Kernel tests of goodness-of-fit using Stein's method

Arthur Gretton gretton@gatsby.ucl.ac.uk

Gatsby Unit, University College London

Duke University 2019

Model Criticism

Model Criticism

Data = robbery events in Chicago in 2016.

Model Criticism

Is this a good model?

Model Criticism

Goals: Test if a (complicated) model fits the data.

The kernel Stein discrepancy Chwialkowski, Strathmann, G. ICML 2016

- Comparing two models via samples: MMD and the witness function.
- Comparing a sample and a model: Stein modification of the witness class
- A Linear-Time Kernel Goodness-of-Fit Test Jitkrittum, Xu, Szabo, Fukumizu, G. NeurIPS 2017
 - Features learned to maximise (estimate of) test power
 - Better asymptotic relative efficiency vs a "naive" linear time test
- Relative hypothesis tests with latent variables Kanagawa, Jitkrittum, Mackey, Fukumizu, G. 2019

Integral probability metrics

Integral probability metric:

Find a "well behaved function" f(x) to maximize

 $\mathbf{E}_{Q}f(Y)-\mathbf{E}_{P}f(X)$

Integral probability metrics

Integral probability metric:

Find a "well behaved function" f(x) to maximize

 $\mathbf{E}_{Q}f(Y)-\mathbf{E}_{P}f(X)$

Maximum mean discrepancy: RKHS function for P vs Q

$$MMD(\emph{P}, \emph{Q}; \mathcal{F}) := \sup_{\|f\|_{\mathcal{F}} \leq 1} \left[\operatorname{\mathbf{E}}_{\emph{Q}} f(\emph{Y}) - \operatorname{\mathbf{E}}_{\emph{P}} f(\emph{X})
ight]$$

Maximum mean discrepancy: RKHS function for P vs Q

$$MMD(\emph{P}, \emph{Q}; \mathcal{F}) := \sup_{\|f\|_{\mathcal{F}} \leq 1} \left[\operatorname{\mathbf{E}}_{\emph{Q}} f(\emph{Y}) - \operatorname{\mathbf{E}}_{\emph{P}} f(\emph{X})
ight]$$

Functions are linear combinations of features:

$$f(x) = \langle f, \varphi(x) \rangle_{\mathcal{F}} = \sum_{\ell=1}^{\infty} f_{\ell} \varphi_{\ell}(x) = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ \vdots \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \varphi_1(x) & \uparrow & \uparrow \\ \varphi_2(x) & \uparrow & \uparrow \\ \varphi_3(x) & \uparrow & \downarrow \\ \varphi_3(x) & \uparrow & \downarrow \\ \vdots & \downarrow \end{bmatrix}$$
$$\|f\|_{\mathcal{F}}^2 := \sum_{i=1}^{\infty} f_i^2 \leq 1$$

Maximum mean discrepancy: RKHS function for P vs Q

$$MMD(\textit{P},\textit{Q};\mathcal{F}) := \sup_{\|f\|_{\mathcal{F}} \leq 1} \left[\mathrm{E}_{\mathcal{Q}} f(Y) - \mathrm{E}_{\mathcal{P}} f(X)
ight]$$

For characteristic RKHS \mathcal{F} , MMD(P, Q; F) = 0 iff P = Q

Other choices for witness function class:

- Bounded continuous [Dudley, 2002]
- Bounded varation 1 (Kolmogorov metric) [Müller, 1997]
- Lipschitz (Wasserstein distances) [Dudley, 2002]

Maximum mean discrepancy: RKHS function for P vs Q

$$MMD(P,Q;\mathcal{F}):=\sup_{\|f\|_{\mathcal{F}}\leq 1}\left[\mathbf{E}_{Q}f(Y)-\mathbf{E}_{P}f(X)
ight]$$

Expectations of functions are linear combinations of expected features

$$\mathbf{E}_P(f(X)) = \mathbf{E}_P raket{f, arphi(X)}_{\mathcal{F}} = \langle f, \mathbf{E}_P arphi(X)
angle_{\mathcal{F}} = \langle f, \mu_P
angle_{\mathcal{F}}$$

(if feature map φ Bochner integrable; always true if kernel is bounded)

The MMD:

 $egin{aligned} MMD(P, oldsymbol{Q}; \mathcal{F}) \ &= \sup_{\|f\|\leq 1} \left[\mathbf{E}_P f(X) - \mathbf{E}_{oldsymbol{Q}} f(Y)
ight] \end{aligned}$

The MMD:

use

 $MMD(P, Q; \mathcal{F})$

- $= \sup_{\|f\|\leq 1} \left[\mathbf{E}_P f(X) \mathbf{E}_{\mathcal{Q}} f(Y)
 ight]$
- $= \sup_{\|f\|\leq 1} ig\langle f, \mu_P \mu_{oldsymbol{Q}} ig
 angle_{\mathcal{F}}$

 $\mathbf{E}_P f(X) = \mathbf{E}_P \left\langle arphi(X), f
ight
angle_{\mathcal{F}} \ = \left\langle \mu_P, f
ight
angle_{\mathcal{F}}$

The MMD:

 $MMD(P, Q; \mathcal{F})$

- $= \sup_{\|f\|\leq 1} \left[\mathbf{E}_P f(X) \mathbf{E}_{\mathcal{Q}} f(Y)
 ight]$
- $= \sup_{\| f \| \leq 1} raket{f, \mu_P \mu_Q}_{\mathcal{F}}$

The MMD:

 $MMD(P, Q; \mathcal{F})$

- $= \sup_{\|f\|\leq 1} \left[\mathbf{E}_P f(X) \mathbf{E}_{\mathcal{Q}} f(Y)
 ight]$
- $= \sup_{||f|| \leq 1} \langle f, \mu_P \mu_Q
 angle_{\mathcal{F}}$

The MMD:

- $MMD(P, Q; \mathcal{F})$
- $= \sup_{\|f\|\leq 1} \left[\mathbf{E}_P f(X) \mathbf{E}_{\mathcal{Q}} f(Y)
 ight]$
- $= \sup_{\|f\|\leq 1} raket{f, \mu_P \mu_Q}_{\mathcal{F}}$
- $= \|\boldsymbol{\mu}_P \boldsymbol{\mu}_Q\|$

Consequently,

$$egin{aligned} &f^*(v) = \left\langle f, arphi(v)
ight
angle_{\mathcal{F}} \ & \propto \left\langle \mu_P - \mu_{oldsymbol{Q}}, arphi(v)
ight
angle_{\mathcal{F}} \ & = \left\langle \mathbf{E}_P arphi(X) - \mathbf{E}_{oldsymbol{Q}} arphi(oldsymbol{Y}), arphi(v)
ight
angle_{\mathcal{F}} \ & = \mathbf{E}_P k(X,v) - \mathbf{E}_{oldsymbol{Q}} k(oldsymbol{Y},v) \end{aligned}$$

The maximum mean discrepancy in terms of expected kernels:

$$MMD^2(P, \boldsymbol{Q}; \mathcal{F}) = \| \boldsymbol{\mu}_P - \boldsymbol{\mu}_{\boldsymbol{Q}} \|_{\mathcal{F}}^2$$

= $\underbrace{\mathbf{E}_P k(\boldsymbol{x}, \boldsymbol{x}')}_{(\mathrm{a})} + \underbrace{\mathbf{E}_{\boldsymbol{Q}} k(\boldsymbol{y}, \boldsymbol{y}')}_{(\mathrm{a})} - 2\underbrace{\mathbf{E}_{P, \boldsymbol{Q}} k(\boldsymbol{x}, \boldsymbol{y})}_{(\mathrm{b})}$

(a)= within distrib. similarity, (b)= cross-distrib. similarity.

The maximum mean discrepancy

The maximum mean discrepancy in terms of expected kernels:

$$MMD^{2}(P, \boldsymbol{Q}; \mathcal{F}) = \|\boldsymbol{\mu}_{P} - \boldsymbol{\mu}_{\boldsymbol{Q}}\|_{\mathcal{F}}^{2}$$
$$= \underbrace{\mathbf{E}_{P}k(\boldsymbol{x}, \boldsymbol{x}')}_{(\mathbf{a})} + \underbrace{\mathbf{E}_{\boldsymbol{Q}}k(\boldsymbol{y}, \boldsymbol{y}')}_{(\mathbf{a})} - 2\underbrace{\mathbf{E}_{P,\boldsymbol{Q}}k(\boldsymbol{x}, \boldsymbol{y})}_{(\mathbf{b})}$$

(a) = within distrib. similarity, (b) = cross-distrib. similarity.

Proof:

$$egin{aligned} &\|\mu_P-\mu_Q\|_{\mathcal{F}}^2 = \langle \mu_P-\mu_Q, \mu_P-\mu_Q
angle_{\mathcal{F}} \ &= \langle \mu_P, \mu_P
angle_{\mathcal{F}} + \langle \mu_Q, \mu_Q
angle_{\mathcal{F}} - 2 \, \langle \mu_P, \mu_Q
angle_{\mathcal{F}} \,. \end{aligned}$$

$$\mathrm{MMD}(\boldsymbol{P}, \boldsymbol{Q}; \mathcal{F}) = \sup_{\|f\|_{\mathcal{F}} \leq 1} [\mathbf{E}_q f - \mathbf{E}_p f]$$

Can we compute MMD with samples from Q and a model P? **Problem:** usualy can't compute $\mathbf{E}_{p}f$ in closed form.

