# Kernel tests of goodness-of-fit using Stein's method













Arthur Gretton gretton@gatsby.ucl.ac.uk

Gatsby Unit, University College London

Duke University 2019



### Model Criticism



# Model Criticism







Data = robbery events in Chicago in 2016.

# Model Criticism



Is this a good model?

# Model Criticism



Goals: Test if a (complicated) model fits the data.



The kernel Stein discrepancy Chwialkowski, Strathmann, G. ICML 2016

- Comparing two models via samples: MMD and the witness function.
- Comparing a sample and a model: Stein modification of the witness class
- A Linear-Time Kernel Goodness-of-Fit Test Jitkrittum, Xu, Szabo, Fukumizu, G. NeurIPS 2017
  - Features learned to maximise (estimate of) test power
  - Better asymptotic relative efficiency vs a "naive" linear time test
- Relative hypothesis tests with latent variables Kanagawa, Jitkrittum, Mackey, Fukumizu, G. 2019

# Integral probability metrics

Integral probability metric:

Find a "well behaved function" f(x) to maximize

 $\mathbf{E}_{Q}f(Y)-\mathbf{E}_{P}f(X)$ 



# Integral probability metrics

Integral probability metric:

Find a "well behaved function" f(x) to maximize

 $\mathbf{E}_{Q}f(Y)-\mathbf{E}_{P}f(X)$ 



Maximum mean discrepancy: RKHS function for P vs Q

$$MMD(\emph{P}, \emph{Q}; \mathcal{F}) := \sup_{\|f\|_{\mathcal{F}} \leq 1} \left[ \operatorname{\mathbf{E}}_{\emph{Q}} f(\emph{Y}) - \operatorname{\mathbf{E}}_{\emph{P}} f(\emph{X}) 
ight]$$



Maximum mean discrepancy: RKHS function for P vs Q

$$MMD(\emph{P}, \emph{Q}; \mathcal{F}) := \sup_{\|f\|_{\mathcal{F}} \leq 1} \left[ \operatorname{\mathbf{E}}_{\emph{Q}} f(\emph{Y}) - \operatorname{\mathbf{E}}_{\emph{P}} f(\emph{X}) 
ight]$$

Functions are linear combinations of features:

$$f(x) = \langle f, \varphi(x) \rangle_{\mathcal{F}} = \sum_{\ell=1}^{\infty} f_{\ell} \varphi_{\ell}(x) = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ \vdots \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \varphi_1(x) & \uparrow & \uparrow \\ \varphi_2(x) & \uparrow & \uparrow \\ \varphi_3(x) & \uparrow & \downarrow \\ \varphi_3(x) & \uparrow & \downarrow \\ \vdots & \downarrow \end{bmatrix}$$
$$\|f\|_{\mathcal{F}}^2 := \sum_{i=1}^{\infty} f_i^2 \leq 1$$

Maximum mean discrepancy: RKHS function for P vs Q

$$MMD(\textit{P},\textit{Q};\mathcal{F}) := \sup_{\|f\|_{\mathcal{F}} \leq 1} \left[ \mathrm{E}_{\mathcal{Q}} f(Y) - \mathrm{E}_{\mathcal{P}} f(X) 
ight]$$

For characteristic RKHS  $\mathcal{F}$ , MMD(P, Q; F) = 0 iff P = Q

Other choices for witness function class:

- Bounded continuous [Dudley, 2002]
- Bounded varation 1 (Kolmogorov metric) [Müller, 1997]
- Lipschitz (Wasserstein distances) [Dudley, 2002]

Maximum mean discrepancy: RKHS function for P vs Q

$$MMD(P,Q;\mathcal{F}):=\sup_{\|f\|_{\mathcal{F}}\leq 1}\left[\mathbf{E}_{Q}f(Y)-\mathbf{E}_{P}f(X)
ight]$$

Expectations of functions are linear combinations of expected features

$$\mathbf{E}_P(f(X)) = \mathbf{E}_P raket{f, arphi(X)}_{\mathcal{F}} = \langle f, \mathbf{E}_P arphi(X) 
angle_{\mathcal{F}} = \langle f, \mu_P 
angle_{\mathcal{F}}$$

(if feature map  $\varphi$  Bochner integrable; always true if kernel is bounded)

#### The MMD:

 $egin{aligned} MMD(P, oldsymbol{Q}; \mathcal{F}) \ &= \sup_{\|f\|\leq 1} \left[ \mathbf{E}_P f(X) - \mathbf{E}_{oldsymbol{Q}} f(Y) 
ight] \end{aligned}$ 



#### The MMD:

use

 $MMD(P, Q; \mathcal{F})$ 

- $= \sup_{\|f\|\leq 1} \left[ \mathbf{E}_P f(X) \mathbf{E}_{\mathcal{Q}} f(Y) 
  ight]$
- $= \sup_{\|f\|\leq 1} ig\langle f, \mu_P \mu_{oldsymbol{Q}} ig
  angle_{\mathcal{F}}$

 $\mathbf{E}_P f(X) = \mathbf{E}_P \left\langle arphi(X), f 
ight
angle_{\mathcal{F}} \ = \left\langle \mu_P, f 
ight
angle_{\mathcal{F}}$ 

The MMD:

 $MMD(P, Q; \mathcal{F})$ 

- $= \sup_{\|f\|\leq 1} \left[ \mathbf{E}_P f(X) \mathbf{E}_{\mathcal{Q}} f(Y) 
  ight]$
- $= \sup_{\| f \| \leq 1} raket{f, \mu_P \mu_Q}_{\mathcal{F}}$



The MMD:

 $MMD(P, Q; \mathcal{F})$ 

- $= \sup_{\|f\|\leq 1} \left[ \mathbf{E}_P f(X) \mathbf{E}_{\mathcal{Q}} f(Y) 
  ight]$
- $= \sup_{\|f\|\leq 1} \left\langle f, \mu_P \mu_{\mathcal{Q}} 
  ight
  angle_{\mathcal{F}}$



#### The MMD:

- $MMD(P, Q; \mathcal{F})$
- $= \sup_{\|f\|\leq 1} \left[ \mathbf{E}_P f(X) \mathbf{E}_{\mathcal{Q}} f(Y) 
  ight]$
- $= \sup_{\|f\|\leq 1} raket{f, \mu_P \mu_Q}_{\mathcal{F}}$
- $= \| \boldsymbol{\mu}_P \boldsymbol{\mu}_Q \|$

Consequently,

$$egin{aligned} &f^*(v) = \left\langle f, arphi(v) 
ight
angle_{\mathcal{F}} \ & \propto \left\langle \mu_P - \mu_{oldsymbol{Q}}, arphi(v) 
ight
angle_{\mathcal{F}} \ & = \left\langle \mathbf{E}_P arphi(X) - \mathbf{E}_{oldsymbol{Q}} arphi(oldsymbol{Y}), arphi(v) 
ight
angle_{\mathcal{F}} \ & = \mathbf{E}_P k(X,v) - \mathbf{E}_{oldsymbol{Q}} k(oldsymbol{Y},v) \end{aligned}$$

The maximum mean discrepancy in terms of expected kernels:

$$MMD^2(P, \boldsymbol{Q}; \mathcal{F}) = \| \boldsymbol{\mu}_P - \boldsymbol{\mu}_{\boldsymbol{Q}} \|_{\mathcal{F}}^2$$
  
=  $\underbrace{\mathbf{E}_P k(\boldsymbol{x}, \boldsymbol{x}')}_{(\mathrm{a})} + \underbrace{\mathbf{E}_{\boldsymbol{Q}} k(\boldsymbol{y}, \boldsymbol{y}')}_{(\mathrm{a})} - 2 \underbrace{\mathbf{E}_{P, \boldsymbol{Q}} k(\boldsymbol{x}, \boldsymbol{y})}_{(\mathrm{b})}$ 

(a)= within distrib. similarity, (b)= cross-distrib. similarity.

#### The maximum mean discrepancy

The maximum mean discrepancy in terms of expected kernels:

$$MMD^{2}(P, \boldsymbol{Q}; \mathcal{F}) = \|\boldsymbol{\mu}_{P} - \boldsymbol{\mu}_{\boldsymbol{Q}}\|_{\mathcal{F}}^{2}$$
$$= \underbrace{\mathbf{E}_{P}k(\boldsymbol{x}, \boldsymbol{x}')}_{(\mathbf{a})} + \underbrace{\mathbf{E}_{\boldsymbol{Q}}k(\boldsymbol{y}, \boldsymbol{y}')}_{(\mathbf{a})} - 2\underbrace{\mathbf{E}_{P,\boldsymbol{Q}}k(\boldsymbol{x}, \boldsymbol{y})}_{(\mathbf{b})}$$

(a) = within distrib. similarity, (b) = cross-distrib. similarity.

Proof:

$$egin{aligned} &\|\mu_P-\mu_Q\|_{\mathcal{F}}^2 = \langle \mu_P-\mu_Q, \mu_P-\mu_Q 
angle_{\mathcal{F}} \ &= \langle \mu_P, \mu_P 
angle_{\mathcal{F}} + \langle \mu_Q, \mu_Q 
angle_{\mathcal{F}} - 2 \, \langle \mu_P, \mu_Q 
angle_{\mathcal{F}} \,. \end{aligned}$$

$$\mathrm{MMD}(\boldsymbol{P}, \boldsymbol{Q}; \mathcal{F}) = \sup_{\|f\|_{\mathcal{F}} \leq 1} [\mathbf{E}_q f - \mathbf{E}_p f]$$



Can we compute MMD with samples from Q and a model P? **Problem:** usualy can't compute  $\mathbf{E}_{p}f$  in closed form.

