2¢,..., T, } with marginal

distribution P, and y := {y1,..., ¥, ..., Yn} with marginal distribution Q

——2
e If empirical MMD is
“far from zero”: reject Hy

—  “close to zero”: accept Hy



Statistical test using MMD

Two hypotheses:
— Hy: null hypothesis (P = Q)
— Hy: alternative hypothesis (P # Q)
Observe dependent samples « := {x1,...,2,...,x,} with marginal
distribution P, and y := {y1,..., ¥, ..., Yn} with marginal distribution Q
If empirical mQ s

“far from zero”: reject Hy

—  “close to zero”: accept Hy

Assumptions: (X¢),., and (Y;),o, are strictly stationary and
T-dependent with > °2  \/7(r) < oo.

E HXT' - XTHI < 7‘(7’),

where X, is dependent on X, X, is a copy of X, independent of X .



Statistical test using MMD

e “far from zero” vs “close to zero” - threshold?

—2
e One answer: asymptotic distribution of MMD

When P = Q, asymptotic distribution is penchtand Newmam, 2013]

3 &
nMMD™ ~ Y " X\QF =: Dasarp

MMD densny under HO

e where =1
— [ Rz, i(2)dPo(2) = Ape(2))
- 2= (z,y)
— Qy ~N(0,1) correlated, g |
cov(Qu, Qo)
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Asymptotics of MM D : proof idea

First define an order m truncation of K(z, 2’):
AU (2,2') =) Mtpo(2)he(2).
=1

We can prove that as m — oo the asymptotics of the truncation approach
those of R.

The associated V-statistic is:

n
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_— 2
Asymptotics of MM D : proof idea

Under the assumptions on Z;, we can apply a central limit theorem for

weakly dependent random variables on the inner sum:

n1/2zn:[¢1(2t) W(Zt)}i[Ql Qf]



Statistical test using MMD

e Given P = Q, want threshold 7" such that P(MMD > T') < «
— 2
MMD = Kp,p + KQ,Q — 2[(P,Q

MMD density under HO and H1
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Statistical test using MMD

e Given P = Q,

e Permutation

Prob. density

want threshold 7" such that P(MMD > T') < 0.05

for empirical CDF [ATcones and-Giné, 1992)]

Null distribution and permutation, =0

B | I
1 = N\ || PDF
1k :: -NuII PDF from permutation |7

[ I |
1
11
0.8r 1
1
[ I |
1
0.6 i
1
1
[ |
i 1
0.4 11
11
1
[ |
0.2 i
11
[ |



Memory of the Processes

Xt = BXt—l + €¢ €¢ 1}\9 N(O, 0'2)

8 =0.14

B =0.97

The null distribution of the V-statistic is strongly affected by memory



Prob. density

Memory 8 = 0.0, permutation for null
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Prob. density

Memory £ = 0.2, permutation for null
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Prob. density

Memory 5 = 0.4, permutation for null

Null distribution and permutation, [=0.4
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Prob. density

Memory 8 = 0.5, permutation for null
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Wild bootstrap estimate of the asymptotic distribution

Define a new time series W, with the property
cov(Wi, W) =p(ls —t| /n),
where /,, is a width parameter growing with n, and p is a window, e.g.
cov(W W) =exp(—|s—t| /ly) .

X; and Y; 7-dependent with >_°°  r?,/7(r) < oo.



Wild bootstrap estimate of the asymptotic distribution

Define a new time series W, with the property
cov(Wi, W) =p(ls —t| /n),
where /,, is a width parameter growing with n, and p is a window, e.g.
cov(W W) =exp(—|s—t| /ly) .
X; and Y; 7-dependent with >_°°  r?,/7(r) < oo.

Wild bootstrap estimate of the null:
Vo= 2ot o M(Xs, Ys), (X, Ya) ) WS WY

As measured via Prokhorov metric d,,

1 n
dp | Darnins, = Y R((Xs, Ye), (Xe, Yo))WIWSF | 50 as n— oo
n

s,t=1



How the proof works (1)

Again define a finite approximation,

-3 ( Yz )

which can be shown to converge as m — oco. Define

Uj = [ V1(Ze) - Ym(Ze) }Wt*

We need that in probability (as n — 00),

1 >



How the proof works (2)

cov <n1/2 Z i (Zs)WE,n~ /2 Z lbk(Zt)Wt*)
t=1

= ij Ur(Ze)p(ls — t] €r)

n
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Prob. density

Memory 8 = 0.0, wild bootstrap for null
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Prob. density