To get rid of \mathbf{E}_{pf} in

$$\sup_{\|f\|_{\mathcal{F}} \leq 1} [\mathbf{E}_q f - \mathbf{E}_p f]$$

we define the (1-D) Stein operator

$$[T_p f](x) = \frac{1}{p(x)} \frac{d}{dx} (f(x)p(x))$$

Then

 $\mathbf{E}_{p} T_{p} f = 0$

subject to appropriate boundary conditions.

Proof:

$$E_p [T_p f] \int \left[\frac{d}{dx} (f(x)p(x)) \right] dx = [f(x)p(x)]_{-\infty}^{\infty} = 0$$

Gorham and Mackey (NeurIPS 15), Oates, Girolami, Chopin (JRSS B 2016)

To get rid of \mathbf{E}_{pf} in

$$\sup_{\|f\|_{\mathcal{F}} \leq 1} [\mathbf{E}_q f - \mathbf{E}_p f]$$

we define the (1-D) Stein operator

$$[T_p f](x) = \frac{1}{p(x)} \frac{d}{dx} (f(x)p(x))$$

Then

 $\mathbf{E}_{p} T_{p} f = 0$

subject to appropriate boundary conditions. Proof:

$$E_{p}[T_{p}f] = \int \left[\frac{1}{p(x)} \frac{d}{dx} (f(x)p(x))\right] p(x) dx$$
$$\int \left[\frac{d}{dx} (f(x)p(x))\right] dx$$
$$= [f(x)p(x)]_{-\infty}^{\infty} = 0$$

To get rid of \mathbf{E}_{pf} in

$$\sup_{\|f\||_{\mathcal{F}} \leq 1} [\mathbf{E}_q f - \mathbf{E}_p f]$$

we define the (1-D) Stein operator

$$[T_p f](x) = \frac{1}{p(x)} \frac{d}{dx} (f(x)p(x))$$

Then

 $\mathbf{E}_{p} T_{p} f = 0$

subject to appropriate boundary conditions. Proof:

$$E_{p}[T_{p}f] \int \left[\frac{1}{p(x)} \frac{d}{dx} (f(x)p(x))\right] p(x) dx$$
$$\int \left[\frac{d}{dx} (f(x)p(x))\right] dx$$
$$= [f(x)p(x)]_{-\infty}^{\infty} = 0$$

Gorham and Mackey (NeurIPS 15), Oates, Girolami, Chopin (JRSS B 2016)

To get rid of \mathbf{E}_{pf} in

$$\sup_{\|f\|_{\mathcal{F}} \leq 1} [\mathbf{E}_q f - \mathbf{E}_p f]$$

we define the (1-D) Stein operator

$$[T_p f](x) = \frac{1}{p(x)} \frac{d}{dx} (f(x)p(x))$$

Then

 $\mathbf{E}_{p} T_{p} f = 0$

subject to appropriate boundary conditions. Proof:

$$E_{p}[T_{p}f] \int \left[\frac{1}{p(x)} \frac{d}{dx}(f(x)p(x))\right] p(x) dx$$
$$\int \left[\frac{d}{dx}(f(x)p(x))\right] dx$$
$$= [f(x)p(x)]_{-\infty}^{\infty} = 0$$

Gorham and Mackey (NeurIPS 15), Oates, Girolami, Chopin (JRSS B 2016)

Kernel Stein Discrepancy

Stein operator

$$T_{p}f = rac{1}{p(x)} rac{d}{dx} (f(x)p(x))$$

Kernel Stein Discrepancy (KSD)

$$\mathrm{KSD}_p(Q) = \sup_{\|g\|_F \leq 1} \mathbf{E}_q T_p g - \mathbf{E}_p T_p g$$

Kernel Stein Discrepancy

Stein operator

$$T_{p}f = rac{1}{p(x)} \ rac{d}{dx} \left(f(x)p(x)
ight)$$

Kernel Stein Discrepancy (KSD)

$$\mathrm{KSD}_p(Q) = \sup_{\|g\|_{\mathcal{F}} \leq 1} \mathbf{E}_q T_p g - \mathbf{E}_p T_p g = \sup_{\|g\|_{\mathcal{F}} \leq 1} \mathbf{E}_q T_p g$$

The witness function: Chicago Crime

Model p = 10-component Gaussian mixture.

The witness function: Chicago Crime

Witness function g shows mismatch

Simple expression using kernels

Re-write stein operator as:

$$egin{aligned} \left[\left. T_{p}f
ight] (x) &= rac{1}{p(x)} \, rac{d}{dx} \left(f(x)p(x)
ight) \ &= f(x) rac{d}{dx} \log p(x) + rac{d}{dx} f(x) \end{aligned}$$

Can we define "Stein features" in \mathcal{F} ?

$$egin{aligned} [T_p f]\left(x
ight) &= \left(rac{d}{dx}\log p(x)
ight)f(x) + rac{d}{dx}f(x) \ &=: \langle f, \underbrace{\xi(x)}_{ ext{stein features}}
angle_{\mathcal{F}} \end{aligned}$$

where $\mathbf{E}_{x \sim p} \boldsymbol{\xi}(x) = 0.$

Simple expression using kernels

Re-write stein operator as:

$$egin{aligned} \left[T_{p}f
ight] (x) &= rac{1}{p(x)} \, rac{d}{dx} \left(f(x)p(x)
ight) \ &= f(x) rac{d}{dx} \log p(x) + rac{d}{dx} f(x) \end{aligned}$$

Can we define "Stein features" in \mathcal{F} ?

$$[T_p f](x) = \left(\frac{d}{dx}\log p(x)\right)f(x) + \frac{d}{dx}f(x)$$

=: $\langle f, \underbrace{\xi(x)}_{\text{stein features}} \rangle_F$

where $\mathbf{E}_{x \sim p} \boldsymbol{\xi}(x) = 0$.

The kernel trick for derivatives

Reproducing property for the derivative: for differentiable k(x, x'),

$$rac{d}{dx}f(x)=\left\langle f,rac{d}{dx}arphi(x)
ight
angle _{\mathcal{F}}$$

The kernel trick for derivatives

Reproducing property for the derivative: for differentiable k(x, x'),

$$rac{d}{dx}f(x)=\left\langle f,rac{d}{dx}arphi(x)
ight
angle _{\mathcal{F}}$$

Using kernel derivative trick in (a),

$$[T_{p}f](x) = \left(\frac{d}{dx}\log p(x)\right)f(x) + \frac{d}{dx}f(x)$$
$$= \left\langle f, \left(\frac{d}{dx}\log p(x)\right)\varphi(x) + \underbrace{\frac{d}{dx}\varphi(x)}_{(a)}\right\rangle_{\mathcal{F}}$$
$$=: \left\langle f, \xi(x) \right\rangle_{\mathcal{F}}.$$

Kernel stein discrepancy: derivation

Closed-form expression for KSD:

$$\begin{split} \operatorname{KSD}_{p}(Q) &= \sup_{\|g\|_{\mathcal{F}} \leq 1} \operatorname{E}_{x \sim q}\left([T_{p}g](x)\right) \\ &= \sup_{\|g\|_{\mathcal{F}} \leq 1} \operatorname{E}_{x \sim q} \langle g, \xi_{x} \rangle_{\mathcal{F}} \\ &= \sup_{\|g\|_{\mathcal{F}} \leq 1} \langle g, \operatorname{E}_{x \sim q} \xi_{x} \rangle_{\mathcal{F}} = \|\operatorname{E}_{x \sim q} \xi_{x}\| \end{split}$$

Chwialkowski, Strathmann, G., (ICML 2016) Liu, Lee, Jordan (ICML 2016)

Kernel stein discrepancy: derivation

Closed-form expression for KSD:

$$\begin{split} \operatorname{KSD}_{\boldsymbol{p}}(\boldsymbol{Q}) &= \sup_{\|\boldsymbol{g}\|_{\mathcal{F}} \leq 1} \operatorname{\mathbf{E}}_{\boldsymbol{x} \sim \boldsymbol{q}}\left([T_{\boldsymbol{p}}\boldsymbol{g}]\left(\boldsymbol{x}\right)\right) \\ &= \sup_{\|\boldsymbol{g}\|_{\mathcal{F}} \leq 1} \operatorname{\mathbf{E}}_{\boldsymbol{x} \sim \boldsymbol{q}}\left\langle \boldsymbol{g}, \boldsymbol{\xi}_{\boldsymbol{x}} \right\rangle_{\mathcal{F}} \\ &= \sup_{(\boldsymbol{a})} \left\|\boldsymbol{g}\right\|_{\mathcal{F}} \leq 1} \left\langle \boldsymbol{g}, \operatorname{\mathbf{E}}_{\boldsymbol{x} \sim \boldsymbol{q}} \boldsymbol{\xi}_{\boldsymbol{x}} \right\rangle_{\mathcal{F}} = \left\|\operatorname{\mathbf{E}}_{\boldsymbol{x} \sim \boldsymbol{q}} \boldsymbol{\xi}_{\boldsymbol{x}}\right\|_{\mathcal{F}} \end{split}$$