To get rid of  $\mathbf{E}_{pf}$  in

$$\sup_{\|f\|_{\mathcal{F}} \leq 1} [\mathbf{E}_q f - \mathbf{E}_p f]$$

we define the (1-D) Stein operator

$$[T_p f](x) = \frac{1}{p(x)} \frac{d}{dx} (f(x)p(x))$$

Then

 $\mathbf{E}_{p} T_{p} f = 0$ 

subject to appropriate boundary conditions.

Proof:

$$E_{p}[T_{p}f]$$

$$\int \left[\frac{d}{dx}(f(x)p(x))\right] dx$$

$$= [f(x)p(x)]_{-\infty}^{\infty} = 0$$

Gorham and Mackey (NeurIPS 15), Oates, Girolami, Chopin (JRSS B 2016)

To get rid of  $\mathbf{E}_{pf}$  in

$$\sup_{\|f\|_{\mathcal{F}} \leq 1} [\mathbf{E}_q f - \mathbf{E}_p f]$$

we define the (1-D) Stein operator

$$[T_p f](x) = \frac{1}{p(x)} \frac{d}{dx} (f(x)p(x))$$

Then

 $\mathbf{E}_{p} T_{p} f = 0$ 

subject to appropriate boundary conditions. Proof:

$$E_{p}[T_{p}f] = \int \left[\frac{1}{p(x)} \frac{d}{dx} (f(x)p(x))\right] p(x) dx$$
$$\int \left[\frac{d}{dx} (f(x)p(x))\right] dx$$
$$= [f(x)p(x)]_{-\infty}^{\infty} = 0$$

To get rid of  $\mathbf{E}_{pf}$  in

$$\sup_{\|f\||_{\mathcal{F}} \leq 1} [\mathbf{E}_q f - \mathbf{E}_p f]$$

we define the (1-D) Stein operator

$$[T_p f](x) = \frac{1}{p(x)} \frac{d}{dx} (f(x)p(x))$$

Then

 $\mathbf{E}_{p} T_{p} f = 0$ 

subject to appropriate boundary conditions. Proof:

$$E_{p}[T_{p}f] \int \left[\frac{1}{p(x)} \frac{d}{dx} (f(x)p(x))\right] p(x) dx$$
$$\int \left[\frac{d}{dx} (f(x)p(x))\right] dx$$
$$= [f(x)p(x)]_{-\infty}^{\infty} = 0$$

Gorham and Mackey (NeurIPS 15), Oates, Girolami, Chopin (JRSS B 2016)

To get rid of  $\mathbf{E}_{pf}$  in

$$\sup_{\|f\|_{\mathcal{F}} \leq 1} [\mathbf{E}_q f - \mathbf{E}_p f]$$

we define the (1-D) Stein operator

$$[T_p f](x) = \frac{1}{p(x)} \frac{d}{dx} (f(x)p(x))$$

Then

 $\mathbf{E}_{p} T_{p} f = 0$ 

subject to appropriate boundary conditions. Proof:

$$E_{p}[T_{p}f] \int \left[\frac{1}{p(x)} \frac{d}{dx}(f(x)p(x))\right] p(x) dx$$
$$\int \left[\frac{d}{dx}(f(x)p(x))\right] dx$$
$$= [f(x)p(x)]_{-\infty}^{\infty} = 0$$

Gorham and Mackey (NeurIPS 15), Oates, Girolami, Chopin (JRSS B 2016)

# Kernel Stein Discrepancy

Stein operator

$$T_{p}f = rac{1}{p(x)} rac{d}{dx} (f(x)p(x))$$

Kernel Stein Discrepancy (KSD)

$$\mathrm{KSD}_p(Q) = \sup_{\|g\|_F \leq 1} \mathbf{E}_q T_p g - \mathbf{E}_p T_p g$$

# Kernel Stein Discrepancy

Stein operator

$$T_{p}f = rac{1}{p(x)} \ rac{d}{dx} \left(f(x)p(x)
ight)$$

Kernel Stein Discrepancy (KSD)

$$\mathrm{KSD}_p(Q) = \sup_{\|g\|_{\mathcal{F}} \leq 1} \mathbf{E}_q T_p g - \mathbf{E}_p T_p g = \sup_{\|g\|_{\mathcal{F}} \leq 1} \mathbf{E}_q T_p g$$

### The witness function: Chicago Crime



Model p = 10-component Gaussian mixture.

## The witness function: Chicago Crime



Witness function g shows mismatch

# Simple expression using kernels

Re-write stein operator as:

$$egin{aligned} \left[ \left. T_{p}f 
ight](x) &= rac{1}{p(x)} \, rac{d}{dx} \left( f(x)p(x) 
ight) \ &= f(x) rac{d}{dx} \log p(x) + rac{d}{dx} f(x) \end{aligned}$$

#### Can we define "Stein features" in $\mathcal{F}$ ?

$$egin{aligned} [T_p f]\left(x
ight) &= \left(rac{d}{dx}\log p(x)
ight)f(x) + rac{d}{dx}f(x) \ &=: \langle f, \underbrace{\xi(x)}_{ ext{stein features}} 
angle_{\mathcal{F}} \end{aligned}$$

where  $\mathbf{E}_{x \sim p} \boldsymbol{\xi}(x) = 0.$ 

# Simple expression using kernels

Re-write stein operator as:

$$egin{aligned} \left[ T_{p}f
ight] (x) &= rac{1}{p(x)} \, rac{d}{dx} \left( f(x)p(x)
ight) \ &= f(x) rac{d}{dx} \log p(x) + rac{d}{dx} f(x) \end{aligned}$$

#### Can we define "Stein features" in $\mathcal{F}$ ?

$$[T_p f](x) = \left(\frac{d}{dx}\log p(x)\right)f(x) + \frac{d}{dx}f(x)$$
  
=:  $\langle f, \underbrace{\xi(x)}_{\text{stein features}} \rangle_F$ 

where  $\mathbf{E}_{x \sim p} \boldsymbol{\xi}(x) = 0$ .

### The kernel trick for derivatives

Reproducing property for the derivative: for differentiable k(x, x'),

$$rac{d}{dx}f(x)=\left\langle f,rac{d}{dx}arphi(x)
ight
angle _{\mathcal{F}}$$

#### The kernel trick for derivatives

Reproducing property for the derivative: for differentiable k(x, x'),

$$rac{d}{dx}f(x)=\left\langle f,rac{d}{dx}arphi(x)
ight
angle _{\mathcal{F}}$$

Using kernel derivative trick in (a),

$$[T_{p}f](x) = \left(\frac{d}{dx}\log p(x)\right)f(x) + \frac{d}{dx}f(x)$$
$$= \left\langle f, \left(\frac{d}{dx}\log p(x)\right)\varphi(x) + \underbrace{\frac{d}{dx}\varphi(x)}_{(a)}\right\rangle_{\mathcal{F}}$$
$$=: \left\langle f, \xi(x) \right\rangle_{\mathcal{F}}.$$

### Kernel stein discrepancy: derivation

Closed-form expression for KSD:

$$\begin{split} \operatorname{KSD}_{p}(Q) &= \sup_{\|g\|_{\mathcal{F}} \leq 1} \operatorname{E}_{x \sim q}\left([T_{p}g]\left(x\right)\right) \\ &= \sup_{\|g\|_{\mathcal{F}} \leq 1} \operatorname{E}_{x \sim q}\left\langle g, \xi_{x} \right\rangle_{\mathcal{F}} \\ &= \sup_{\|g\|_{\mathcal{F}} \leq 1}\left\langle g, \operatorname{E}_{x \sim q}\xi_{x} \right\rangle_{\mathcal{F}} = \|\operatorname{E}_{x \sim q}\xi_{x}\| \end{split}$$

Chwialkowski, Strathmann, G., (ICML 2016) Liu, Lee, Jordan (ICML 2016)

# Kernel stein discrepancy: derivation

Closed-form expression for KSD:

$$egin{aligned} &\operatorname{KSD}_{p}(Q) = \sup_{\|g\|_{\mathcal{F}} \leq 1} \operatorname{\mathbf{E}}_{x \sim q}\left([T_{p}g]\left(x
ight)
ight) \ &= \sup_{\|g\|_{\mathcal{F}} \leq 1} \operatorname{\mathbf{E}}_{x \sim q}\left\langle g, \xi_{x}
ight
angle_{\mathcal{F}} \ &= \sup_{(a)} \left\|g\|_{\mathcal{F}} \leq 1} \left\langle g, \operatorname{\mathbf{E}}_{x \sim q} \xi_{x}
ight
angle_{\mathcal{F}} = \left\|\operatorname{\mathbf{E}}_{x \sim q} \xi_{x}
ight\|_{\mathcal{F}}. \end{aligned}$$

Chwialkowski, Strathmann, G., (ICML 2016) Liu, Lee, Jordan (ICML 2016)

### Kernel stein discrepancy: derivation

Closed-form expression for KSD:

$$egin{aligned} &\mathrm{KSD}_p(Q) = \sup_{\|\|g\||_{\mathcal{F}} \leq 1} \mathrm{\mathbf{E}}_{x \sim q} \left( [\,T_p\,g]\,(x) 
ight) \ &= \sup_{\|g\||_{\mathcal{F}} \leq 1} \mathrm{\mathbf{E}}_{x \sim q} \left\langle g, oldsymbol{\xi}_x 
ight
angle_{\mathcal{F}} \ &= \sup_{\|g\||_{\mathcal{F}} \leq 1} \left\langle g, \mathrm{\mathbf{E}}_{x \sim q} oldsymbol{\xi}_x 
ight
angle_{\mathcal{F}} = \|\mathrm{\mathbf{E}}_{x \sim q} oldsymbol{\xi}_x \|_{\mathcal{F}} \end{aligned}$$

Caution: (a) requires a condition for the Riesz theorem to hold,

$$\mathbf{E}_{x \sim q} \left(rac{d}{dx}\log p(x)
ight)^2 < \infty$$

Chwialkowski, Strathmann, G., (ICML 2016) Liu, Lee, Jordan (ICML 2016)
#### Does the Riesz condition matter?

