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Model Criticism

Data = robbery events in
Chicago in 2016.
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Model Criticism

Is this a good model?
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Model Criticism

Goals: Test if a (complicated)
model fits the data.
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Outline

The kernel Stein discrepancy Chwialkowski, Strathmann, G. ICML 2016

� Comparing two models via samples: MMD and the witness function.
� Comparing a sample and a model: Stein modification of the witness

class

A Linear-Time Kernel Goodness-of-Fit Test
Jitkrittum, Xu, Szabo, Fukumizu, G. NeurIPS 2017

� Features learned to maximise (estimate of) test power
� Better asymptotic relative efficiency vs a “naive” linear time test

Relative hypothesis tests with latent variables
Kanagawa, Jitkrittum, Mackey, Fukumizu, G. 2019
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Integral probability metrics
Integral probability metric:
Find a "well behaved function" f (x ) to maximize

EQ f (Y )�EP f (X )

0 0.2 0.4 0.6 0.8 1

x

-1

-0.5

0

0.5

1

f(
x
)

Smooth function

4/52



Integral probability metrics
Integral probability metric:
Find a "well behaved function" f (x ) to maximize

EQ f (Y )�EP f (X )

0 0.2 0.4 0.6 0.8 1

x

-1

-0.5

0

0.5

1

f(
x
)

Smooth function

5/52



The MMD: an integral probability metric
Maximum mean discrepancy: RKHS function for P vs Q

MMD(P ;Q ;F) := sup
kf k

F
�1

[EQ f (Y )�EP f (X )]
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The MMD: an integral probability metric
Maximum mean discrepancy: RKHS function for P vs Q

MMD(P ;Q ;F) := sup
kf k

F
�1

[EQ f (Y )�EP f (X )]

Functions are linear combinations of features:

kf k2
F :=

P1
i=1 fi

2 � 1
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The MMD: an integral probability metric
Maximum mean discrepancy: RKHS function for P vs Q

MMD(P ;Q ;F) := sup
kf k

F
�1

[EQ f (Y )�EP f (X )]

For characteristic RKHS F , MMD(P ;Q ;F ) = 0 iff P = Q

Other choices for witness function class:

Bounded continuous [Dudley, 2002]

Bounded varation 1 (Kolmogorov metric) [Müller, 1997]

Lipschitz (Wasserstein distances) [Dudley, 2002]
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The MMD: an integral probability metric
Maximum mean discrepancy: RKHS function for P vs Q

MMD(P ;Q ;F) := sup
kf k

F
�1

[EQ f (Y )�EP f (X )]

Expectations of functions are linear combinations of
expected features

EP (f (X )) = EP hf ; '(X )iF = hf ;EP'(X )iF = hf ; �P iF

(if feature map ' Bochner integrable; always true if kernel is bounded)
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Integral prob. metric vs feature mean difference

The MMD:

MMD(P ;Q ;F)
= sup
kf k�1

[EP f (X )�EQ f (Y )]
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Integral prob. metric vs feature mean difference

The MMD:

MMD(P ;Q ;F)
= sup
kf k�1

[EP f (X )�EQ f (Y )]

= sup
kf k�1

hf ; �P � �QiF

use

EP f (X ) = EP h'(X ); f iF
= h�P ; f iF
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Integral prob. metric vs feature mean difference

The MMD:

MMD(P ;Q ;F)
= sup
kf k�1

[EP f (X )�EQ f (Y )]

= sup
kf k�1

hf ; �P � �QiF
= k�P � �Qk

Consequently,

f �(v) = hf ; '(v)iF
/ h�P � �Q ; '(v)iF
= hEP'(X )�EQ'(Y ); '(v)iF
= EPk(X ; v)�EQk(Y ; v)
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The maximum mean discrepancy

The maximum mean discrepancy in terms of expected kernels:

MMD2(P ;Q ;F) = k�P � �Qk2
F

= EPk(x ; x 0)| {z }
(a)

+EQk(y ; y 0)| {z }
(a)

� 2EP ;Qk(x ; y)| {z }
(b)

(a)= within distrib. similarity, (b)= cross-distrib. similarity.
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The maximum mean discrepancy

The maximum mean discrepancy in terms of expected kernels:

MMD2(P ;Q ;F) = k�P � �Qk2
F

= EPk(x ; x 0)| {z }
(a)

+EQk(y ; y 0)| {z }
(a)

� 2EP ;Qk(x ; y)| {z }
(b)

(a)= within distrib. similarity, (b)= cross-distrib. similarity.