Chwialkowski, Strathmann, G., (ICML 2016) Liu, Lee, Jordan (ICML 2016)

Kernel stein discrepancy: derivation

Closed-form expression for KSD:

$$egin{aligned} &\mathrm{KSD}_p(Q) = \sup_{\|g\|_\mathcal{F} \leq 1} \mathrm{\mathbf{E}}_{x \sim q} \left([T_p g] \left(x
ight)
ight) \ &= \sup_{\|g\|_\mathcal{F} \leq 1} \mathrm{\mathbf{E}}_{x \sim q} \left\langle g, oldsymbol{\xi}_x
ight
angle_{\mathcal{F}} \ &= \sup_{\|g\|_\mathcal{F} \leq 1} \left\langle g, \mathrm{\mathbf{E}}_{x \sim q} oldsymbol{\xi}_x
ight
angle_{\mathcal{F}} = \|\mathrm{\mathbf{E}}_{x \sim q} oldsymbol{\xi}_x \|_{\mathcal{F}} \end{aligned}$$

Caution: (a) requires a condition for the Riesz theorem to hold,

$$\mathbf{E}_{x \sim q} \left(rac{d}{dx}\log p(x)
ight)^2 < \infty$$

Chwialkowski, Strathmann, G., (ICML 2016) Liu, Lee, Jordan (ICML 2016)
Does the Riesz condition matter?

Consider the standard normal,

$$p(x) = rac{1}{\sqrt{2\pi}} \exp\left(-x^2/2
ight).$$

Then

$$rac{d}{dx}\log p(x) = -x.$$

If q is a Cauchy distribution, then the integral

$$\mathbf{E}_{x \sim q} \left(rac{d}{dx} \log oldsymbol{p}(x)
ight)^2 = \int_{-\infty}^\infty x^2 q(x) dx$$

is undefined.

Does the Riesz condition matter?

Consider the standard normal,

$$p(x) = rac{1}{\sqrt{2\pi}} \exp\left(-x^2/2
ight).$$

Then

$$rac{d}{dx}\log p(x)=-x.$$

If q is a Cauchy distribution, then the integral

$$\mathbf{E}_{x \sim q} \left(rac{d}{dx}\log oldsymbol{p}(x)
ight)^2 = \int_{-\infty}^\infty x^2 q(x) dx$$

is undefined.

Test statistic when $x \in \mathbb{R}^d$, given independent $x, x' \sim q$,

$$\mathrm{KSD}_p^2(Q) = \|\mathbf{E}_{x \sim q} \boldsymbol{\xi}_x\|_\mathcal{F}^2 = \mathbf{E}_{x,x' \sim q} h_p(x,x')$$

where

$$egin{aligned} h_{m{p}}(x,x') &= \mathrm{s}_{m{p}}(x)^{ op}\mathrm{s}_{m{p}}(x')k(x,x') + \mathrm{s}_{m{p}}(x)^{ op}k_2(x,x') \ &+ \mathrm{s}_{m{p}}(x')^{ op}k_1(x,x') + \mathrm{tr}\left[k_{12}(x,x')
ight] \end{aligned}$$

$$s_{p}(x) \in \mathbb{R}^{d} = \frac{\nabla p(x)}{p(x)}$$

$$k_{1}(a, b) := \nabla_{x} k(x, x')|_{x=a, x'=b} \in \mathbb{R}^{d},$$

$$k_{2}(a, b) := \nabla_{x'} k(x, x')|_{x=a, x'=b} \in \mathbb{R}^{d}$$

$$k_{12}(a, b) := \nabla_{x} \nabla_{x'} k(x, x')|_{x=a, x'=b} \in \mathbb{R}^{d \times d}$$

Test statistic when $x \in \mathbb{R}^d$, given independent $x, x' \sim q$,

$$\mathrm{KSD}_p^2(Q) = \|\mathbf{E}_{x \sim q} \boldsymbol{\xi}_x\|_\mathcal{F}^2 = \mathbf{E}_{x,x' \sim q} h_p(x,x')$$

where

$$egin{aligned} h_{m{p}}(x,x') &= \mathrm{s}_{m{p}}(x)^{ op}\mathrm{s}_{m{p}}(x')k(x,x') + \mathrm{s}_{m{p}}(x)^{ op}k_2(x,x') \ &+ \mathrm{s}_{m{p}}(x')^{ op}k_1(x,x') + \mathrm{tr}\left[k_{12}(x,x')
ight] \end{aligned}$$

$$\begin{array}{l} \mathbf{s}_p(x) \in \mathbb{R}^d = \frac{\nabla p(x)}{p(x)} \\ \mathbf{s}_1(a,b) := \nabla_x k(x,x')|_{x=a,x'=b} \in \mathbb{R}^d, \\ k_2(a,b) := \nabla_{x'} k(x,x')|_{x=a,x'=b} \in \mathbb{R}^d, \\ \mathbf{s}_1(a,b) := \nabla_x \nabla_{x'} k(x,x')|_{x=a,x'=b} \in \mathbb{R}^{d \times d} \end{array}$$

Test statistic when $x \in \mathbb{R}^d$, given independent $x, x' \sim q$, $\operatorname{KSD}^2_p(Q) = \|\mathbf{E}_{x \sim q} \boldsymbol{\xi}_x\|_{\mathcal{F}}^2 = \mathbf{E}_{x,x' \sim q} h_p(x,x')$

where

$$egin{aligned} h_{m{p}}(x,x') &= \mathbf{s}_{m{p}}(x)^{ op}\mathbf{s}_{m{p}}(x')k(x,x') + \mathbf{s}_{m{p}}(x)^{ op}k_2(x,x') \ &+ \mathbf{s}_{m{p}}(x')^{ op}k_1(x,x') + ext{tr}\left[k_{12}(x,x')
ight] \end{aligned}$$

$$\begin{array}{l} \bullet \ \mathbf{s}_{p}(x) \in \mathbb{R}^{d} = \frac{ \nabla p(x) }{ p(x) } \\ \bullet \ k_{1}(a,b) := \nabla_{x} k(x,x')|_{x=a,x'=b} \in \mathbb{R}^{d}, \\ k_{2}(a,b) := \nabla_{x'} k(x,x')|_{x=a,x'=b} \in \mathbb{R}^{d}, \\ \bullet \ k_{12}(a,b) := \nabla_{x} \nabla_{x'} k(x,x')|_{x=a,x'=b} \in \mathbb{R}^{d \times d}, \end{array}$$

Do not need to normalize p, or sample from it.

Test statistic when $x \in \mathbb{R}^d$, given independent $x, x' \sim q$, $\operatorname{KSD}^2_p(Q) = \|\mathbf{E}_{x \sim q} \boldsymbol{\xi}_x\|_{\mathcal{F}}^2 = \mathbf{E}_{x,x' \sim q} h_p(x,x')$

where

$$egin{aligned} h_{m{p}}(x,x') &= \mathbf{s}_{m{p}}(x)^{ op}\mathbf{s}_{m{p}}(x')k(x,x') + \mathbf{s}_{m{p}}(x)^{ op}k_2(x,x') \ &+ \mathbf{s}_{m{p}}(x')^{ op}k_1(x,x') + \mathrm{tr}\left[k_{12}(x,x')
ight] \end{aligned}$$

$$\begin{array}{l} \bullet \ \mathbf{s}_{p}(x) \in \mathbb{R}^{d} = \frac{ \nabla p(x) }{ p(x) } \\ \bullet \ k_{1}(a,b) \coloneqq \nabla_{x} k(x,x')|_{x=a,x'=b} \in \mathbb{R}^{d}, \\ k_{2}(a,b) \coloneqq \nabla_{x'} k(x,x')|_{x=a,x'=b} \in \mathbb{R}^{d}, \\ \bullet \ k_{12}(a,b) \coloneqq \nabla_{x} \nabla_{x'} k(x,x')|_{x=a,x'=b} \in \mathbb{R}^{d \times d}, \end{array}$$

If kernel is C_0 -universal and Q satisfies $\mathbf{E}_{x \sim q} \left\| \nabla \left(\log \frac{p(x)}{q(x)} \right) \right\|^2 < \infty$, then $\mathrm{KSD}_p^2(Q) = 0$ iff P = Q.