Consider the standard normal,

$$p(x) = rac{1}{\sqrt{2\pi}} \exp\left(-x^2/2
ight).$$

Then

$$rac{d}{dx}\log p(x) = -x.$$

If q is a Cauchy distribution, then the integral

$$\mathbf{E}_{x \sim q} \left( rac{d}{dx} \log oldsymbol{p}(x) 
ight)^2 = \int_{-\infty}^\infty x^2 q(x) dx$$

is undefined.

#### Does the Riesz condition matter?

Consider the standard normal,

$$p(x) = rac{1}{\sqrt{2\pi}} \exp\left(-x^2/2
ight).$$

Then

$$rac{d}{dx}\log p(x)=-x.$$

If q is a Cauchy distribution, then the integral

$$\mathbf{E}_{x \sim q} \left(rac{d}{dx}\log oldsymbol{p}(x)
ight)^2 = \int_{-\infty}^\infty x^2 q(x) dx$$

is undefined.

Test statistic when  $x \in \mathbb{R}^d$ , given independent  $x, x' \sim q$ ,

$$\mathrm{KSD}_p^2(Q) = \|\mathbf{E}_{x \sim q} \boldsymbol{\xi}_x\|_\mathcal{F}^2 = \mathbf{E}_{x,x' \sim q} h_p(x,x')$$

where

$$egin{aligned} h_{m{p}}(x,x') &= \mathrm{s}_{m{p}}(x)^{ op}\mathrm{s}_{m{p}}(x')k(x,x') + \mathrm{s}_{m{p}}(x)^{ op}k_2(x,x') \ &+ \mathrm{s}_{m{p}}(x')^{ op}k_1(x,x') + \mathrm{tr}\left[k_{12}(x,x')
ight] \end{aligned}$$

$$s_{p}(x) \in \mathbb{R}^{d} = \frac{\nabla p(x)}{p(x)}$$

$$k_{1}(a, b) := \nabla_{x} k(x, x')|_{x=a, x'=b} \in \mathbb{R}^{d},$$

$$k_{2}(a, b) := \nabla_{x'} k(x, x')|_{x=a, x'=b} \in \mathbb{R}^{d}$$

$$k_{12}(a, b) := \nabla_{x} \nabla_{x'} k(x, x')|_{x=a, x'=b} \in \mathbb{R}^{d \times d}$$

Test statistic when  $x \in \mathbb{R}^d$ , given independent  $x, x' \sim q$ ,

$$\mathrm{KSD}_p^2(Q) = \|\mathbf{E}_{x \sim q} \boldsymbol{\xi}_x\|_\mathcal{F}^2 = \mathbf{E}_{x,x' \sim q} h_p(x,x')$$

where

$$egin{aligned} h_{m{p}}(x,x') &= \mathrm{s}_{m{p}}(x)^{ op}\mathrm{s}_{m{p}}(x')k(x,x') + \mathrm{s}_{m{p}}(x)^{ op}k_2(x,x') \ &+ \mathrm{s}_{m{p}}(x')^{ op}k_1(x,x') + \mathrm{tr}\left[k_{12}(x,x')
ight] \end{aligned}$$

$$\begin{array}{l} \mathbf{s}_p(x) \in \mathbb{R}^d = \frac{\nabla p(x)}{p(x)} \\ \mathbf{s}_1(a,b) := \nabla_x k(x,x')|_{x=a,x'=b} \in \mathbb{R}^d, \\ k_2(a,b) := \nabla_{x'} k(x,x')|_{x=a,x'=b} \in \mathbb{R}^d, \\ \mathbf{s}_1(a,b) := \nabla_x \nabla_{x'} k(x,x')|_{x=a,x'=b} \in \mathbb{R}^{d \times d} \end{array}$$

Test statistic when  $x \in \mathbb{R}^d$ , given independent  $x, x' \sim q$ , $\operatorname{KSD}^2_p(Q) = \|\mathbf{E}_{x \sim q} \boldsymbol{\xi}_x\|_{\mathcal{F}}^2 = \mathbf{E}_{x,x' \sim q} h_p(x,x')$ 

where

$$egin{aligned} h_{m{p}}(x,x') &= \mathbf{s}_{m{p}}(x)^{ op}\mathbf{s}_{m{p}}(x')k(x,x') + \mathbf{s}_{m{p}}(x)^{ op}k_2(x,x') \ &+ \mathbf{s}_{m{p}}(x')^{ op}k_1(x,x') + ext{tr}\left[k_{12}(x,x')
ight] \end{aligned}$$

$$\begin{array}{l} \bullet \ \mathbf{s}_{p}(x) \in \mathbb{R}^{d} = \frac{ \nabla p(x) }{ p(x) } \\ \bullet \ k_{1}(a,b) := \nabla_{x} k(x,x')|_{x=a,x'=b} \in \mathbb{R}^{d}, \\ k_{2}(a,b) := \nabla_{x'} k(x,x')|_{x=a,x'=b} \in \mathbb{R}^{d}, \\ \bullet \ k_{12}(a,b) := \nabla_{x} \nabla_{x'} k(x,x')|_{x=a,x'=b} \in \mathbb{R}^{d \times d} \end{array}$$

Do not need to normalize p, or sample from it.

Test statistic when  $x \in \mathbb{R}^d$ , given independent  $x, x' \sim q$ , $\operatorname{KSD}^2_p(Q) = \|\mathbf{E}_{x \sim q} \boldsymbol{\xi}_x\|_{\mathcal{F}}^2 = \mathbf{E}_{x,x' \sim q} h_p(x,x')$ 

where

$$egin{aligned} h_{m{p}}(x,x') &= \mathbf{s}_{m{p}}(x)^{ op}\mathbf{s}_{m{p}}(x')k(x,x') + \mathbf{s}_{m{p}}(x)^{ op}k_2(x,x') \ &+ \mathbf{s}_{m{p}}(x')^{ op}k_1(x,x') + \mathrm{tr}\left[k_{12}(x,x')
ight] \end{aligned}$$

$$\begin{array}{l} \bullet \ \mathbf{s}_{p}(x) \in \mathbb{R}^{d} = \frac{ \nabla p(x) }{ p(x) } \\ \bullet \ k_{1}(a,b) \coloneqq \nabla_{x} k(x,x')|_{x=a,x'=b} \in \mathbb{R}^{d}, \\ k_{2}(a,b) \coloneqq \nabla_{x'} k(x,x')|_{x=a,x'=b} \in \mathbb{R}^{d}, \\ \bullet \ k_{12}(a,b) \coloneqq \nabla_{x} \nabla_{x'} k(x,x')|_{x=a,x'=b} \in \mathbb{R}^{d \times d}, \end{array}$$

If kernel is  $C_0$ -universal and Q satisfies  $\mathbf{E}_{x \sim q} \left\| \nabla \left( \log \frac{p(x)}{q(x)} \right) \right\|^2 < \infty$ , then  $\mathrm{KSD}_p^2(Q) = 0$  iff P = Q.

#### KSD for discrete-valued variables

Discrete domains:  $\mathcal{X} = \{1, \dots, L\}^D$  with  $L \in \mathbb{N}$ . The population KSD (discrete):

 $\mathrm{KSD}_p^2(Q) = \mathbf{E}_{x,x'\sim q} h_p(x,x')$ 

where

$$egin{aligned} h_p(x,x') &= \mathrm{s}_p(x)^ op \mathrm{s}_p(x')k(x,x') - \mathrm{s}_p(x)^ op k_2(x,x') \ &- \mathrm{s}_p(x')^ op k_1(x,x') + \mathrm{tr}\left[k_{12}(x,x')
ight] \end{aligned}$$

 $k_1(x, x') = \Delta_x^{-1} k(x, x'), \ \Delta_x^{-1}$  is cyclic backwards difference on x,  $s_p(x) = \frac{\Delta p(x)}{p(x)}$ 

Ranganath et al. (NeurIPS 2016), Yang et al. (ICML 2018)

#### KSD for discrete-valued variables

Discrete domains:  $\mathcal{X} = \{1, \dots, L\}^D$  with  $L \in \mathbb{N}$ . The population KSD (discrete):

 $\mathrm{KSD}^2_p(Q) = \mathbf{E}_{x,x'\sim q} h_p(x,x')$ 

where

$$egin{aligned} h_p(x,x') &= \mathrm{s}_p(x)^ op \mathrm{s}_p(x')k(x,x') - \mathrm{s}_p(x)^ op k_2(x,x') \ &- \mathrm{s}_p(x')^ op k_1(x,x') + \mathrm{tr}\left[k_{12}(x,x')
ight] \end{aligned}$$

 $k_1(x,x') = \Delta_x^{-1}k(x,x'), \Delta_x^{-1}$  is cyclic backwards difference on x,  $s_p(x) = \frac{\Delta_p(x)}{p(x)}$ 

A discrete kernel:  $k(x, x') = \exp\left(-d_H(x, x')\right)$ , where  $d_H(x, x') = D^{-1} \sum_{d=1}^D \mathbb{I}(x_d \neq x_d')$ .