Proof:

k�P � �Qk2
F = h�P � �Q ; �P � �QiF
= h�P ; �P iF + h�Q ; �QiF � 2 h�P ; �QiF :
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Model criticism

MMD(P ;Q ;F) = supkf kF�1[Eq f �Epf ]
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Can we compute MMD with samples from Q and a model P?
Problem: usualy can’t compute Epf in closed form. 9/52



Stein idea
To get rid of Epf in

sup
kf kF�1

[Eq f �Epf ]

we define the (1-D) Stein operator

[Tpf ] (x ) =
1

p(x )
d
dx

(f (x )p(x ))

Then
EpTpf = 0

subject to appropriate boundary conditions.
Proof:

Ep [Tpf ] Z � d
dx

(f (x )p(x ))
�
dx

= [f (x )p(x )]1�1 = 0

Gorham and Mackey (NeurIPS 15), Oates, Girolami, Chopin (JRSS B 2016) 10/52
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Kernel Stein Discrepancy

Stein operator

Tpf =
1

p(x )
d
dx

(f (x )p(x ))

Kernel Stein Discrepancy (KSD)

KSDp(Q) = sup
kgkF�1

EqTpg �EpTpg
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The witness function: Chicago Crime

Model p = 10-component Gaus-
sian mixture.
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The witness function: Chicago Crime

Witness function g shows mis-
match
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Simple expression using kernels
Re-write stein operator as:

[Tpf ] (x ) =
1

p(x )
d
dx

(f (x )p(x ))

= f (x )
d
dx

log p(x ) +
d
dx

f (x )

Can we define “Stein features” in F?

[Tpf ] (x ) =
�
d
dx

log p(x )
�
f (x ) +

d
dx

f (x )

=:


f ; �(x )|{z}

stein features

�
F

where Ex�p�(x ) = 0.
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The kernel trick for derivatives

Reproducing property for the derivative: for differentiable k(x ; x 0),

d
dx

f (x ) =
�
f ;

d
dx
'(x )

�
F

Using kernel derivative trick in (a),

[Tpf ] (x ) =
�
d
dx

log p(x )
�
f (x ) +

d
dx

f (x )

=

*
f ;
�
d
dx

log p(x )
�
'(x ) +

d
dx
'(x )| {z }
(a)

+
F

=: hf ; �(x )iF :
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Kernel stein discrepancy: derivation

Closed-form expression for KSD:

KSDp(Q) = sup
kgkF�1

Ex�q ([Tpg ] (x ))

= sup
kgkF�1

Ex�q hg ; �x iF

=
(a)

sup
kgkF�1

hg ;Ex�q�x iF = kEx�q�xkF

Caution: (a) requires a condition for the Riesz theorem to hold,

Ex�q

�
d
dx

log p(x )
�2

<1:

Chwialkowski, Strathmann, G., (ICML 2016) Liu, Lee, Jordan (ICML 2016)

15/52



Kernel stein discrepancy: derivation

Closed-form expression for KSD:

KSDp(Q) = sup
kgkF�1

Ex�q ([Tpg ] (x ))

= sup
kgkF�1

Ex�q hg ; �x iF

=
(a)

sup
kgkF�1

hg ;Ex�q�x iF = kEx�q�xkF

Caution: (a) requires a condition for the Riesz theorem to hold,

Ex�q

�
d
dx

log p(x )
�2

<1:

Chwialkowski, Strathmann, G., (ICML 2016) Liu, Lee, Jordan (ICML 2016)

15/52



Kernel stein discrepancy: derivation

Closed-form expression for KSD:

KSDp(Q) = sup
kgkF�1

Ex�q ([Tpg ] (x ))

= sup
kgkF�1

Ex�q hg ; �x iF

=
(a)

sup
kgkF�1

hg ;Ex�q�x iF = kEx�q�xkF

Caution: (a) requires a condition for the Riesz theorem to hold,

Ex�q

�
d
dx

log p(x )
�2

<1:

Chwialkowski, Strathmann, G., (ICML 2016) Liu, Lee, Jordan (ICML 2016)

15/52



Does the Riesz condition matter?