KSD for discrete-valued variables

Discrete domains: $\mathcal{X} = \{1, \dots, L\}^D$ with $L \in \mathbb{N}$. The population KSD (discrete):

 $\mathrm{KSD}_p^2(Q) = \mathbf{E}_{x,x'\sim q} h_p(x,x')$

where

$$egin{aligned} h_p(x,x') &= \mathrm{s}_p(x)^ op \mathrm{s}_p(x')k(x,x') - \mathrm{s}_p(x)^ op k_2(x,x') \ &- \mathrm{s}_p(x')^ op k_1(x,x') + \mathrm{tr}\left[k_{12}(x,x')
ight] \end{aligned}$$

 $k_1(x, x') = \Delta_x^{-1} k(x, x'), \ \Delta_x^{-1}$ is cyclic backwards difference on x, $s_p(x) = \frac{\Delta p(x)}{p(x)}$

Ranganath et al. (NeurIPS 2016), Yang et al. (ICML 2018)

KSD for discrete-valued variables

Discrete domains: $\mathcal{X} = \{1, \dots, L\}^D$ with $L \in \mathbb{N}$. The population KSD (discrete):

 $\mathrm{KSD}_p^2(Q) = \mathbf{E}_{x,x'\sim q} h_p(x,x')$

where

$$egin{aligned} h_p(x,x') &= \mathrm{s}_p(x)^ op \mathrm{s}_p(x')k(x,x') - \mathrm{s}_p(x)^ op k_2(x,x') \ &- \mathrm{s}_p(x')^ op k_1(x,x') + \mathrm{tr}\left[k_{12}(x,x')
ight] \end{aligned}$$

 $k_1(x,x') = \Delta_x^{-1}k(x,x'), \Delta_x^{-1}$ is cyclic backwards difference on x, $s_p(x) = \frac{\Delta_p(x)}{p(x)}$

A discrete kernel: $k(x, x') = \exp\left(-d_H(x, x')\right)$, where $d_H(x, x') = D^{-1} \sum_{d=1}^D \mathbb{I}(x_d \neq x_d')$.

Ranganath et al. (NeurIPS 2016), Yang et al. (ICML 2018)

KSD for discrete-valued variables

Discrete domains: $\mathcal{X} = \{1, \dots, L\}^D$ with $L \in \mathbb{N}$. The population KSD (discrete):

 $\mathrm{KSD}_p^2(Q) = \mathbf{E}_{x,x'\sim q} h_p(x,x')$

where

$$egin{aligned} h_p(x,x') &= \mathbf{s}_p(x)^ op \mathbf{s}_p(x')k(x,x') - \mathbf{s}_p(x)^ op k_2(x,x') \ &- \mathbf{s}_p(x')^ op k_1(x,x') + ext{tr}\left[k_{12}(x,x')
ight] \end{aligned}$$

 $k_1(x,x') = \Delta_x^{-1}k(x,x')$, Δ_x^{-1} is cyclic backwards difference on x, $\mathbf{s}_p(x) = \frac{\Delta_p(x)}{p(x)}$

A discrete kernel: $k(x, x') = \exp\left(-d_H(x, x')\right)$, where $d_H(x, x') = D^{-1} \sum_{d=1}^D \mathbb{I}(x_d \neq x_d')$.

 $\mathrm{KSD}_{p}^{2}(Q) = 0$ iff P = Q if

Gram matrix over all the configurations in X is strictly positive definite,
 P > 0 and Q > 0.

Ranganath et al. (NeurIPS 2016), Yang et al. (ICML 2018)

Empirical statistic and asymptotics

The empirical statistic:

$$\widehat{\mathrm{KSD}_{p}^{2}}(Q)\coloneqq rac{1}{n(n-1)}\sum_{i
eq j}h_{p}(x_{i},x_{j}).$$

Empirical statistic and asymptotics

The empirical statistic:

$$\widehat{\mathrm{KSD}_p^2}(Q) \coloneqq rac{1}{n(n-1)} \sum_{i \neq j} h_p(x_i, x_j).$$
 Asymptotic distribution when $P \neq Q$:

$$\sqrt{n}\left(\widehat{\mathrm{KSD}}_{p}^{2}(Q)-\mathrm{KSD}_{p}^{2}(Q)
ight) \stackrel{d}{ o} \mathcal{N}(0,\sigma_{h_{p}}^{2}) \qquad \sigma_{h_{p}}^{2}=4\mathrm{Var}_{x}[\mathbf{E}_{x'}[h_{p}(x,x')]].$$

Empirical statistic and asymptotics

The empirical statistic:

$$\widehat{\operatorname{KSD}_{\boldsymbol{p}}^2}(Q)\coloneqq rac{1}{n(n-1)}\sum_{i
eq j}h_{\boldsymbol{p}}(x_i,x_j).$$

Asymptotic distribution when P = Q:

$$\widehat{\mathrm{nKSD}_p^2}(\mathcal{Q}) \sim \sum_{\ell=1}^\infty \lambda_\ell Z_\ell^2 \ \lambda_i \psi_i(x') = \int_\mathcal{X} h_p(x,x') \psi_i(x) dp(x) \ Z_\ell \sim \mathcal{N}(0,1) \quad \mathrm{i.i.d.}$$

Test threshold via wild bootstrap.

A naive linear time statistic

A running average:

$$\widehat{LKS^2_p}(Q) := rac{2}{n} \sum_{i=1}^{n/2} h_p(x_{2i-1}, x_{2i}).$$

Asymptotically normal when $P \neq Q$ and when P = Q.

A naive linear time statistic

A running average:

$$\widehat{LKS^2_p}(Q) \coloneqq rac{2}{n}\sum_{i=1}^{n/2}h_p(\textbf{\textit{x}}_{2i-1}, \textbf{\textit{x}}_{2i}).$$

Asymptotically normal when $P \neq Q$ and when P = Q.

Can we do better? Wishlist:

- 1 still linear-time
- 2 adaptive (parameters automatically tuned)
- 3 more interpretable

Linear-time, interpretable Goodness-of-fit Test

Idea:

 $(\text{Stein}) \text{ witness}(\mathbf{v}) = \mathbf{E}_{\mathbf{x} \sim q} [\quad T_p k_{\mathbf{v}}(\mathbf{x}) \quad] - \mathbf{E}_{\mathbf{y} \sim p} [\quad T_p k_{\mathbf{v}}(\mathbf{y}) \quad]$

(Stein) witness(**v**) =
$$\mathbf{E}_{\mathbf{x} \sim q}[T_p / \mathbf{v}] - \mathbf{E}_{\mathbf{y} \sim p}[T_p / \mathbf{v}]$$

(Stein) witness(
$$\mathbf{v}$$
) = $\mathbf{E}_{\mathbf{x} \sim q}$ [\mathbf{v}] - $\mathbf{E}_{\mathbf{y} \sim \mathbf{p}}$ [\mathbf{v}]

(Stein) witness(v) =
$$\mathbf{E}_{\mathbf{x} \sim q}$$
[] - $\mathbf{E}_{\mathbf{y} \sim p}$ [

$$(\text{Stein}) ext{ witness}(\mathbf{v}) = \mathbf{E}_{\mathbf{x} \sim q}[$$

Idea:

 $(ext{Stein}) ext{ witness}(\mathbf{v}) = \mathbf{E}_{\mathbf{x} \sim q} [\qquad T_p k_{\mathbf{v}}(\mathbf{x}) \qquad]$

Idea:

 $(ext{Stein}) ext{ witness}(\mathbf{v}) = \mathbf{E}_{\mathbf{x} \sim q} [\qquad T_p k_{\mathbf{v}}(\mathbf{x}) \qquad]$

Idea:

 $(ext{Stein}) ext{ witness}(\mathbf{v}) = \mathbf{E}_{\mathbf{x} \sim q} [\qquad T_p k_{\mathbf{v}}(\mathbf{x}) \qquad]$

witness(v) and standard deviation(v) can be estimated in <u>linear</u> time.

$$score(\mathbf{v}) = \frac{|witness(\mathbf{v})|}{standard deviation(\mathbf{v})}$$

$$score(\mathbf{v}) = \frac{|witness(\mathbf{v})|}{standard deviation(\mathbf{v})}$$

$$\operatorname{score}(\mathbf{v}) = \frac{|\operatorname{witness}(\mathbf{v})|}{\operatorname{standard deviation}(\mathbf{v})}$$

$$score(\mathbf{v}) = \frac{|witness(\mathbf{v})|}{standard deviation(\mathbf{v})}$$

$$score(\mathbf{v}) = \frac{|witness(\mathbf{v})|}{standard deviation(\mathbf{v})}$$

$$score(\mathbf{v}) = \frac{|witness(\mathbf{v})|}{standard deviation(\mathbf{v})}$$

$$score(\mathbf{v}) = \frac{|witness(\mathbf{v})|}{standard \ deviation(\mathbf{v})}$$

$$score(\mathbf{v}) = \frac{|witness(\mathbf{v})|}{standard deviation(\mathbf{v})}$$

$$score(\mathbf{v}) = \frac{|witness(\mathbf{v})|}{standard deviation(\mathbf{v})}$$

$$score(\mathbf{v}) = \frac{|witness(\mathbf{v})|}{standard deviation(\mathbf{v})}$$

$$score(\mathbf{v}) = \frac{|witness(\mathbf{v})|}{standard deviation(\mathbf{v})}$$

$$score(\mathbf{v}) = \frac{|witness(\mathbf{v})|}{standard deviation(\mathbf{v})}$$

$$score(\mathbf{v}) = \frac{|witness(\mathbf{v})|}{standard deviation(\mathbf{v})}$$

$$score(\mathbf{v}) = \frac{|witness(\mathbf{v})|}{standard deviation(\mathbf{v})}$$

$$score(\mathbf{v}) = \frac{|witness(\mathbf{v})|}{standard deviation(\mathbf{v})}$$

$$score(\mathbf{v}) = \frac{|witness(\mathbf{v})|}{standard deviation(\mathbf{v})}$$

score: 0.44

 $\operatorname{score}(\mathbf{v}) = \frac{|\operatorname{witness}(\mathbf{v})|}{\operatorname{standard deviation}(\mathbf{v})}.$

FSSD is a Discrepancy Measure

Theorem 1.