Ranganath et al. (NeurIPS 2016), Yang et al. (ICML 2018)

#### KSD for discrete-valued variables

Discrete domains:  $\mathcal{X} = \{1, \dots, L\}^D$  with  $L \in \mathbb{N}$ . The population KSD (discrete):

 $\mathrm{KSD}_p^2(Q) = \mathbf{E}_{x,x'\sim q} h_p(x,x')$ 

where

$$egin{aligned} h_p(x,x') &= \mathbf{s}_p(x)^ op \mathbf{s}_p(x')k(x,x') - \mathbf{s}_p(x)^ op k_2(x,x') \ &- \mathbf{s}_p(x')^ op k_1(x,x') + ext{tr}\left[k_{12}(x,x')
ight] \end{aligned}$$

 $k_1(x,x') = \Delta_x^{-1}k(x,x')$ ,  $\Delta_x^{-1}$  is cyclic backwards difference on x,  $\mathbf{s}_p(x) = \frac{\Delta_p(x)}{p(x)}$ 

A discrete kernel:  $k(x, x') = \exp\left(-d_H(x, x')\right)$ , where  $d_H(x, x') = D^{-1} \sum_{d=1}^D \mathbb{I}(x_d \neq x_d')$ .

 $\mathrm{KSD}_{p}^{2}(Q) = 0$  iff P = Q if

Gram matrix over all the configurations in X is strictly positive definite,
 P > 0 and Q > 0.

Ranganath et al. (NeurIPS 2016), Yang et al. (ICML 2018)

#### Empirical statistic and asymptotics

The empirical statistic:

$$\widehat{\mathrm{KSD}_{p}^{2}}(Q)\coloneqq rac{1}{n(n-1)}\sum_{i
eq j}h_{p}(x_{i},x_{j}).$$

#### Empirical statistic and asymptotics

The empirical statistic:

$$\widehat{\mathrm{KSD}_p^2}(Q) \coloneqq rac{1}{n(n-1)} \sum_{i \neq j} h_p(x_i, x_j).$$
 Asymptotic distribution when  $P \neq Q$ :

$$\sqrt{n}\left(\widehat{\mathrm{KSD}}_{p}^{2}(Q)-\mathrm{KSD}_{p}^{2}(Q)
ight) \stackrel{d}{ o} \mathcal{N}(0,\sigma_{h_{p}}^{2}) \qquad \sigma_{h_{p}}^{2}=4\mathrm{Var}_{x}[\mathbf{E}_{x'}[h_{p}(x,x')]].$$



#### Empirical statistic and asymptotics

The empirical statistic:

$$\widehat{\operatorname{KSD}_{\boldsymbol{p}}^2}(Q)\coloneqq rac{1}{n(n-1)}\sum_{i
eq j}h_{\boldsymbol{p}}(x_i,x_j).$$

Asymptotic distribution when P = Q:

$$\widehat{\mathrm{nKSD}_p^2}(\mathcal{Q}) \sim \sum_{\ell=1}^\infty \lambda_\ell Z_\ell^2 \ \lambda_i \psi_i(x') = \int_\mathcal{X} h_p(x,x') \psi_i(x) dp(x) \ Z_\ell \sim \mathcal{N}(0,1) \quad \mathrm{i.i.d.}$$

Test threshold via wild bootstrap.

#### A naive linear time statistic

A running average:

$$\widehat{LKS^2_p}(Q) := rac{2}{n} \sum_{i=1}^{n/2} h_p(x_{2i-1}, x_{2i}).$$

Asymptotically normal when  $P \neq Q$  and when P = Q.

#### A naive linear time statistic

A running average:

$$\widehat{LKS^2_p}(Q) := rac{2}{n} \sum_{i=1}^{n/2} h_p(x_{2i-1}, x_{2i}).$$

Asymptotically normal when  $P \neq Q$  and when P = Q.

Can we do better? Wishlist:

- 1 still linear-time
- 2 adaptive (parameters automatically tuned)
- 3 more interpretable

### Linear-time, interpretable Goodness-of-fit Test

Idea:

 $(\text{Stein}) \text{ witness}(\mathbf{v}) = \mathbf{E}_{\mathbf{x} \sim q} [ \quad T_p k_{\mathbf{v}}(\mathbf{x}) \quad ] - \mathbf{E}_{\mathbf{y} \sim p} [ \quad T_p k_{\mathbf{v}}(\mathbf{y}) \quad ]$ 

(Stein) witness(v) = 
$$\mathbf{E}_{\mathbf{x} \sim q}[T_p / \mathbf{v}] - \mathbf{E}_{\mathbf{y} \sim p}[T_p / \mathbf{v}]$$

(Stein) witness(
$$\mathbf{v}$$
) =  $\mathbf{E}_{\mathbf{x} \sim q}$ [  $\mathbf{v}$ ] -  $\mathbf{E}_{\mathbf{y} \sim \mathbf{p}}$ [  $\mathbf{v}$ ]

(Stein) witness(v) = 
$$\mathbf{E}_{\mathbf{x} \sim q}$$
[ ] -  $\mathbf{E}_{\mathbf{y} \sim p}$ [

$$(\text{Stein}) ext{ witness}(\mathbf{v}) = \mathbf{E}_{\mathbf{x} \sim q}[$$

Idea:

 $( ext{Stein}) ext{ witness}(\mathbf{v}) = \mathbf{E}_{\mathbf{x} \sim q} [ \qquad T_p k_{\mathbf{v}}(\mathbf{x}) \qquad ]$ 

Idea:

 $( ext{Stein}) ext{ witness}(\mathbf{v}) = \mathbf{E}_{\mathbf{x} \sim q} [ \qquad T_p k_{\mathbf{v}}(\mathbf{x}) \qquad ]$ 



Idea:

 $( ext{Stein}) ext{ witness}(\mathbf{v}) = \mathbf{E}_{\mathbf{x} \sim q} [ \qquad T_p k_{\mathbf{v}}(\mathbf{x}) \qquad ]$ 



witness(v) and standard deviation(v) can be estimated in <u>linear</u> time.



$$score(\mathbf{v}) = \frac{|witness(\mathbf{v})|}{standard deviation(\mathbf{v})}$$



$$score(\mathbf{v}) = \frac{|witness(\mathbf{v})|}{standard deviation(\mathbf{v})}$$



$$\operatorname{score}(\mathbf{v}) = \frac{|\operatorname{witness}(\mathbf{v})|}{\operatorname{standard deviation}(\mathbf{v})}$$



$$score(\mathbf{v}) = \frac{|witness(\mathbf{v})|}{standard deviation(\mathbf{v})}$$



$$score(\mathbf{v}) = \frac{|witness(\mathbf{v})|}{standard \ deviation(\mathbf{v})}$$



$$score(\mathbf{v}) = \frac{|witness(\mathbf{v})|}{standard \ deviation(\mathbf{v})}$$



$$score(\mathbf{v}) = \frac{|witness(\mathbf{v})|}{standard deviation(\mathbf{v})}$$


$$score(\mathbf{v}) = \frac{|witness(\mathbf{v})|}{standard deviation(\mathbf{v})}$$



$$score(\mathbf{v}) = \frac{|witness(\mathbf{v})|}{standard deviation(\mathbf{v})}$$



$$score(\mathbf{v}) = \frac{|witness(\mathbf{v})|}{standard deviation(\mathbf{v})}$$



$$score(\mathbf{v}) = \frac{|witness(\mathbf{v})|}{standard deviation(\mathbf{v})}$$



$$score(\mathbf{v}) = \frac{|witness(\mathbf{v})|}{standard deviation(\mathbf{v})}$$



$$score(\mathbf{v}) = \frac{|witness(\mathbf{v})|}{standard deviation(\mathbf{v})}$$

## score: 0.44



 $\operatorname{score}(\mathbf{v}) = \frac{|\operatorname{witness}(\mathbf{v})|}{\operatorname{standard deviation}(\mathbf{v})}.$ 

### FSSD is a Discrepancy Measure

#### Theorem 1.

Let  $V = {\mathbf{v}_1, \dots, \mathbf{v}_J} \subset \mathbb{R}^d$  be drawn i.i.d. from a distribution  $\eta$  which has a density. Let  $\mathcal{X}$  be a connected open set in  $\mathbb{R}^d$ . Assume

- 1 (Nice RKHS) Kernel  $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$  is  $C_0$ -universal, and real analytic.
- 2 (Riesz condition holds)  $\|g\|_{\mathcal{F}}^2 < \infty$ .
- 3 (Finite Fisher divergence)  $\mathbb{E}_{\mathbf{x}\sim q} \| \nabla_{\mathbf{x}} \log \frac{p(\mathbf{x})}{q(\mathbf{x})} \|^2 < \infty$ .
- 4 (vanishing boundary condition)  $\lim_{\|\mathbf{x}\|\to\infty} p(\mathbf{x})\mathbf{g}(\mathbf{x}) = \mathbf{0}$ .