Consider the standard normal,

p(x ) =
1p
2�

exp
�
�x 2=2

�
:

Then
d
dx

log p(x ) = �x :

If q is a Cauchy distribution, then the integral

Ex�q

�
d
dx

log p(x )
�2

=

Z 1

�1
x 2q(x )dx

is undefined.
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Kernel stein discrepancy: population expression
Test statistic when x 2 Rd , given independent x ; x 0 � q ,

KSD2
p(Q) = kEx�q�xk2

F = Ex ;x 0�qhp(x ; x 0)

where

hp(x ; x 0) = sp(x )>sp(x 0)k(x ; x 0) + sp(x )>k2(x ; x 0)

+ sp(x 0)>k1(x ; x 0) + tr
�
k12(x ; x 0)

�

sp(x ) 2 Rd = rp(x )
p(x )

k1(a ; b) := rxk(x ; x 0)jx=a ;x 0=b 2 Rd ,
k2(a ; b) := rx 0k(x ; x 0)jx=a ;x 0=b 2 Rd ,

k12(a ; b) := rxrx 0k(x ; x 0)jx=a ;x 0=b 2 Rd�d
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Do not need to normalize p, or sample from it.
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k12(a ; b) := rxrx 0k(x ; x 0)jx=a ;x 0=b 2 Rd�d

If kernel is C0-universal and Q satisfies Ex�q

r �log p(x )
q(x )

�2
<1, then

KSD2
p(Q) = 0 iff P = Q .
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KSD for discrete-valued variables
Discrete domains: X = f1; : : : ;LgD with L 2 N.
The population KSD (discrete):

KSD2
p(Q) = Ex ;x 0�qhp(x ; x 0)

where

hp(x ; x 0) = sp(x )>sp(x 0)k(x ; x 0)� sp(x )>k2(x ; x 0)

� sp(x 0)>k1(x ; x 0) + tr
�
k12(x ; x 0)

�
k1(x ; x 0) = ��1

x k(x ; x 0), ��1
x is cyclic backwards difference on x ,

sp(x ) =
�p(x )
p(x )

A discrete kernel: k(x ; x 0) = exp (�dH (x ; x 0)), where
dH (x ; x 0) = D�1PD

d=1 I(xd 6= x 0d).

KSD2
p(Q) = 0 iff P = Q if
Gram matrix over all the configurations in X is strictly positive definite,
P > 0 and Q > 0.

Ranganath et al. (NeurIPS 2016), Yang et al. (ICML 2018)
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Empirical statistic and asymptotics
The empirical statistic:

\KSD2
p(Q) :=

1
n(n � 1)

X
i 6=j

hp(xi ; xj ):
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Empirical statistic and asymptotics
The empirical statistic:

\KSD2
p(Q) :=

1
n(n � 1)

X
i 6=j

hp(xi ; xj ):

Asymptotic distribution when P 6= Q :
p
n
�
\KSD2

p(Q)�KSD2
p(Q)

�
d! N (0; �2

hp ) �2
hp = 4Varx [Ex 0 [hp(x ; x 0)]]:

K̂SD2
p(Q)

0.0

0.5

Prob

KSD2
p(Q)
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Empirical statistic and asymptotics

The empirical statistic:

\KSD2
p(Q) :=

1
n(n � 1)

X
i 6=j

hp(xi ; xj ):

Asymptotic distribution when P = Q :

n\KSD2
p(Q) �

1X
`=1

�`Z 2
`

�i i (x 0) =
Z
X
hp(x ; x 0) i (x )dp(x )

Z` � N (0; 1) i:i:d:

Test threshold via wild bootstrap.
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A naive linear time statistic

A running average:

\LKS2
p (Q) :=

2
n

n=2X
i=1

hp(x2i�1; x2i ):

Asymptotically normal when P 6= Q and when P = Q :

Can we do better? Wishlist:

1 still linear-time

2 adaptive (parameters automatically tuned)

3 more interpretable

20/52



A naive linear time statistic

A running average:

\LKS2
p (Q) :=

2
n

n=2X
i=1

hp(x2i�1; x2i ):