Let $V = {\mathbf{v}_1, \dots, \mathbf{v}_J} \subset \mathbb{R}^d$ be drawn i.i.d. from a distribution η which has a density. Let \mathcal{X} be a connected open set in \mathbb{R}^d . Assume

- 1 (Nice RKHS) Kernel $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is C_0 -universal, and real analytic.
- 2 (Riesz condition holds) $\|g\|_{\mathcal{F}}^2 < \infty$.
- 3 (Finite Fisher divergence) $\mathbb{E}_{\mathbf{x}\sim q} \| \nabla_{\mathbf{x}} \log \frac{p(\mathbf{x})}{q(\mathbf{x})} \|^2 < \infty$.
- 4 (vanishing boundary condition) $\lim_{\|\mathbf{x}\|\to\infty} p(\mathbf{x})\mathbf{g}(\mathbf{x}) = \mathbf{0}$.

Then, η -almost surely

1

$$\mathrm{FSSD}^2=0$$
 if and only if $p=q$, for any $J\geq 1.$

Gaussian kernel $k(\mathbf{x}, \mathbf{v}) = \exp\left(-\frac{\|\mathbf{x}-\mathbf{v}\|_2^2}{2\sigma_z^2}\right)$ works.

In practice,
$$J = 1$$
 or $J = 5$.

More on FSSD²

- When d > 1, the Stein witness g has d outputs.
- Define

$$\xi(\mathbf{x},\mathbf{v}):=rac{1}{p(\mathbf{x})}
abla_{\mathbf{x}}[p(\mathbf{x})k(\mathbf{x},\mathbf{v})]\in\mathbb{R}^{d}.$$

$$\mathbf{g}(\mathbf{v}) = \mathbb{E}_{\mathbf{x} \sim q} \xi(\mathbf{x}, \mathbf{v}) \in \mathbb{R}^{d}.$$

General form:

$$ext{FSSD}^2 = rac{1}{dJ}\sum_{j=1}^J \| extbf{g}(extbf{v}_j)\|_2^2,$$

where unbiased estimator $\widehat{\text{FSSD}^2}$ computable in $\mathcal{O}(d^2 J n)$.

Asymptotic Distributions of $\widetilde{\mathrm{FSSD}^2}$

- τ(x) := vertically stack ξ(x, v₁), ... ξ(x, v_J) ∈ ℝ^{dJ}. Feature vector of x.
- Mean feature: $\mu := \mathbb{E}_{\mathbf{x} \sim q}[\tau(\mathbf{x})].$
- Equivalently, $FSSD^2 = \frac{1}{dJ} \|\mu\|_2^2$ (mean feature).
- $\blacksquare \ \Sigma_r := \operatorname{cov}_{\mathbf{x} \sim r}[\tau(\mathbf{x})] \in \mathbb{R}^{dj \times dJ} \ \text{for} \ r \in \{p, q\}$

Proposition 1 (Asymptotic distributions).

Let $Z_1,\ldots,Z_{dJ} \stackrel{i.i.d.}{\sim} \mathcal{N}(0,1)$, and $\{\omega_i\}_{i=1}^{dJ}$ be the eigenvalues of Σ_p .

- 1 Under $H_0: p = q$, asymptotically $nFSSD^2 \xrightarrow{d} \sum_{i=1}^{dJ} (Z_i^2 1)\omega_i$.
 - Easy to simulate to get p-value.
 - Simulation cost independent of n.
- 2 Under $H_1 : p \neq q$, we have $\sqrt{n}(\widehat{\text{FSSD}^2} \text{FSSD}^2) \xrightarrow{d} \mathcal{N}(0, \sigma_{H_1}^2)$ where $\sigma_{H_1}^2 := 4\mu^\top \Sigma_q \mu$. Implies $\mathbb{P}(\text{reject } H_0) \to 1$ as $n \to \infty$.

But, how to estimate Σ_p ? No sample from p!

Asymptotic Distributions of $\widetilde{FSSD^2}$

- τ(x) := vertically stack ξ(x, v₁), ... ξ(x, v_J) ∈ ℝ^{dJ}. Feature vector of x.
- Mean feature: $\mu := \mathbb{E}_{\mathbf{x} \sim q}[\tau(\mathbf{x})].$
- Equivalently, $FSSD^2 = \frac{1}{dJ} \|\mu\|_2^2$ (mean feature).
- $\Sigma_r := \operatorname{cov}_{\mathbf{x} \sim r}[au(\mathbf{x})] \in \mathbb{R}^{dJ imes \, dJ}$ for $r \in \{p, q\}$

Proposition 1 (Asymptotic distributions).

Let $Z_1,\ldots,Z_{dJ} \stackrel{i.i.d.}{\sim} \mathcal{N}(0,1)$, and $\{\omega_i\}_{i=1}^{dJ}$ be the eigenvalues of Σ_p .

- 1 Under $H_0: p = q$, asymptotically $n \widetilde{\text{FSSD}^2} \xrightarrow{d} \sum_{i=1}^{dJ} (Z_i^2 1) \omega_i$.
 - Easy to simulate to get p-value.
 - Simulation cost independent of n.
- 2 Under $H_1 : p \neq q$, we have $\sqrt{n}(\widehat{\text{FSSD}^2} \text{FSSD}^2) \xrightarrow{d} \mathcal{N}(0, \sigma_{H_1}^2)$ where $\sigma_{H_1}^2 := 4\mu^\top \Sigma_q \mu$. Implies $\mathbb{P}(\text{reject } H_0) \to 1$ as $n \to \infty$.

But, how to estimate Σ_p ? No sample from p!

Asymptotic Distributions of $\widetilde{\mathrm{FSSD}^2}$

- τ(x) := vertically stack ξ(x, v₁), ... ξ(x, v_J) ∈ ℝ^{dJ}. Feature vector of x.
- Mean feature: $\mu := \mathbb{E}_{\mathbf{x} \sim q}[\tau(\mathbf{x})].$
- Equivalently, $FSSD^2 = \frac{1}{dJ} \|\mu\|_2^2$ (mean feature).

Proposition 1 (Asymptotic distributions).

Let $Z_1, \ldots, Z_{dJ} \stackrel{i.i.d.}{\sim} \mathcal{N}(0,1)$, and $\{\omega_i\}_{i=1}^{dJ}$ be the eigenvalues of Σ_p .

- 1 Under $H_0: p = q$, asymptotically $n \widehat{\text{FSSD}^2} \stackrel{d}{\rightarrow} \sum_{i=1}^{dJ} (Z_i^2 1) \omega_i$.
 - Easy to simulate to get p-value.
 - Simulation cost independent of n.
- $\begin{array}{ll} & \text{\mathbb{I} Inder $H_1: p \neq q$, we have \sqrt{n}($\widehat{\mathrm{FSSD}}^2 \mathrm{FSSD}^2$)$} \xrightarrow{d} $\mathcal{N}(0, \sigma_{H_1}^2$)$ \\ & \text{where $\sigma_{H_1}^2:=4\mu^\top\Sigma_q\mu$. Implies $\mathbb{P}(reject H_0)$} \rightarrow 1$ as $n \rightarrow \infty$. \end{array}$

But, how to estimate Σ_p ? No sample from p!

Asymptotic Distributions of $\widehat{FSSD^2}$

- τ(x) := vertically stack ξ(x, v₁), ... ξ(x, v_J) ∈ ℝ^{dJ}. Feature vector of x.
- Mean feature: $\mu := \mathbb{E}_{\mathbf{x} \sim q}[\tau(\mathbf{x})].$
- Equivalently, $FSSD^2 = \frac{1}{dJ} \|\mu\|_2^2$ (mean feature).

Proposition 1 (Asymptotic distributions).

Let $Z_1, \ldots, Z_{dJ} \stackrel{i.i.d.}{\sim} \mathcal{N}(0,1)$, and $\{\omega_i\}_{i=1}^{dJ}$ be the eigenvalues of Σ_p .