Then,  $\eta$ -almost surely

$$\mathrm{FSSD}^2=0$$
 if and only if  $p=q$ , for any  $J\geq 1.$ 

Gaussian kernel  $k(\mathbf{x}, \mathbf{v}) = \exp\left(-\frac{\|\mathbf{x}-\mathbf{v}\|_2^2}{2\sigma_{\nu}^2}\right)$  works.

In practice, 
$$J = 1$$
 or  $J = 5$ .

### More on FSSD<sup>2</sup>

- When d > 1, the Stein witness g has d outputs.
- Define

$$\xi(\mathbf{x},\mathbf{v}):=rac{1}{p(\mathbf{x})}
abla_{\mathbf{x}}[p(\mathbf{x})k(\mathbf{x},\mathbf{v})]\in\mathbb{R}^{d}.$$

$$\mathbf{g}(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q} \xi(\mathbf{x}, \mathbf{v}) \in \mathbb{R}^{d}.$$

General form:

$$ext{FSSD}^2 = rac{1}{dJ}\sum_{j=1}^J \| extbf{g}( extbf{v}_j)\|_2^2,$$

where unbiased estimator  $\widehat{\text{FSSD}^2}$  computable in  $\mathcal{O}(d^2 J n)$ .

## Asymptotic Distributions of $\widetilde{\mathrm{FSSD}^2}$

- τ(x) := vertically stack ξ(x, v<sub>1</sub>), ... ξ(x, v<sub>J</sub>) ∈ ℝ<sup>dJ</sup>. Feature vector of x.
- Mean feature:  $\mu := \mathbb{E}_{\mathbf{x} \sim q}[\tau(\mathbf{x})].$
- Equivalently,  $FSSD^2 = \frac{1}{dJ} \|\mu\|_2^2$  (mean feature).
- $\blacksquare \ \Sigma_r := \operatorname{cov}_{\mathbf{x} \sim r}[\tau(\mathbf{x})] \in \mathbb{R}^{dj \times dJ} \ \text{for} \ r \in \{p, q\}$

Proposition 1 (Asymptotic distributions).

Let  $Z_1,\ldots,Z_{dJ} \stackrel{i.i.d.}{\sim} \mathcal{N}(0,1)$ , and  $\{\omega_i\}_{i=1}^{dJ}$  be the eigenvalues of  $\Sigma_p$ .

- 1 Under  $H_0: p = q$ , asymptotically  $n FSSD^2 \xrightarrow{d} \sum_{i=1}^{dJ} (Z_i^2 1) \omega_i$ .
  - Easy to simulate to get p-value.
  - Simulation cost independent of n.
- 2 Under  $H_1 : p \neq q$ , we have  $\sqrt{n}(\widehat{\text{FSSD}^2} \text{FSSD}^2) \xrightarrow{d} \mathcal{N}(0, \sigma_{H_1}^2)$ where  $\sigma_{H_1}^2 := 4\mu^\top \Sigma_q \mu$ . Implies  $\mathbb{P}(\text{reject } H_0) \to 1$  as  $n \to \infty$ .

**But**, how to estimate  $\Sigma_p$ ? No sample from p!

## Asymptotic Distributions of $\widetilde{FSSD^2}$

- τ(x) := vertically stack ξ(x, v<sub>1</sub>), ... ξ(x, v<sub>J</sub>) ∈ ℝ<sup>dJ</sup>. Feature vector of x.
- Mean feature:  $\mu := \mathbb{E}_{\mathbf{x} \sim q}[\tau(\mathbf{x})].$
- Equivalently,  $FSSD^2 = \frac{1}{dJ} \|\mu\|_2^2$  (mean feature).
- $\Sigma_r := \operatorname{cov}_{\mathbf{x} \sim r}[ au(\mathbf{x})] \in \mathbb{R}^{dJ imes \, dJ}$  for  $r \in \{p, q\}$

Proposition 1 (Asymptotic distributions).

Let  $Z_1,\ldots,Z_{dJ} \stackrel{i.i.d.}{\sim} \mathcal{N}(0,1)$ , and  $\{\omega_i\}_{i=1}^{dJ}$  be the eigenvalues of  $\Sigma_p$ .

- 1 Under  $H_0: p = q$ , asymptotically  $n \widetilde{\text{FSSD}^2} \xrightarrow{d} \sum_{i=1}^{dJ} (Z_i^2 1) \omega_i$ .
  - Easy to simulate to get p-value.
  - Simulation cost independent of n.
- 2 Under  $H_1 : p \neq q$ , we have  $\sqrt{n}(\widehat{\text{FSSD}^2} \text{FSSD}^2) \xrightarrow{d} \mathcal{N}(0, \sigma_{H_1}^2)$ where  $\sigma_{H_1}^2 := 4\mu^\top \Sigma_q \mu$ . Implies  $\mathbb{P}(\text{reject } H_0) \to 1$  as  $n \to \infty$ .

**But**, how to estimate  $\Sigma_p$ ? No sample from p!

## Asymptotic Distributions of $\widetilde{\mathrm{FSSD}^2}$

- τ(x) := vertically stack ξ(x, v<sub>1</sub>), ... ξ(x, v<sub>J</sub>) ∈ ℝ<sup>dJ</sup>. Feature vector of x.
- Mean feature:  $\mu := \mathbb{E}_{\mathbf{x} \sim q}[\tau(\mathbf{x})].$
- Equivalently,  $FSSD^2 = \frac{1}{dJ} \|\mu\|_2^2$  (mean feature).

#### Proposition 1 (Asymptotic distributions).

Let  $Z_1, \ldots, Z_{dJ} \stackrel{i.i.d.}{\sim} \mathcal{N}(0,1)$ , and  $\{\omega_i\}_{i=1}^{dJ}$  be the eigenvalues of  $\Sigma_p$ .

- 1 Under  $H_0: p = q$ , asymptotically  $n \widehat{\text{FSSD}^2} \stackrel{d}{\rightarrow} \sum_{i=1}^{dJ} (Z_i^2 1) \omega_i$ .
  - Easy to simulate to get p-value.
  - Simulation cost independent of n.
- $\begin{array}{ll} & \text{$\mathbb{I}$ Inder $H_1: p \neq q$, we have $\sqrt{n}$($\widehat{\mathrm{FSSD}}^2 \mathrm{FSSD}^2$)$} \xrightarrow{d} $\mathcal{N}(0, \sigma_{H_1}^2$)$ \\ & \text{where $\sigma_{H_1}^2:=4\mu^\top\Sigma_q\mu$. Implies $\mathbb{P}(reject $H_0$)$} \rightarrow 1$ as $n \rightarrow \infty$. \end{array}$

**But**, how to estimate  $\Sigma_p$ ? No sample from p!

### Asymptotic Distributions of $\widehat{FSSD^2}$

- τ(x) := vertically stack ξ(x, v<sub>1</sub>), ... ξ(x, v<sub>J</sub>) ∈ ℝ<sup>dJ</sup>. Feature vector of x.
- Mean feature:  $\mu := \mathbb{E}_{\mathbf{x} \sim q}[\tau(\mathbf{x})].$
- Equivalently,  $FSSD^2 = \frac{1}{dJ} \|\mu\|_2^2$  (mean feature).

#### Proposition 1 (Asymptotic distributions).

Let  $Z_1, \ldots, Z_{dJ} \stackrel{i.i.d.}{\sim} \mathcal{N}(0,1)$ , and  $\{\omega_i\}_{i=1}^{dJ}$  be the eigenvalues of  $\Sigma_p$ .

- 1 Under  $H_0: p = q$ , asymptotically  $n \widehat{\text{FSSD}^2} \xrightarrow{d} \sum_{i=1}^{dJ} (Z_i^2 1) \omega_i$ .
  - Easy to simulate to get p-value.
  - Simulation cost independent of n.
- 2 Under  $H_1 : p \neq q$ , we have  $\sqrt{n}(\widehat{\text{FSSD}^2} \text{FSSD}^2) \xrightarrow{d} \mathcal{N}(0, \sigma_{H_1}^2)$ where  $\sigma_{H_1}^2 := 4\mu^\top \Sigma_q \mu$ . Implies  $\mathbb{P}(\text{reject } H_0) \to 1$  as  $n \to \infty$ .

#### But, how to estimate $\Sigma_p$ ? No sample from p!

## Asymptotic Distributions of $\widetilde{\mathrm{FSSD}^2}$

- τ(x) := vertically stack ξ(x, v<sub>1</sub>), ... ξ(x, v<sub>J</sub>) ∈ ℝ<sup>dJ</sup>. Feature vector of x.
- Mean feature:  $\mu := \mathbb{E}_{\mathbf{x} \sim q}[\tau(\mathbf{x})].$
- Equivalently,  $FSSD^2 = \frac{1}{dJ} \|\mu\|_2^2$  (mean feature).
- $\ \ \, \mathbf{\Sigma}_r := \mathrm{cov}_{\mathbf{x} \sim r}[\tau(\mathbf{x})] \in \mathbb{R}^{dJ \times dJ} \ \text{for} \ r \in \{ \frac{p}{q}, q \}$

#### Proposition 1 (Asymptotic distributions).

Let  $Z_1, \ldots, Z_{dJ} \stackrel{i.i.d.}{\sim} \mathcal{N}(0,1)$ , and  $\{\omega_i\}_{i=1}^{dJ}$  be the eigenvalues of  $\Sigma_p$ .