Asymptotically normal when P 6= Q and when P = Q :

Can we do better? Wishlist:

1 still linear-time

2 adaptive (parameters automatically tuned)

3 more interpretable

20/52



Linear-time, interpretable
Goodness-of-fit Test
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Stein Witness Function at a Single Location
Idea:

(Stein) witness(v) = Ex�q [ Tpkv(x) ]� Ey�p[ Tpkv(y) ]
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Stein Witness Function at a Single Location
Idea:

(Stein) witness(v) = Ex�q [ Tpkv(x) ]

Proposal: Good v should have high

score(v) =
jwitness(v)j

standard deviation(v)
:

signal-to-noise
ratio

witness(v) and standard deviation(v) can be estimated in linear
time.
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Proposal: Model Criticism with the Stein Witness

score(v) =
jwitness(v)j

standard deviation(v)
:
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Proposal: Model Criticism with the Stein Witness

score: 0.034

(Tpkv)(x)

= v

score(v) =
jwitness(v)j

standard deviation(v)
:
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Proposal: Model Criticism with the Stein Witness
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Proposal: Model Criticism with the Stein Witness

score: 0.48

score(v) =
jwitness(v)j

standard deviation(v)
:

23/52



Proposal: Model Criticism with the Stein Witness
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Proposal: Model Criticism with the Stein Witness
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jwitness(v)j

standard deviation(v)
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FSSD is a Discrepancy Measure
Theorem 1.
Let V = fv1; : : : ;vJg � Rd be drawn i.i.d. from a distribution � which
has a density. Let X be a connected open set in Rd . Assume

1 (Nice RKHS) Kernel k : X � X ! R is C0-universal, and real
analytic.

2 (Riesz condition holds) kgk2
F <1.

3 (Finite Fisher divergence) Ex�qkrx log
p(x)
q(x)k2 <1 .

4 (vanishing boundary condition) limkxk!1 p(x)g(x) = 0.

Then, �-almost surely

FSSD2 = 0 if and only if p = q, for any J � 1.

Gaussian kernel k(x;v) = exp
�
�kx�vk22

2�2
k

�
works.

In practice, J = 1 or J = 5.
24/52



More on FSSD2

When d > 1, the Stein witness g has d outputs.
Define

�(x;v) :=
1

p(x)
rx[p(x)k(x;v)] 2 Rd :

d-output Stein witness

g(v) = Ex�q�(x;v) 2 Rd :

General form:

FSSD2 =
1
dJ

JX
j=1

kg(vj )k2
2;

where unbiased estimator \FSSD2 computable in O(d2Jn).
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Asymptotic Distributions of\FSSD2

� (x) := vertically stack �(x;v1); : : : �(x;vJ ) 2 RdJ . Feature vector of
x.
Mean feature: � := Ex�q [� (x)].
Equivalently, FSSD2 = 1

dJ k�k2
2 (mean feature).

�r := covx�r [� (x)] 2 RdJ�dJ for r 2 fp; qg
Proposition 1 (Asymptotic distributions).

Let Z1; : : : ;ZdJ
i :i :d :� N (0; 1), and f!igdJi=1 be the eigenvalues of �p.

1 Under H0 : p = q, asymptotically n \FSSD2 d!PdJ
i=1(Z

2
i � 1)!i .

� Easy to simulate to get p-value.
� Simulation cost independent of n.

2 Under H1 : p 6= q, we have
p
n(\FSSD2 � FSSD2)

d! N (0; �2
H1
)

where �2
H1

:= 4�>�q�. Implies P(reject H0)! 1 as n !1.

But, how to estimate �p? No sample from p!

Theorem: Using �̂q (computed with fxigni=1 � q) still leads to
asymptotically consistent test.
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Parameter Tuning

Jointly optimise locations V = fv1; : : : ;vJg for more test power

Proposition 2 (Approx. power for large n).
Under H1, for large n and fixed threshold r, the test power
P(reject H0 j H1 true)

PH1(n \FSSD2 > r) � 1� �

 
rp
n�H1

�pn FSSD2

�H1

!
;

where � = CDF of N (0; 1).