- 1 Under $H_0: p = q$, asymptotically $n \widehat{\text{FSSD}^2} \xrightarrow{d} \sum_{i=1}^{dJ} (Z_i^2 1) \omega_i$.
 - Easy to simulate to get p-value.
 - Simulation cost independent of n.
- 2 Under $H_1: p \neq q$, we have $\sqrt{n}(\widehat{\text{FSSD}^2} \text{FSSD}^2) \xrightarrow{d} \mathcal{N}(0, \sigma_{H_1}^2)$ where $\sigma_{H_1}^2 := 4\mu^\top \Sigma_q \mu$. Implies $\mathbb{P}(\text{reject } H_0) \to 1$ as $n \to \infty$.

But, how to estimate Σ_p ? No sample from p!

Asymptotic Distributions of $\widetilde{\mathrm{FSSD}^2}$

- τ(x) := vertically stack ξ(x, v₁), ... ξ(x, v_J) ∈ ℝ^{dJ}. Feature vector of x.
- Mean feature: $\mu := \mathbb{E}_{\mathbf{x} \sim q}[\tau(\mathbf{x})].$
- Equivalently, $FSSD^2 = \frac{1}{dJ} \|\mu\|_2^2$ (mean feature).

Proposition 1 (Asymptotic distributions).

Let $Z_1, \ldots, Z_{dJ} \stackrel{i.i.d.}{\sim} \mathcal{N}(0,1)$, and $\{\omega_i\}_{i=1}^{dJ}$ be the eigenvalues of Σ_p .

- 1 Under $H_0: p = q$, asymptotically $n \widehat{\text{FSSD}^2} \xrightarrow{d} \sum_{i=1}^{dJ} (Z_i^2 1) \omega_i$.
 - Easy to simulate to get p-value.
 - Simulation cost independent of n.
- 2 Under $H_1: p \neq q$, we have $\sqrt{n}(\widehat{\text{FSSD}^2} \text{FSSD}^2) \xrightarrow{d} \mathcal{N}(0, \sigma_{H_1}^2)$ where $\sigma_{H_1}^2 := 4\mu^\top \Sigma_q \mu$. Implies $\mathbb{P}(\text{reject } H_0) \to 1$ as $n \to \infty$.

But, how to estimate Σ_p ? No sample from p!

Parameter Tuning

• Jointly optimise locations $V = \{\mathbf{v}_1, \dots, \mathbf{v}_J\}$ for more test power

Proposition 2 (Approx. power for large n). Under H_1 , for large n and fixed threshold r, the test power $\mathbb{P}(reject H_0 | H_1 true)$

$$\mathbb{P}_{H_1}(n \widehat{\mathrm{FSSD}^2} > r) pprox 1 - \Phi\left(rac{r}{\sqrt{n}\sigma_{H_1}} - \sqrt{n}rac{\mathrm{FSSD}^2}{\sigma_{H_1}}
ight).$$

where $\Phi = CDF$ of $\mathcal{N}(0,1)$.

For large n, second term dominates. So

$$rg\max_{V,\sigma_k^2} ext{(power)} pprox rg\max_{V,\sigma_k^2} rac{\widehat{ ext{FSSD}}^2}{\widehat{\sigma_{H_1}}}.$$

 Split {x_i}ⁿ_{i=1} into independent training/test sets. Optimize V on tr. Test on te.

Parameter Tuning

• Jointly optimise locations $V = \{\mathbf{v}_1, \dots, \mathbf{v}_J\}$ for more test power

Proposition 2 (Approx. power for large n). Under H_1 , for large n and fixed threshold r, the test power $\mathbb{P}(reject H_0 \mid H_1 true)$

$$\mathbb{P}_{H_1}(n\widehat{\mathrm{FSSD}^2} > r) pprox 1 - \Phi\left(rac{r}{\sqrt{n}\sigma_{H_1}} - \sqrt{n}rac{\mathrm{FSSD}^2}{\sigma_{H_1}}
ight).$$

where $\Phi = CDF$ of $\mathcal{N}(0, 1)$.

For large n, second term dominates. So

$$rg\max_{V,\sigma_k^2} ext{(power)} pprox rg\max_{V,\sigma_k^2} rac{\widehat{ ext{FSSD}}^2}{\widehat{\sigma_{H_1}}}.$$

 Split {x_i}ⁿ_{i=1} into independent training/test sets. Optimize V on tr. Test on te.

Parameter Tuning

• Jointly optimise locations $V = \{\mathbf{v}_1, \dots, \mathbf{v}_J\}$ for more test power

Proposition 2 (Approx. power for large n). Under H_1 , for large n and fixed threshold r, the test power $\mathbb{P}(reject H_0 \mid H_1 true)$

$$\mathbb{P}_{H_1}(n\widehat{\mathrm{FSSD}^2} > r) pprox 1 - \Phi\left(rac{r}{\sqrt{n}\sigma_{H_1}} - \sqrt{n}rac{\mathrm{FSSD}^2}{\sigma_{H_1}}
ight).$$

where $\Phi = CDF$ of $\mathcal{N}(0, 1)$.

For large n, second term dominates. So

$$rg\max_{V,\sigma_k^2} ext{(power)} pprox rg\max_{V,\sigma_k^2} rac{\widehat{ ext{FSSD}}^2}{\widehat{\sigma_{H_1}}}.$$

 Split {x_i}ⁿ_{i=1} into independent training/test sets. Optimize V on tr. Test on te.

Model p = 2-component Gaussian mixture.

Score surface

\star = optimized **v**.

 \star = optimized **v**. No robbery in Lake Michigan.

Model p = 10-component Gaussian mixture.

Capture the right tail better.

Still, does not capture the left tail.

Still, does not capture the left tail.

Learned test locations are interpretable.

"All models are wrong."

G. Box (1976)

Relative model comparison

- Have: two candidate models P and Q, and samples $\{x_i\}_{i=1}^n$ from reference distribution R
- **Goal:** which of P and Q is better?

00001 111222 222022331 49455560 6666777 888999

Samples from GAN, Goodfellow et al. (2014) Samples from LSGAN, Mao et al. (2017)

Which model is better?

Most interesting models have latent structure

Graphical model representation of hierarchical LDA with a nested CRP prior, Blei et al. (2003)

Relative goodness-of-fit testing

Two generative models P and Q, data {x_i}ⁿ_{i=1} ~ R.
Neither model gives a perfect fit (P ≠ R and Q ≠ R).

Joint asymptotic normality

Joint asymptotic normality when $P \neq R$ and $Q \neq R$

$$\sqrt{n} \left[\underbrace{\operatorname{KSD}_{p}^{2}(R) - \operatorname{KSD}_{p}^{2}(R)}_{\operatorname{KSD}_{q}^{2}(R) - \operatorname{KSD}_{q}^{2}(R)} \right] \stackrel{d}{\to} \mathcal{N} \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_{h_{p}}^{2} & \sigma_{h_{p}h_{q}} \\ \sigma_{h_{p}h_{q}} & \sigma_{h_{q}}^{2} \end{bmatrix} \right)$$

$$\widehat{\operatorname{KSD}_{q}^{2}(R)}$$

$$\operatorname{KSD}_{q}^{2}(R) \xrightarrow{\operatorname{KSD}_{p}^{2}(R)} \xrightarrow{\operatorname{KSD}_{p}^{2}(R)}$$

Joint asymptotic normality

Joint asymptotic normality when $P \neq R$ and $Q \neq R$

$$\sqrt{n}\left[egin{array}{c} \widehat{\mathrm{KSD}}_{p}^{2}(R)-\mathrm{KSD}_{p}^{2}(R)\ \widehat{\mathrm{KSD}}_{q}^{2}(R)-\mathrm{KSD}_{q}^{2}(R) \end{array}
ight]\overset{d}{
ightarrow}\mathcal{N}\left(\left[egin{array}{c} 0\ 0 \end{array}
ight], \left[egin{array}{c} \sigma_{h_{p}}^{2}&\sigma_{h_{p}h_{q}}\ \sigma_{h_{p}h_{q}}&\sigma_{h_{q}}^{2} \end{array}
ight]
ight)$$

Difference in statistics is asymptotically normal:

$$egin{aligned} \sqrt{n} \left[\widehat{ ext{KSD}_{p}^{2}}(R) - \widehat{ ext{KSD}_{q}^{2}}(R) - \left(ext{KSD}_{p}^{2}(R) - ext{KSD}_{q}^{2}(R)
ight)
ight] \ & \stackrel{d}{ o} \mathcal{N} \left(0, \sigma_{h_{p}}^{2} + \sigma_{h_{q}}^{2} - 2\sigma_{h_{p}h_{q}}
ight) \end{aligned}$$

 \implies a statistical test with null hypothesis $\text{KSD}_p^2(R) - \text{KSD}_q^2(R) \le 0$ is straightforward.