- 1 Under  $H_0: p = q$ , asymptotically  $n \widehat{\text{FSSD}^2} \xrightarrow{d} \sum_{i=1}^{dJ} (Z_i^2 1) \omega_i$ .
  - Easy to simulate to get p-value.
  - Simulation cost independent of n.
- 2 Under  $H_1 : p \neq q$ , we have  $\sqrt{n}(\widehat{\text{FSSD}^2} \text{FSSD}^2) \xrightarrow{d} \mathcal{N}(0, \sigma_{H_1}^2)$ where  $\sigma_{H_1}^2 := 4\mu^\top \Sigma_q \mu$ . Implies  $\mathbb{P}(\text{reject } H_0) \to 1$  as  $n \to \infty$ .

**But**, how to estimate  $\Sigma_p$ ? No sample from p!

#### Parameter Tuning

#### • Jointly optimise locations $V = \{\mathbf{v}_1, \dots, \mathbf{v}_J\}$ for more test power

**Proposition 2 (Approx. power for large** n). Under  $H_1$ , for large n and fixed threshold r, the test power  $\mathbb{P}(reject H_0 | H_1 true)$ 

$$\mathbb{P}_{H_1}(n \widehat{\mathrm{FSSD}^2} > r) pprox 1 - \Phi\left(rac{r}{\sqrt{n}\sigma_{H_1}} - \sqrt{n}rac{\mathrm{FSSD}^2}{\sigma_{H_1}}
ight).$$

where  $\Phi = CDF$  of  $\mathcal{N}(0,1)$ .

For large n, second term dominates. So

$$rg\max_{V,\sigma_k^2} ext{(power)} pprox rg\max_{V,\sigma_k^2} rac{\widehat{ ext{FSSD}}^2}{\widehat{\sigma_{H_1}}}.$$

 Split {x<sub>i</sub>}<sup>n</sup><sub>i=1</sub> into independent training/test sets. Optimize V on tr. Test on te.

#### Parameter Tuning

• Jointly optimise locations  $V = \{\mathbf{v}_1, \dots, \mathbf{v}_J\}$  for more test power

Proposition 2 (Approx. power for large n). Under  $H_1$ , for large n and fixed threshold r, the test power  $\mathbb{P}(reject H_0 \mid H_1 true)$ 

$$\mathbb{P}_{H_1}(n\widehat{\mathrm{FSSD}^2} > r) pprox 1 - \Phi\left(rac{r}{\sqrt{n}\sigma_{H_1}} - \sqrt{n}rac{\mathrm{FSSD}^2}{\sigma_{H_1}}
ight).$$

where  $\Phi = CDF$  of  $\mathcal{N}(0, 1)$ .

For large n, second term dominates. So

$$rg\max_{V,\sigma_k^2} ext{(power)} pprox rg\max_{V,\sigma_k^2} rac{\widehat{ ext{FSSD}}^2}{\widehat{\sigma_{H_1}}}.$$

 Split {x<sub>i</sub>}<sup>n</sup><sub>i=1</sub> into independent training/test sets. Optimize V on tr. Test on te.

#### Parameter Tuning

• Jointly optimise locations  $V = \{\mathbf{v}_1, \dots, \mathbf{v}_J\}$  for more test power

Proposition 2 (Approx. power for large n). Under  $H_1$ , for large n and fixed threshold r, the test power  $\mathbb{P}(reject H_0 \mid H_1 true)$ 

$$\mathbb{P}_{H_1}(n\widehat{\mathrm{FSSD}^2} > r) pprox 1 - \Phi\left(rac{r}{\sqrt{n}\sigma_{H_1}} - \sqrt{n}rac{\mathrm{FSSD}^2}{\sigma_{H_1}}
ight).$$

where  $\Phi = CDF$  of  $\mathcal{N}(0, 1)$ .

For large n, second term dominates. So

$$rg\max_{V,\sigma_k^2} ext{(power)} pprox rg\max_{V,\sigma_k^2} rac{\widehat{ ext{FSSD}}^2}{\widehat{\sigma_{H_1}}}.$$

 Split {x<sub>i</sub>}<sup>n</sup><sub>i=1</sub> into independent training/test sets. Optimize V on tr. Test on te.



## Model p = 2-component Gaussian mixture.



Score surface



#### $\star$ = optimized **v**.



 $\star$  = optimized **v**. No robbery in Lake Michigan.





Model p = 10-component Gaussian mixture.



Capture the right tail better.



Still, does not capture the left tail.



Still, does not capture the left tail.

Learned test locations are interpretable.











#### "All models are wrong."

G. Box (1976)

### Relative model comparison

- Have: two candidate models P and Q, and samples  $\{x_i\}_{i=1}^n$  from reference distribution R
- **Goal:** which of P and Q is better?



00001 111222 222022331 49455560 6666777 888999

Samples from GAN, Goodfellow et al. (2014) Samples from LSGAN, Mao et al. (2017)

Which model is better?

#### Most interesting models have latent structure

Graphical model representation of hierarchical LDA with a nested CRP prior, Blei et al. (2003)



### Relative goodness-of-fit testing

Two generative models P and Q, data {x<sub>i</sub>}<sup>n</sup><sub>i=1</sub> ~ R.
Neither model gives a perfect fit ( P ≠ R and Q ≠ R).



### Joint asymptotic normality

Joint asymptotic normality when  $P \neq R$  and  $Q \neq R$ 

$$\sqrt{n} \left[ \underbrace{\operatorname{KSD}_{p}^{2}(R) - \operatorname{KSD}_{p}^{2}(R)}_{\operatorname{KSD}_{q}^{2}(R) - \operatorname{KSD}_{q}^{2}(R)} \right] \stackrel{d}{\to} \mathcal{N} \left( \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_{h_{p}}^{2} & \sigma_{h_{p}h_{q}} \\ \sigma_{h_{p}h_{q}} & \sigma_{h_{q}}^{2} \end{bmatrix} \right)$$

$$\widehat{\operatorname{KSD}_{q}^{2}(R)}$$

$$\operatorname{KSD}_{q}^{2}(R) \xrightarrow{\operatorname{KSD}_{p}^{2}(R)} \xrightarrow{\operatorname{KSD}_{p}^{2}(R)}$$

#### Joint asymptotic normality

Joint asymptotic normality when  $P \neq R$  and  $Q \neq R$ 

$$\sqrt{n} \left[ egin{array}{c} \widehat{\mathrm{KSD}}_{p}^{2}(R) - \mathrm{KSD}_{p}^{2}(R) \ \widehat{\mathrm{KSD}}_{q}^{2}(R) - \mathrm{KSD}_{q}^{2}(R) \end{array} 
ight] \overset{d}{ o} \mathcal{N} \left( \left[ egin{array}{c} 0 \ 0 \end{array} 
ight], \left[ egin{array}{c} \sigma_{h_{p}}^{2} & \sigma_{h_{p}h_{q}} \ \sigma_{h_{p}h_{q}} & \sigma_{h_{q}}^{2} \end{array} 
ight] 
ight)$$

Difference in statistics is asymptotically normal:

$$egin{aligned} \sqrt{n} \left[ \widehat{ ext{KSD}_{p}^{2}}(R) - \widehat{ ext{KSD}_{q}^{2}}(R) - \left( ext{KSD}_{p}^{2}(R) - ext{KSD}_{q}^{2}(R) 
ight) 
ight] \ & \stackrel{d}{ o} \mathcal{N} \left( 0, \sigma_{h_{p}}^{2} + \sigma_{h_{q}}^{2} - 2 \sigma_{h_{p}h_{q}} 
ight) \end{aligned}$$

 $\implies$  a statistical test with null hypothesis  $\text{KSD}_p^2(R) - \text{KSD}_q^2(R) \le 0$  is straightforward.

#### Latent variable models

Can we compare latent variable models with KSD?

$$egin{aligned} p(x) &= \int p(x|z)p(z)dz \ q(y) &= \int q(y|w)p(w)dw \end{aligned}$$



Recall multi-dimensional Stein operator:

$$[T_p f](x) = \left\langle \underbrace{rac{
abla p(x)}{p(x)}}_{(a)}, f(x) \right\rangle + \langle 
abla, f(x) 
angle.$$

Expression (a) requires marginal p(x), often intractable...
## Latent variable models

Can we compare latent variable models with KSD?

$$egin{aligned} p(x) &= \int p(x|z)p(z)dz \ q(y) &= \int q(y|w)p(w)dw \end{aligned}$$



Recall multi-dimensional Stein operator:

$$[T_p f](x) = \left\langle \underbrace{rac{
abla p(x)}{p(x)}}_{(a)}, f(x) \right\rangle + \langle 
abla, f(x) 
angle.$$

Expression (a) requires marginal p(x), often intractable... ...but sampling can be straightforward!