For large n , second term dominates. So

argmax
V ;�2

k

(power) � argmax
V ;�2

k

\FSSD2d�H1

:

Split fxigni=1 into independent training/test sets. Optimize V on tr.
Test on te.
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Interpretable Features: Chicago Crime

Model p = 2-component Gaus-
sian mixture.

Learned test locations are
interpretable.
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Interpretable Features: Chicago Crime

Score surface

Learned test locations are
interpretable.
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Interpretable Features: Chicago Crime

F = optimized v.

Learned test locations are
interpretable.
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Interpretable Features: Chicago Crime

F = optimized v.
No robbery in Lake Michigan.

Learned test locations are
interpretable.
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Interpretable Features: Chicago Crime

Model p = 10-component Gaus-
sian mixture.

Learned test locations are
interpretable.
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Interpretable Features: Chicago Crime

Capture the right tail better.

Learned test locations are
interpretable.
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Interpretable Features: Chicago Crime

Still, does not capture the left
tail.

Learned test locations are
interpretable.
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Interpretable Features: Chicago Crime

Still, does not capture the left
tail.

Learned test locations are
interpretable.
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Experiment: Restricted Boltzmann Machine (RBM)

Model p =

· · ·

· · ·

40 hidden units

50 visible units

29/52



Experiment: Restricted Boltzmann Machine (RBM)

Model p =

· · ·

· · ·

40 hidden units

50 visible units

Sample
from

· · ·

· · ·
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MMD test
(quadratic-time)
[Gretton et al., 2012]

Proposed
(linear-time)
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Model Criticism

"All models are wrong."

G. Box (1976)
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Relative model comparison

Have: two candidate models P and Q , and samples fxigni=1 from
reference distribution R
Goal: which of P and Q is better?

Samples from GAN, Goodfellow
et al. (2014)

Samples from LSGAN,
Mao et al. (2017)

Which model is better?
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Most interesting models have latent structure
Graphical model representation of hierarchical LDA with a nested CRP
prior, Blei et al. (2003)

!41 !5 !6

!3!2

!1

2 4 3

4 32 1

4 3 2 1

cL
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c3

c2

"

#

z

$

N M

w

%

&

!

8

(a) (b)

Figure 1: (a) The paths of four tourists through the infinite tree of Chinese restaurants (L =
3). The solid lines connect each restaurant to the restaurants referred to by its tables. The
collected paths of the four tourists describe a particular subtree of the underlying infinite
tree. This illustrates a sample from the state space of the posterior nested CRP of Figure 1b
for four documents. (b) The graphical model representation of hierarchical LDA with a
nested CRP prior. We have separated the nested Chinese restaurant process from the topics.
Each of the infinite β’s corresponds to one of the restaurants.

to one of the L available topics. All other variables in the model—θ and β—are integrated
out. The Gibbs sampler thus assesses the values of zm,n and cm,ℓ.
Conceptually, we divide the Gibbs sampler into two parts. First, given the current state
of the CRP, we sample the zm,n variables of the underlying LDA model following the
algorithm developed in [12], which we do not reproduce here. Second, given the values of
the LDA hidden variables, we sample the cm,ℓ variables which are associated with the CRP
prior. The conditional distribution for cm, the L topics associated with documentm, is:

p(cm |w, c−m, z) ∝ p(wm | c,w−m, z)p(cm | c−m),

where w−m and c−m denote the w and c variables for all documents other than m. This
expression is an instance of Bayes’ rule with p(wm | c,w−m, z) as the likelihood of the data
given a particular choice of cm and p(cm | c−m) as the prior on cm implied by the nested
CRP. The likelihood is obtained by integrating over the parameters β, which gives:

p(wm | c,w−m, z) =
L∏

ℓ=1

(
Γ(n

(·)
cm,ℓ,−m + Wη)

∏
w Γ(n

(w)
cm,ℓ,−m + η)

∏
w Γ(n

(w)
cm,ℓ,−m + n

(w)
cm,ℓ,m + η)

Γ(n
(·)
cm,ℓ,−m + n

(·)
cm,ℓ,m + Wη)

)
,

where n
(w)
cm,ℓ,−m is the number of instances of word w that have been assigned to the topic

indexed by cm,ℓ, not including those in the current document, W is the total vocabulary
size, and Γ(·) denotes the standard gamma function. When c contains a previously unvisited
restaurant, n(w)

cm,ℓ,−m is zero.