Latent variable models

Can we compare latent variable models with KSD?

$$egin{aligned} p(x) &= \int p(x|z)p(z)dz \ q(y) &= \int q(y|w)p(w)dw \end{aligned}$$

Recall multi-dimensional Stein operator:

$$[T_p f](x) = \left\langle \underbrace{rac{
abla p(x)}{p(x)}}_{(a)}, f(x) \right\rangle + \langle
abla, f(x)
angle.$$

Expression (a) requires marginal p(x), often intractable...
Latent variable models

Can we compare latent variable models with KSD?

$$egin{aligned} p(x) &= \int p(x|z)p(z)dz \ q(y) &= \int q(y|w)p(w)dw \end{aligned}$$

Recall multi-dimensional Stein operator:

$$[T_p f](x) = \left\langle \underbrace{rac{
abla p(x)}{p(x)}}_{(a)}, f(x) \right\rangle + \langle
abla, f(x)
angle.$$

Expression (a) requires marginal p(x), often intractable... ...but sampling can be straightforward!

Monte Carlo approximation

Approximate the integral using $\{z_j\}_{j=1}^m \sim p(z)$:

$$egin{aligned} p(x) &= \int p(x|z)p(z)dz \ &pprox p_{m}(x) = rac{1}{m}\sum_{j=1}^{m}p(x|z_{j}) \end{aligned}$$

Estimate KSDs with approxiomate densities:

$$\widehat{\mathrm{KSD}_p^2}(R) - \widehat{\mathrm{KSD}_q^2}(R) pprox \widehat{\mathrm{KSD}_{p_m}^2}(R) - \widehat{\mathrm{KSD}_{q_m}^2}(R)$$

Monte Carlo approximation

Approximate the integral using $\{z_j\}_{j=1}^m \sim p(z)$:

$$egin{aligned} p(x) &= \int p(x|z)p(z)dz \ &pprox p_{m}(x) = rac{1}{m}\sum_{j=1}^{m}p(x|z_{j}) \end{aligned}$$

Estimate KSDs with approxiomate densities:

$$\widehat{\mathrm{KSD}_p^2}(R) - \widehat{\mathrm{KSD}_q^2}(R) pprox \widehat{\mathrm{KSD}_{p_m}^2}(R) - \widehat{\mathrm{KSD}_{q_m}^2}(R)$$

Recall

$$egin{aligned} \sqrt{n}\left[\widehat{ ext{KSD}_{p}^{2}}(R)-\widehat{ ext{KSD}_{q}^{2}}(R)-\left(ext{KSD}_{p}^{2}(R)- ext{KSD}_{q}^{2}(R)
ight)
ight]\ &\stackrel{d}{ o}\mathcal{N}\left(0,\sigma_{h_{p}}^{2}+\sigma_{h_{q}}^{2}-2\sigma_{h_{p}h_{q}}
ight) \end{aligned}$$

ightarrow if m is large, can we simply substitute p_m and q_m ?

Simple proof of concept

Check $\widehat{\mathrm{KSD}}_p^2(R) \approx \widehat{\mathrm{KSD}}_{p_m}^2(R)$ with a toy model:

• Model: Beta-Binomial BetaBinom (α, β)

$$p(x|z) = inom{N}{x} z^x (1-z)^{n-x}, \ p(z) = ext{Beta}(a,b)$$

- Latent $z \in (0,1)$: success probability for binomial likelihood
- Marginal p(x): tractable (given by the beta function)
- Generate $\sqrt{nKSD_p^2}(R)$ and $\sqrt{nKSD_{p_m}^2}(R)$ \rightarrow what do their distribution look like?

Effect of sampling the latents (Beta-binomial)

Effect of sampling the latents (Beta-binomial)

Effect of sampling the latents (Beta-binomial)

 $\operatorname{KSD}_{p_m}^2(R)$ is normally distributed around $\operatorname{KSD}_p^2(R)$ (approximation error)

Approximation p_m gives a random draw $\mathrm{KSD}^2_{p_m}(R)$

 $\widetilde{\mathrm{KSD}}_{p_m}^2(R)$ is normally distributed around $\mathrm{KSD}_{p_m}^2(R)$

Distribution of $\widehat{\mathrm{KSD}}_{p_m}^2(R)$ is averaged over random draws of $\mathrm{KSD}_{p_m}^2(R)$

Distribution of $\widehat{\mathrm{KSD}}_{p_m}^2(R)$ is averaged over random draws of $\mathrm{KSD}_{p_m}^2(R)$

 $\widehat{\mathrm{KSD}}_{p_m}^2(R)$ has a higher variance than $\widehat{\mathrm{KSD}}_p^2(R)$

Correction for this effect

- BetaBinomial models with $p = q_m$ vs q \rightarrow numerical vs closed-form marginalisation.
- With correction for increased $\overline{\text{KSD}}_{q_m}^2(R)$ variance, null accepted w.p. 1α .

Correction for this effect

- BetaBinomial models with $p = q_m$ vs q→numerical vs closed-form marginalisation.
- With correction for increased $\overline{\text{KSD}}_{q_m}^2(R)$ variance, null accepted w.p. 1α .

- Naive Rel-KSD test has incorrect type-I error
- Naive KSD: $p = q_m \neq q$ ⇒ rejection rate → 1 as $n \rightarrow \infty$

----- LKSD (KSD for Latent Models) m=100 ----- LKSD m=1000

Asymptotics for approximate KSD

We have asymptotic normality for $\text{KSD}_{p_m}^2(R)$,

```
\sqrt{m}(\mathrm{KSD}^2_{p_m}(R)-\mathrm{KSD}^2_p(R))\stackrel{d}{
ightarrow}\mathcal{N}(0,\gamma_p^2)
```

The fine print:

- $\bullet \inf_x \frac{p}{x} > 0$
- | sup_x $\left| \frac{dp(x)}{dx} \right| < \infty$
- (Uniform CLT) Likelihoods $\{p(x|\cdot)|x \in \mathcal{X}\}$ and derivatives $\{\frac{d}{dx}p(x|\cdot)|x \in \mathcal{X}\}$ are p(z) Donsker class

Asymptotic distribution for relative KSD test

Asymptotic distribution of approximate KSD estimate $(n, m) \rightarrow \infty, \ rac{n}{m} \rightarrow r \in [0, \infty)$:

$$\sqrt{n}\left[\left(\widehat{\mathrm{KSD}^2_{p_m}}(R)-\widehat{\mathrm{KSD}^2_{q_m}}(R)
ight)-\left(\mathrm{KSD}^2_p(R)-\mathrm{KSD}^2_q(R)
ight)
ight]\overset{d}{ o}\mathcal{N}(0,\,c^2)$$

where

$$c = \sigma_{pq} \sqrt{1 + r(\gamma_{pq}/\sigma_{pq})^2}$$

$$\gamma_{pq}^2 = \lim_{m \to \infty} m \cdot \operatorname{Var} \left[\mathbf{E}_{x,x'} h_{p_m}(x, x') - \mathbf{E}_{x,x'} h_{q_m}(x, x') \right]$$

$$\sigma_{pq}^2 = \lim_{n \to \infty} n \cdot \operatorname{Var} \left[\widehat{\mathrm{KSD}}_p^2(R) - \widehat{\mathrm{KSD}}_q^2(R) \right]$$

Fine print:

- $h_p(x, x') h_q(x, x')$ has a finite third moment
- Additional technical conditions

Relative test, further detail

Theorem (Asymptotic distribution of random kernel U-statistic).

Let

- $U_{n,m}$: a U-statistic defined by a random U-statistic kernel H_m
- U_n : a U-statistic defined by a fixed U-statistic kernel h

Assume that

- $\sigma_{H_m}^2
 ightarrow \sigma_h^2$ in probability
- $u_3(H_m) \rightarrow \nu_3(h) < \infty \text{ in probability}$ where $u_3(H_m) = \mathbf{E}_{x,x'} \left| H_m(x,x') \mathbf{E}_{x,x'} H_m(x,x') \right|^3$

•
$$Y_m := \sqrt{m} \left(\mathbf{E}_n[U_{n,m} | H_m] - \mathbf{E}_n[U_n] \right) \stackrel{d}{
ightarrow} Y$$

• Then, with $n/m \rightarrow r \in [0, \infty)$,

$$\lim_{n,m o \infty} \Pr\left[\sqrt{n} (\, U_{n,m} - \mathbf{E}_n \, U_n) < t
ight] = \mathbf{E}_{\,Y} \left[\Phi\left(rac{t - \sqrt{r} \, Y}{\sigma_h}
ight)
ight]$$

Experiment: sensitivity to model difference

• Data R = Sigmoid Belief Network SBN(W):

 $R(x|z) = ext{sigmoid}(Wz), \ R(z) = \mathcal{N}(0, I), \ W \in \mathbb{R}^{30 imes 10}$

Models: P = SBN(W + ε[1, 0, ..., 0]), Q = SBN(W + [1, 0, ..., 0])
Only the first column of weight W is perturbed by ε

Experiment: sensitivity to model difference

• Data R = Sigmoid Belief Network SBN(W):

 $R(x|z) = ext{sigmoid}(Wz), \ R(z) = \mathcal{N}(0, I), \ W \in \mathbb{R}^{30 imes 10}$

Models: P = SBN(W + \epsilon[1, 0, ..., 0]), Q = SBN(W + [1, 0, ..., 0])
Only the first column of weight W is perturbed by \epsilon

Experiment: sensitivity to model difference

• Data R = Sigmoid Belief Network SBN(W):

 $R(x|z) = ext{sigmoid}(Wz), \ R(z) = \mathcal{N}(0, I), \ W \in \mathbb{R}^{30 imes 10}$

Models: P = SBN(W + \epsilon[1, 0, ..., 0]), Q = SBN(W + [1, 0, ..., 0])
Only the first column of weight W is perturbed by \epsilon

A Linear-Time Kernel Goodness-of-Fit Test. Wittawat Jitkrittum, Wenkai Xu, Zoltán Szabó, Kenji Fukumizu, Arthur Gretton

https://arxiv.org/abs/1705.07673

Python code: https://github.com/wittawatj/kernel-gof

A Kernel Stein Test for Comparing Latent Variable Models Heishiro Kanagawa, Wittawat Jitkrittum, Lester Mackey, Kenji Fukumizu, Arthur Gretton https://arxiv.org/abs/1907.00586

Questions?