Memory 8 = 0.2, wild bootstrap for null
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m NUll PDF
B \uil PDF from permutation

10



Prob. density
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Memory 8 = 0.4, wild bootstrap for null
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Prob. density

Memory 8 = 0.5, wild bootstrap for null

Null distribution and permutation, $=0.5
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MCMC M.D. Experiment
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" - Does P have the same marginal dis-
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Testing Independence and the Hilbert-Schmidt
Independence Criterion



MMD for independence

e Dependence measure: the Hilbert Schmidt Independence Criterion (avros,

NIPS07a, ALT07, ALT08, JMLR10]

Related to [Feuervergen, Etm]and [Székely andRizzao, 2009, Székely et—ahi, 2007)

HSIC?*(Pxy,PxPy) = ||ppy — fip Py ||



MMD for independence

e Dependence measure: the Hilbert Schmidt Independence Criterion [arros,

NIPS07a, ALT07, ALT08, JMLR10]

Related to [Feuervergen, ]and [Székely andRizzao, 2009, Székely et—ahi, 2007)

HSIC?*(Pxy,PxPy) = ||ppy — fip Py ||

K(©,@) (9,9)

~'v




MMD for independence

e Dependence measure: the Hilbert Schmidt Independence Criterion [arros,

NIPS07a, ALT07, ALT08, JMLR10]

Related to [Feuervergen, ]and [SzékelyandRizzo, 2009, Székety et—atl, 2007]

HSIC?*(Pxy,PxPy) = ||ppy — fip Py ||

HSIC using expectations of kernels:

Define RKHS F on X with kernel £, RKHS G on ) with kernel [. Then
HSIC*(Pxy,PxPy)

= [[Exy [(¢x — ppy) ® (¥y — ppy )] I7xg
= ExyExy/k(x,X)I(y,y") + ExEx:/k(x,X')EyEyI(y,y")
— QEX/Y/ [E)(/{(X, X’)Eyl(y,y/)] .



HSIC: empirical estimate and intuition

Text from dogtime.com and petfinder.com

Their noses guide them through life, and
they're never happier than when following
an interesting scent. They need plenty of
exercise, about an hour a day if possible.

A large animal who slings slobber, exudes a
distinctive houndy odor, and wants nothing more
than to follow his nose. They need a significant
amount of exercise and mental stimulation.

Known for their curiosity, intelligence, and
excellent communication skills, the Javanese
breed is perfect if you want a responsive,
interactive pet, one that will blow in your ear
and follow you everywhere.
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HSIC: empirical estimate and intuition

) Their noses guide them through life, and
f K they're never happier than when following
an interesting scent. They need plenty of L

exercise, about an hour a day if possible.

A large animal who slings slok
distinctive houndy odor, and

than to follow his nose. They
amount of exercise and ment

Known for their curiosity, intelligence, and
excellent communication skills, the Javanese
breed is perfect if you want a responsive,
interactive pet, one that will blow in your ear
and follow you everywhere.

Text from dogtime.com and petfinder.com

Empirical HSICQ(ny, PXpy):

1
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HSIC and independence testing

Assume Z; := (X;,Y;) is 8 mixing with B(r) = o(r~%). Then

2
—2
HSIC = ||= Z Oz — ® (¢y; — fip,)
FXG
1 — :
=1 > (e — bp,) © (dy, — 1p,) +Op(n™")
= FxG

1 & - - -

~"

BIZL K (@) ()

where ]%<xiaxj) = (Pu; — WPx, Py; — NPy>f-



HSIC and independence testing

Assume Z; := (X;,Y;) is 8 mixing with B(r) = o(r~%). Then

2
—2
HSIC = ||= Z Oz — ® (¢y; — fip,)
FXG
1 — :
=1 > (e — bp,) © (dy, — 1p,) +Op(n™")
= FxG
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where ]%<xiaxj) = (Yw; — 1Py Py; — NPy>f-
—2
Wild bootstrap estimate of null for nHSIC is

|,
i =1



Time series experiments

Two time series, common variance (market volatility model) mauwenscrat, 2006
Xy =e0f, Yi=ep07, of =1+045(X7, +Y2)

eir K N(0,1), ie{1,2).

1 .................. o
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Outline

Testing for differences in marginal distributions of random processes (MMD):
e Markov chain convergence diagnostics
e Change point detection

Testing for independence between random processes (HSIC)
e Dependency structure in financial markets

e Brain region activation
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