Note that the cm must be drawn as a block. The set of possible values for cm corresponds
to the union of the set of existing paths through the tree, equal to the number of leaves,
with the set of possible novel paths, equal to the number of internal nodes. This set can be
enumerated and scored using Eq. (1) and the definition of a nested CRP in Section 2.2.
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Relative goodness-of-fit testing

Two generative models P and Q , data fxigni=1 � R.
Neither model gives a perfect fit ( P 6= R and Q 6= R).
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Joint asymptotic normality
Joint asymptotic normality when P 6= R and Q 6= R

p
n

24 \KSD2
p(R)�KSD2

p(R)
\KSD2

q(R)�KSD2
q(R)

35 d! N
 "

0
0

#
;

"
�2
hp �hphq

�hphq �2
hq

#!

K̂SD2
p(R)

K̂SD2
q(R)

KSD2
p(R)

KSD2
q(R)
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Joint asymptotic normality

Joint asymptotic normality when P 6= R and Q 6= R

p
n

24 \KSD2
p(R)�KSD2

p(R)
\KSD2

q(R)�KSD2
q(R)

35 d! N
 "

0
0

#
;

"
�2
hp �hphq

�hphq �2
hq

#!

Difference in statistics is asymptotically normal:

p
n
�
\KSD2

p(R)�\KSD2
q(R)�

�
KSD2

p(R)�KSD2
q(R)

��
d! N

�
0; �2

hp + �2
hq � 2�hphq

�
=) a statistical test with null hypothesis KSD2

p(R)�KSD2
q(R) � 0 is

straightforward.
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Latent variable models
Can we compare latent variable
models with KSD?

p(x ) =
Z
p(x jz )p(z )dz

q(y) =
Z
q(y jw)p(w)dw X Y

WZ

Recall multi-dimensional Stein operator:

[Tpf ] (x ) =

*
rp(x )
p(x )| {z }
(a)

; f (x )

+
+ hr; f (x )i :

Expression (a) requires marginal p(x ), often intractable: : :

: : :but sampling can be straightforward!
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Monte Carlo approximation
Approximate the integral using fzj gmj=1 � p(z ):

p(x ) =
Z
p(x jz )p(z )dz

� pm(x ) =
1
m

mX
j=1

p(x jzj )

Estimate KSDs with approxiomate densities:

\KSD2
p(R)�\KSD2

q(R) � \KSD2
pm (R)� \KSD2

qm (R)

Recall
p
n
�
\KSD2

p(R)�\KSD2
q(R)�

�
KSD2

p(R)�KSD2
q(R)

��
d! N

�
0; �2

hp + �2
hq � 2�hphq

�
! if m is large, can we simply substitute pm and qm ?
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Simple proof of concept

Check \KSD2
p(R) � \KSD2

pm (R) with a toy model:

Model: Beta-Binomial BetaBinom(�; �)

p(x jz ) =
 
N
x

!
z x (1� z )n�x ; p(z ) = Beta(a ; b)

� Latent z 2 (0; 1): success probability for binomial likelihood
� Marginal p(x ): tractable (given by the beta function)

Generate
p
n\KSD2

p(R) and
p
n \KSD2

pm (R)

! what do their distribution look like?
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Effect of sampling the latents (Beta-binomial)

√
n U-stat

0.0

0.5

Prob
√
nK̂SD2

p
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Why this happens

KSD2
p

P(KSD2
pm )

KSD2
pm (R) is normally distributed around KSD2

p(R)

(approximation error)
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Why this happens

KSD2
p

P(KSD2
pm )

KSD2
pm

Approximation pm gives a random draw KSD2
pm (R)
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Why this happens

KSD2
p

P(KSD2
pm )

KSD2
pm

P( \KSD2
pm jpm)

\KSD2
pm (R) is normally distributed around KSD2

pm (R)
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Why this happens

Distribution of \KSD2
pm (R) is

averaged over random draws of KSD2
pm (R)
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Why this happens

Distribution of \KSD2
pm (R) is

averaged over random draws of KSD2
pm (R)
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Why this happens

\KSD2
pm (R) has a higher variance than \KSD2

p(R)
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Correction for this effect

BetaBinomial models with p = qm vs q
!numerical vs closed-form marginalisation.
With correction for increased \KSD2

qm (R) variance,
null accepted w.p. 1� �.