## Monte Carlo approximation

Approximate the integral using  $\{z_j\}_{j=1}^m \sim p(z)$ :

$$egin{aligned} p(x) &= \int p(x|z)p(z)dz \ &pprox p_{m}(x) = rac{1}{m}\sum_{j=1}^{m}p(x|z_{j}) \end{aligned}$$

Estimate KSDs with approxiomate densities:

$$\widehat{\mathrm{KSD}_p^2}(R) - \widehat{\mathrm{KSD}_q^2}(R) pprox \widehat{\mathrm{KSD}_{p_m}^2}(R) - \widehat{\mathrm{KSD}_{q_m}^2}(R)$$

#### Monte Carlo approximation

Approximate the integral using  $\{z_j\}_{j=1}^m \sim p(z)$ :

$$egin{aligned} p(x) &= \int p(x|z)p(z)dz \ &pprox p_{m}(x) = rac{1}{m}\sum_{j=1}^{m}p(x|z_{j}) \end{aligned}$$

Estimate KSDs with approxiomate densities:

$$\widehat{\mathrm{KSD}_p^2}(R) - \widehat{\mathrm{KSD}_q^2}(R) pprox \widehat{\mathrm{KSD}_{p_m}^2}(R) - \widehat{\mathrm{KSD}_{q_m}^2}(R)$$

Recall

$$egin{aligned} \sqrt{n}\left[\widehat{ ext{KSD}_{p}^{2}}(R)-\widehat{ ext{KSD}_{q}^{2}}(R)-\left( ext{KSD}_{p}^{2}(R)- ext{KSD}_{q}^{2}(R)
ight)
ight]\ &\stackrel{d}{ o}\mathcal{N}\left(0,\sigma_{h_{p}}^{2}+\sigma_{h_{q}}^{2}-2\sigma_{h_{p}h_{q}}
ight) \end{aligned}$$

ightarrow if m is large, can we simply substitute  $p_m$  and  $q_m$  ?

# Simple proof of concept

Check  $\widehat{\mathrm{KSD}}_p^2(R) \approx \widehat{\mathrm{KSD}}_{p_m}^2(R)$  with a toy model:

• Model: Beta-Binomial BetaBinom $(\alpha, \beta)$ 

$$p(x|z) = inom{N}{x} z^x (1-z)^{n-x}, \ p(z) = ext{Beta}(a,b)$$

- Latent  $z \in (0,1)$ : success probability for binomial likelihood
- Marginal p(x): tractable (given by the beta function)
- Generate  $\sqrt{nKSD_p^2}(R)$  and  $\sqrt{nKSD_{p_m}^2}(R)$  $\rightarrow$  what do their distribution look like?

Effect of sampling the latents (Beta-binomial)



Effect of sampling the latents (Beta-binomial)



Effect of sampling the latents (Beta-binomial)





 $\operatorname{KSD}_{p_m}^2(R)$  is normally distributed around  $\operatorname{KSD}_p^2(R)$ (approximation error)



Approximation  $p_m$  gives a random draw  $\mathrm{KSD}^2_{p_m}(R)$ 



 $\widetilde{\mathrm{KSD}}_{p_m}^2(R)$  is normally distributed around  $\mathrm{KSD}_{p_m}^2(R)$ 



# Distribution of $\widehat{\mathrm{KSD}}_{p_m}^2(R)$ is averaged over random draws of $\mathrm{KSD}_{p_m}^2(R)$



# Distribution of $\widehat{\mathrm{KSD}}_{p_m}^2(R)$ is averaged over random draws of $\mathrm{KSD}_{p_m}^2(R)$



 $\widehat{\mathrm{KSD}}_{p_m}^2(R)$  has a higher variance than  $\widehat{\mathrm{KSD}}_p^2(R)$ 

## Correction for this effect

- BetaBinomial models with  $p = q_m$  vs q $\rightarrow$ numerical vs closed-form marginalisation.
- With correction for increased  $\overline{\text{KSD}}_{q_m}^2(R)$  variance, null accepted w.p.  $1 \alpha$ .



## Correction for this effect

- BetaBinomial models with  $p = q_m$  vs q→numerical vs closed-form marginalisation.
- With correction for increased  $\overline{\text{KSD}}_{q_m}^2(R)$  variance, null accepted w.p.  $1 \alpha$ .



- Naive Rel-KSD test has incorrect type-I error
- Naive KSD:  $p = q_m \neq q$ ⇒ rejection rate → 1 as  $n \rightarrow \infty$

----- LKSD (KSD for Latent Models) m=100 ----- LKSD m=1000

## Asymptotics for approximate KSD

We have asymptotic normality for  $\text{KSD}_{p_m}^2(R)$ ,

```
\sqrt{m}(\mathrm{KSD}^2_{p_m}(R)-\mathrm{KSD}^2_p(R))\stackrel{d}{
ightarrow}\mathcal{N}(0,\gamma_p^2)
```

The fine print:

- $\bullet \inf_x \frac{p}{x} > 0$
- | sup<sub>x</sub>  $\left| \frac{dp(x)}{dx} \right| < \infty$
- (Uniform CLT) Likelihoods  $\{p(x|\cdot)|x \in \mathcal{X}\}$  and derivatives  $\{\frac{d}{dx}p(x|\cdot)|x \in \mathcal{X}\}$  are p(z) Donsker class

## Asymptotic distribution for relative KSD test

Asymptotic distribution of approximate KSD estimate  $(n, m) \rightarrow \infty, \ rac{n}{m} \rightarrow r \in [0, \infty)$ :

$$\sqrt{n}\left[\left(\widehat{\mathrm{KSD}^2_{p_m}}(R)-\widehat{\mathrm{KSD}^2_{q_m}}(R)
ight)-\left(\mathrm{KSD}^2_p(R)-\mathrm{KSD}^2_q(R)
ight)
ight]\overset{d}{ o}\mathcal{N}(0,\,c^2)$$

where

$$c = \sigma_{pq} \sqrt{1 + r(\gamma_{pq}/\sigma_{pq})^2}$$

$$\gamma_{pq}^2 = \lim_{m \to \infty} m \cdot \operatorname{Var} \left[ \mathbf{E}_{x,x'} h_{p_m}(x,x') - \mathbf{E}_{x,x'} h_{q_m}(x,x') \right]$$

$$\sigma_{pq}^2 = \lim_{n \to \infty} n \cdot \operatorname{Var} \left[ \widehat{\mathrm{KSD}}_p^2(R) - \widehat{\mathrm{KSD}}_q^2(R) \right]$$

Fine print:

- $h_p(x, x') h_q(x, x')$  has a finite third moment
- Additional technical conditions

# Relative test, further detail

Theorem (Asymptotic distribution of random kernel U-statistic).

Let

- $U_{n,m}$  : a U-statistic defined by a random U-statistic kernel  $H_m$
- $U_n$  : a U-statistic defined by a fixed U-statistic kernel h

Assume that

- $\sigma_{H_m}^2 
  ightarrow \sigma_h^2$  in probability
- $u_3(H_m) \rightarrow \nu_3(h) < \infty \text{ in probability}$ where  $u_3(H_m) = \mathbf{E}_{x,x'} \left| H_m(x,x') \mathbf{E}_{x,x'} H_m(x,x') \right|^3$

• 
$$Y_m := \sqrt{m} \Big( \mathbf{E}_n[U_{n,m} | H_m] - \mathbf{E}_n[U_n] \Big) \stackrel{d}{
ightarrow} Y$$

• Then, with  $n/m \rightarrow r \in [0, \infty)$ ,

$$\lim_{n,m o \infty} \Pr\left[ \sqrt{n} (\, U_{n,m} - \mathbf{E}_n \, U_n) < t 
ight] = \mathbf{E}_{\,Y} \left[ \Phi\left( rac{t - \sqrt{r} \, Y}{\sigma_h} 
ight) 
ight]$$

#### Experiment: sensitivity to model difference

Data R = Sigmoid Belief Network SBN(W):

 $R(x|z) = ext{sigmoid}(Wz), \ R(z) = \mathcal{N}(0, I), \ W \in \mathbb{R}^{30 imes 10}$ 

Models: P = SBN(W + ε[1, 0, ..., 0]), Q = SBN(W + [1, 0, ..., 0])
Only the first column of weight W is perturbed by ε

#### Experiment: sensitivity to model difference

• Data R = Sigmoid Belief Network SBN(W):

 $R(x|z) = ext{sigmoid}(Wz), \ R(z) = \mathcal{N}(0, I), \ W \in \mathbb{R}^{30 imes 10}$ 

Models: P = SBN(W + \epsilon[1, 0, ..., 0]), Q = SBN(W + [1, 0, ..., 0])
Only the first column of weight W is perturbed by \epsilon



#### Experiment: sensitivity to model difference

• Data R = Sigmoid Belief Network SBN(W):

 $R(x|z) = ext{sigmoid}(Wz), \ R(z) = \mathcal{N}(0, I), \ W \in \mathbb{R}^{30 imes 10}$ 

Models: P = SBN(W + ε[1, 0, ..., 0]), Q = SBN(W + [1, 0, ..., 0])
Only the first column of weight W is perturbed by ε



A Linear-Time Kernel Goodness-of-Fit Test. Wittawat Jitkrittum, Wenkai Xu, Zoltán Szabó, Kenji Fukumizu, Arthur Gretton

https://arxiv.org/abs/1705.07673

Python code: https://github.com/wittawatj/kernel-gof

A Kernel Stein Test for Comparing Latent Variable Models Heishiro Kanagawa, Wittawat Jitkrittum, Lester Mackey, Kenji Fukumizu, Arthur Gretton https://arxiv.org/abs/1907.00586

# Questions?



# Efficiency comparison, linear-time tests

- Bahadur slope  $\cong$  rate of p-value  $\rightarrow$  0 under  $H_1$  as  $n \rightarrow \infty$ .
- Measure a test's sensitivity to the departure from  $H_0$ .