100 200 300
Sample size n

0.05

0.50

R
ej
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ti

on
ra

te

Q =

BetaBinom(5+ a ; 1+ b)

P = qm
R = BetaBinom(a ; b)

k(x ; x 0) = exp(�I(x 6=
x 0))

� = 0:05
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Sample size n

0.05

0.50

R
ej

ec
ti
on

ra
te

KSD without corrected threshold (m=100)

KSD m=1000

LKSD (KSD for Latent Models) m=100

LKSD m=1000
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) rejection rate ! 1 as
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Asymptotics for approximate KSD

We have asymptotic normality for KSD2
pm (R),

p
m
�
KSD2

pm (R)�KSD2
p(R)

� d! N (0; 2
p)

The fine print:

infx p(x ) > 0

supx
���dp(x )dx

��� <1
(Uniform CLT) Likelihoods fp(x j�)jx 2 Xg and derivatives
f d
dx p(x j�)jx 2 Xg are p(z ) - Donsker class
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Asymptotic distribution for relative KSD test
Asymptotic distribution of approximate KSD estimate
(n ;m)!1; n

m ! r 2 [0;1):

p
n
��
\KSD2

pm (R)� \KSD2
qm (R)

�
�
�
KSD2

p(R)�KSD2
q(R)

��
d! N (0; c2)

where

c = �pq
q
1+ r(pq=�pq)2

2
pq = lim

m!1
m � Var [Ex ;x 0hpm (x ; x 0)�Ex ;x 0hqm (x ; x 0)]

�2
pq = lim

n!1
n � Var

�
\KSD2

p(R)�\KSD2
q(R)

�

Fine print:

hp(x ; x 0)� hq(x ; x 0) has a finite third moment
Additional technical conditions
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Relative test, further detail
Theorem (Asymptotic distribution of random kernel
U-statistic).

Let
� Un;m : a U-statistic defined by a random U-statistic kernel Hm

� Un : a U-statistic defined by a fixed U-statistic kernel h

Assume that
� �2

Hm
! �2

h in probability
� �3(Hm)! �3(h) <1 in probability
where �3(Hm) = Ex ;x 0

��Hm(x ; x 0)�Ex ;x 0Hm(x ; x 0)
��3

� Ym :=
p
m
�
En [Un;m jHm ]�En [Un ]

�
d! Y

Then, with n=m ! r 2 [0;1);

lim
n ;m!1

Pr
hp

n(Un ;m �EnUn) < t
i
= EY

"
�

 
t �prY

�h

!#
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Experiment: sensitivity to model difference

Data R = Sigmoid Belief Network SBN(W ):

R(x jz ) = sigmoid(Wz ); R(z ) = N (0; I ); W 2 R30�10

Models: P = SBN(W + �[1;0; : : : ;0]); Q = SBN(W + [1;0; : : : ;0])
Only the first column of weight W is perturbed by �
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Papers referenced

A Linear-Time Kernel Goodness-of-Fit Test.
Wittawat Jitkrittum, Wenkai Xu, Zoltán Szabó, Kenji Fukumizu,
Arthur Gretton
https://arxiv.org/abs/1705.07673

Python code: https://github.com/wittawatj/kernel-gof

A Kernel Stein Test for Comparing Latent Variable Models
Heishiro Kanagawa, Wittawat Jitkrittum, Lester Mackey,
Kenji Fukumizu, Arthur Gretton
https://arxiv.org/abs/1907.00586
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Questions?
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Efficiency comparison,
linear-time tests
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Bahadur Slope and Bahadur Efficiency

Bahadur slope u rate of p-value ! 0 under H1 as n !1.
Measure a test’s sensitivity to the departure from H0.

H0 :� = 0;

H1 :� 6= 0:

Typically pvaln � exp
�
�1

2c(�)n
�
where c(�) > 0 under H1, and

c(0) = 0. [?].
c(�) higher =) more sensitive. Good.

0 50 100
n

0.0

0.5

1.0

p
-v

al
u

e

p-value of T
(1)
n

p-value of T
(2)
n

Bahadur slope

c(�) := �2 plim
n!1

log (1� F (Tn))

n
;

where F (t) = CDF of Tn under H0.

Bahadur efficiency = ratio of slopes
of two tests. 49/52



Bahadur Slope and Bahadur Efficiency

Bahadur slope u rate of p-value ! 0 under H1 as n !1.
Measure a test’s sensitivity to the departure from H0.

H0 :� = 0;

H1 :� 6= 0:

Typically pvaln � exp
�
�1

2c(�)n
�
where c(�) > 0 under H1, and

c(0) = 0. [?].
c(�) higher =) more sensitive. Good.

0 50 100
n

0.0

0.5

1.0

p
-v

al
u

e

p-value of T
(1)
n

p-value of T
(2)
n

Bahadur slope

c(�) := �2 plim
n!1

log (1� F (Tn))

n
;

where F (t) = CDF of Tn under H0.

Bahadur efficiency = ratio of slopes
of two tests. 49/52



Bahadur Slope and Bahadur Efficiency

Bahadur slope u rate of p-value ! 0 under H1 as n !1.
Measure a test’s sensitivity to the departure from H0.

H0 :� = 0;

H1 :� 6= 0:

Typically pvaln � exp
�
�1

2c(�)n
�
where c(�) > 0 under H1, and

c(0) = 0. [?].
c(�) higher =) more sensitive. Good.

0 50 100
n

0.0

0.5

1.0

p
-v

al
u

e

p-value of T
(1)
n

p-value of T
(2)
n

Bahadur slope

c(�) := �2 plim
n!1

log (1� F (Tn))

n
;

where F (t) = CDF of Tn under H0.

Bahadur efficiency = ratio of slopes
of two tests. 49/52



Bahadur Slope and Bahadur Efficiency

Bahadur slope u rate of p-value ! 0 under H1 as n !1.
Measure a test’s sensitivity to the departure from H0.

H0 :� = 0;

H1 :� 6= 0:

Typically pvaln � exp
�
�1

2c(�)n
�
where c(�) > 0 under H1, and

c(0) = 0. [?].
c(�) higher =) more sensitive. Good.

0 50 100
n

0.0

0.5

1.0

p
-v

al
u

e

p-value of T
(1)
n

p-value of T
(2)
n

Bahadur slope

c(�) := �2 plim
n!1

log (1� F (Tn))

n
;

where F (t) = CDF of Tn under H0.

Bahadur efficiency = ratio of slopes
of two tests. 49/52



Bahadur Slopes of FSSD and LKS
Theorem 2.

The Bahadur slope of n \FSSD2 is

c(FSSD) := FSSD2=!1;

where !1 is the maximum eigenvalue of �p := covx�p [� (x)].

Theorem 3.
The Bahadur slope of the linear-time kernel Stein (LKS) statisticp
ncS2

l is

c(LKS) =
1
2
[Eqhp(x;x0)]

2

Ep

h
h2
p (x;x0)

i ;
where hp is the U-statistic kernel of the KSD statistic.

Let’s consider a specific case : : :
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Gaussian Mean Shift Problem

Consider p = N (0; 1) and q = N (�q ; 1).

Assume J = 1 feature for n \FSSD2. Gaussian kernel (bandwidth =
�2
k )

c(FSSD)(�q ; v ; �2
k ) =

�2
k

�
�2
k + 2

�3
�2
qe

v2

�
2
k
+2

�
(v��q )2

�
2
k
+1q

2
�2
k
+ 1

�
�2
k + 1

� �
�6
k + 4�4

k + (v2 + 5)�2
k + 2

� :
For LKS, Gaussian kernel (bandwidth = �2).

c(LKS)(�q ; �
2) =

�
�2
�5=2 �

�2 + 4
�5=2

�4
q

2 (�2 + 2) (�8 + 8�6 + 21�4 + 20�2 + 12)
:
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Gaussian Mean Shift Problem

Theorem 4 (FSSD is at least two times more efficient).

Fix �2
k = 1 for n \FSSD2.

Then, 8�q 6= 0, 9v 2 R, 8�2 > 0, we have Bahadur efficiency

c(FSSD)(�q ; v ; �2
k )

c(LKS)(�q ; �2)
> 2:
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