 $H_0: \theta = \mathbf{0},$  $H_1: \theta \neq \mathbf{0}.$ 

- Typically  $\operatorname{pval}_n \approx \exp\left(-\frac{1}{2}c(\theta)n\right)$  where  $c(\theta) > 0$  under  $H_1$ , and c(0) = 0. [?].
- $c(\theta)$  higher  $\implies$  more sensitive. Good.

Bahadur slope

$$c( heta):=-2 \mathop{\mathrm{plim}}\limits_{n
ightarrow\infty} rac{\log\left(1-F(\,T_n)
ight)}{n},$$

where F(t) = CDF of  $T_n$  under  $H_0$ .

Bahadur efficiency = ratio of slopes of two tests. 49/52

- Bahadur slope  $\cong$  rate of p-value  $\rightarrow$  0 under  $H_1$  as  $n \rightarrow \infty$ .
- Measure a test's sensitivity to the departure from  $H_0$ .

 $H_0: \theta = \mathbf{0},$  $H_1: \theta \neq \mathbf{0}.$ 

- Typically  $\operatorname{pval}_n \approx \exp\left(-\frac{1}{2}c(\theta)n\right)$  where  $c(\theta) > 0$  under  $H_1$ , and c(0) = 0. [?].
- $c(\theta)$  higher  $\implies$  more sensitive. Good.

Bahadur slope

$$c( heta):=-2 \mathop{\mathrm{plim}}\limits_{n
ightarrow\infty} rac{\log\left(1-F(\,T_n\,)
ight)}{n},$$

where F(t) = CDF of  $T_n$  under  $H_0$ .

Bahadur efficiency = ratio of slopes of two tests. 49/52

- Bahadur slope  $\cong$  rate of p-value  $\rightarrow$  0 under  $H_1$  as  $n \rightarrow \infty$ .
- Measure a test's sensitivity to the departure from  $H_0$ .

 $\begin{aligned} H_0 : \theta &= \mathbf{0}, \\ H_1 : \theta &\neq \mathbf{0}. \end{aligned}$ 

Typically pval<sub>n</sub> ≈ exp (-<sup>1</sup>/<sub>2</sub>c(θ)n) where c(θ) > 0 under H<sub>1</sub>, and c(0) = 0. [?].
 c(θ) higher ⇒ more sensitive. Good.



$$c( heta) := -2 \operatorname{plim}_{n \to \infty} rac{\log\left(1 - F(T_n)\right)}{n}$$

where F(t) = CDF of  $T_n$  under  $H_0$ .

Bahadur efficiency = ratio of slopes of two tests. 49/52

- Bahadur slope  $\cong$  rate of p-value  $\rightarrow$  0 under  $H_1$  as  $n \rightarrow \infty$ .
- Measure a test's sensitivity to the departure from  $H_0$ .

 $H_0: \theta = \mathbf{0},$  $H_1: \theta \neq \mathbf{0}.$ 

Typically pval<sub>n</sub> ≈ exp (-<sup>1</sup>/<sub>2</sub>c(θ)n) where c(θ) > 0 under H<sub>1</sub>, and c(0) = 0. [?].
 c(θ) higher ⇒ more sensitive. Good.



#### Bahadur slope

$$c( heta):=-2\lim_{n o\infty}rac{\log\left(1-F(\,T_n)
ight)}{n},$$

where F(t) = CDF of  $T_n$  under  $H_0$ .

Bahadur efficiency = ratio of slopes of two tests.

# Bahadur Slopes of FSSD and LKS

#### Theorem 2.

The Bahadur slope of  $n \widehat{\text{FSSD}^2}$  is

 $c^{(\mathrm{FSSD})} := \mathrm{FSSD}^2/\omega_1,$ 

where  $\omega_1$  is the maximum eigenvalue of  $\Sigma_p := \operatorname{cov}_{\mathbf{x} \sim p}[\tau(\mathbf{x})].$ 

Theorem 3.

The Bahadur slope of the linear-time kernel Stein (LKS) statistic  $\sqrt{n} \widehat{S_{1}^{2}}$  is

$$c^{(\mathrm{LKS})} = rac{1}{2} rac{\left[\mathbb{E}_q h_p(\mathbf{x},\mathbf{x}')
ight]^2}{\mathbb{E}_p \left[h_p^2(\mathbf{x},\mathbf{x}')
ight]},$$

where  $h_p$  is the U-statistic kernel of the KSD statistic.

Let's consider a specific case . . .

# Bahadur Slopes of FSSD and LKS

#### Theorem 2.

The Bahadur slope of  $n \widehat{\text{FSSD}^2}$  is

 $c^{(\mathrm{FSSD})} := \mathrm{FSSD}^2/\omega_1,$ 

where  $\omega_1$  is the maximum eigenvalue of  $\Sigma_p := \operatorname{cov}_{\mathbf{x} \sim p}[\tau(\mathbf{x})]$ .

#### Theorem 3.

The Bahadur slope of the linear-time kernel Stein (LKS) statistic  $\sqrt{n}\widehat{S_{l}^{2}}$  is

$$c^{(\mathrm{LKS})} = rac{1}{2} rac{\left[\mathbb{E}_q h_p(\mathbf{x},\mathbf{x}')
ight]^2}{\mathbb{E}_p \left[h_p^2(\mathbf{x},\mathbf{x}')
ight]},$$

where  $h_p$  is the U-statistic kernel of the KSD statistic.

Let's consider a specific case ....

#### Gaussian Mean Shift Problem

Consider  $p = \mathcal{N}(0, 1)$  and  $q = \mathcal{N}(\mu_q, 1)$ .

Assume J = 1 feature for  $n \widehat{\text{FSSD}^2}$ . Gaussian kernel (bandwidth =  $\sigma_k^2$ )

$$c^{(\text{FSSD})}(\mu_{q}, v, \sigma_{k}^{2}) = \frac{\sigma_{k}^{2} \left(\sigma_{k}^{2} + 2\right)^{3} \mu_{q}^{2} e^{\frac{v^{2}}{\sigma_{k}^{2} + 2} - \frac{\left(v - \mu_{q}\right)^{2}}{\sigma_{k}^{2} + 1}}}{\sqrt{\frac{2}{\sigma_{k}^{2}} + 1} \left(\sigma_{k}^{2} + 1\right) \left(\sigma_{k}^{6} + 4\sigma_{k}^{4} + \left(v^{2} + 5\right)\sigma_{k}^{2} + 2\right)}}.$$

For LKS, Gaussian kernel (bandwidth =  $\kappa^2$ ).

$$c^{(\mathrm{LKS})}(\mu_{q},\kappa^{2}) = rac{\left(\kappa^{2}
ight)^{5/2}\left(\kappa^{2}+4
ight)^{5/2}\mu_{q}^{4}}{2\left(\kappa^{2}+2
ight)\left(\kappa^{8}+8\kappa^{6}+21\kappa^{4}+20\kappa^{2}+12
ight)}$$

#### Gaussian Mean Shift Problem

Consider  $p = \mathcal{N}(0, 1)$  and  $q = \mathcal{N}(\mu_q, 1)$ .

Assume J = 1 feature for  $n \widehat{\text{FSSD}^2}$ . Gaussian kernel (bandwidth =  $\sigma_k^2$ )

$$c^{(\text{FSSD})}(\mu_{q}, v, \sigma_{k}^{2}) = \frac{\sigma_{k}^{2} \left(\sigma_{k}^{2} + 2\right)^{3} \mu_{q}^{2} e^{\frac{v^{2}}{\sigma_{k}^{2} + 2} - \frac{\left(v - \mu_{q}\right)^{2}}{\sigma_{k}^{2} + 1}}}{\sqrt{\frac{2}{\sigma_{k}^{2}} + 1} \left(\sigma_{k}^{2} + 1\right) \left(\sigma_{k}^{6} + 4\sigma_{k}^{4} + \left(v^{2} + 5\right)\sigma_{k}^{2} + 2\right)}}.$$

For LKS, Gaussian kernel (bandwidth =  $\kappa^2$ ).

$$c^{(\mathrm{LKS})}(\mu_{q},\kappa^{2}) = rac{\left(\kappa^{2}
ight)^{5/2}\left(\kappa^{2}+4
ight)^{5/2}\mu_{q}^{4}}{2\left(\kappa^{2}+2
ight)\left(\kappa^{8}+8\kappa^{6}+21\kappa^{4}+20\kappa^{2}+12
ight)}.$$

Theorem 4 (FSSD is at least two times more efficient).

• Fix  $\sigma_k^2 = 1$  for  $n \widehat{\text{FSSD}^2}$ .

Then,  $\forall \mu_q \neq 0$ ,  $\exists v \in \mathbb{R}$ ,  $\forall \kappa^2 > 0$ , we have Bahadur efficiency

 $\frac{c^{(\mathrm{FSSD})}(\mu_q, v, \sigma_k^2)}{c^{(\mathrm{LKS})}(\mu_q, \kappa^2)} > 2.$