Efficiency comparison, linear-time tests

- Bahadur slope \cong rate of p-value \rightarrow 0 under H_1 as $n \rightarrow \infty$.
- Measure a test's sensitivity to the departure from H_0 .

 $H_0: \theta = \mathbf{0},$ $H_1: \theta \neq \mathbf{0}.$

- Typically $\operatorname{pval}_n \approx \exp\left(-\frac{1}{2}c(\theta)n\right)$ where $c(\theta) > 0$ under H_1 , and c(0) = 0. [?].
- $c(\theta)$ higher \implies more sensitive. Good.

Bahadur slope

$$c(heta):=-2 \mathop{\mathrm{plim}}\limits_{n
ightarrow\infty} rac{\log\left(1-F(\,T_n)
ight)}{n},$$

where F(t) = CDF of T_n under H_0 .

Bahadur efficiency = ratio of slopes of two tests. 49/52

- Bahadur slope \cong rate of p-value \rightarrow 0 under H_1 as $n \rightarrow \infty$.
- Measure a test's sensitivity to the departure from H_0 .

 $H_0: \theta = \mathbf{0},$ $H_1: \theta \neq \mathbf{0}.$

- Typically $\operatorname{pval}_n \approx \exp\left(-\frac{1}{2}c(\theta)n\right)$ where $c(\theta) > 0$ under H_1 , and c(0) = 0. [?].
- $c(\theta)$ higher \implies more sensitive. Good.

Bahadur slope

$$c(heta):=-2 \mathop{\mathrm{plim}}\limits_{n
ightarrow\infty} rac{\log\left(1-F(\,T_n\,)
ight)}{n},$$

where F(t) = CDF of T_n under H_0 .

Bahadur efficiency = ratio of slopes of two tests. 49/52

- Bahadur slope \cong rate of p-value \rightarrow 0 under H_1 as $n \rightarrow \infty$.
- Measure a test's sensitivity to the departure from H_0 .

 $\begin{aligned} H_0 : \theta &= \mathbf{0}, \\ H_1 : \theta &\neq \mathbf{0}. \end{aligned}$

Typically pval_n ≈ exp (-¹/₂c(θ)n) where c(θ) > 0 under H₁, and c(0) = 0. [?].
 c(θ) higher ⇒ more sensitive. Good.

$$c(heta) := -2 \lim_{n \to \infty} rac{\log\left(1 - F(T_n)\right)}{n}$$

where F(t) = CDF of T_n under H_0 .

Bahadur efficiency = ratio of slopes of two tests. 49/52

- Bahadur slope \cong rate of p-value \rightarrow 0 under H_1 as $n \rightarrow \infty$.
- Measure a test's sensitivity to the departure from H_0 .

 $H_0: \theta = \mathbf{0},$ $H_1: \theta \neq \mathbf{0}.$

Typically pval_n ≈ exp (-¹/₂c(θ)n) where c(θ) > 0 under H₁, and c(0) = 0. [?].
 c(θ) higher ⇒ more sensitive. Good.

Bahadur slope

$$c(heta):=-2 \lim_{n o \infty} rac{\log \left(1-F(\,T_n)
ight)}{n},$$

where F(t) = CDF of T_n under H_0 .

Bahadur efficiency = ratio of slopes of two tests.

Bahadur Slopes of FSSD and LKS

Theorem 2.

The Bahadur slope of $n \widehat{\text{FSSD}^2}$ is

 $c^{(\mathrm{FSSD})} := \mathrm{FSSD}^2/\omega_1,$

where ω_1 is the maximum eigenvalue of $\Sigma_p := \operatorname{cov}_{\mathbf{x} \sim p}[\tau(\mathbf{x})]$.

Theorem 3.

The Bahadur slope of the linear-time kernel Stein (LKS) statistic $\sqrt{n} \widehat{S_{1}^{2}}$ is

$$c^{(\mathrm{LKS})} = rac{1}{2} rac{\left[\mathbb{E}_q h_p(\mathbf{x},\mathbf{x}')
ight]^2}{\mathbb{E}_p \left[h_p^2(\mathbf{x},\mathbf{x}')
ight]},$$

where h_p is the U-statistic kernel of the KSD statistic.

Let's consider a specific case . . .

Bahadur Slopes of FSSD and LKS

Theorem 2.

The Bahadur slope of $n \widehat{\text{FSSD}^2}$ is

 $c^{(\mathrm{FSSD})} := \mathrm{FSSD}^2/\omega_1,$

where ω_1 is the maximum eigenvalue of $\Sigma_p := \operatorname{cov}_{\mathbf{x} \sim p}[\tau(\mathbf{x})]$.

Theorem 3.

The Bahadur slope of the linear-time kernel Stein (LKS) statistic $\sqrt{n}\widehat{S_{l}^{2}}$ is

$$c^{(\mathrm{LKS})} = rac{1}{2} rac{\left[\mathbb{E}_q h_p(\mathbf{x},\mathbf{x}')
ight]^2}{\mathbb{E}_p \left[h_p^2(\mathbf{x},\mathbf{x}')
ight]},$$

where h_p is the U-statistic kernel of the KSD statistic.

Let's consider a specific case

Gaussian Mean Shift Problem

Consider $p = \mathcal{N}(0, 1)$ and $q = \mathcal{N}(\mu_q, 1)$.

Assume J = 1 feature for $n \widehat{\text{FSSD}^2}$. Gaussian kernel (bandwidth = σ_k^2)

$$c^{(\text{FSSD})}(\mu_{q}, v, \sigma_{k}^{2}) = \frac{\sigma_{k}^{2} \left(\sigma_{k}^{2} + 2\right)^{3} \mu_{q}^{2} e^{\frac{v^{2}}{\sigma_{k}^{2} + 2} - \frac{\left(v - \mu_{q}\right)^{2}}{\sigma_{k}^{2} + 1}}}{\sqrt{\frac{2}{\sigma_{k}^{2}} + 1} \left(\sigma_{k}^{2} + 1\right) \left(\sigma_{k}^{6} + 4\sigma_{k}^{4} + \left(v^{2} + 5\right)\sigma_{k}^{2} + 2\right)}}.$$

For LKS, Gaussian kernel (bandwidth = κ^2).

$$c^{(\text{LKS})}(\mu_{q},\kappa^{2}) = \frac{\left(\kappa^{2}\right)^{5/2} \left(\kappa^{2}+4\right)^{5/2} \mu_{q}^{4}}{2\left(\kappa^{2}+2\right) \left(\kappa^{8}+8\kappa^{6}+21\kappa^{4}+20\kappa^{2}+12\right)}$$

Gaussian Mean Shift Problem

Consider $p = \mathcal{N}(0, 1)$ and $q = \mathcal{N}(\mu_q, 1)$.

Assume J = 1 feature for $n \widehat{\text{FSSD}^2}$. Gaussian kernel (bandwidth = σ_k^2)

$$c^{(\text{FSSD})}(\mu_{q}, v, \sigma_{k}^{2}) = \frac{\sigma_{k}^{2} \left(\sigma_{k}^{2} + 2\right)^{3} \mu_{q}^{2} e^{\frac{v^{2}}{\sigma_{k}^{2} + 2} - \frac{\left(v - \mu_{q}\right)^{2}}{\sigma_{k}^{2} + 1}}}{\sqrt{\frac{2}{\sigma_{k}^{2}} + 1} \left(\sigma_{k}^{2} + 1\right) \left(\sigma_{k}^{6} + 4\sigma_{k}^{4} + \left(v^{2} + 5\right)\sigma_{k}^{2} + 2\right)}}.$$

For LKS, Gaussian kernel (bandwidth = κ^2).

$$c^{(\mathrm{LKS})}(\mu_{q},\kappa^{2}) = rac{\left(\kappa^{2}
ight)^{5/2}\left(\kappa^{2}+4
ight)^{5/2}\mu_{q}^{4}}{2\left(\kappa^{2}+2
ight)\left(\kappa^{8}+8\kappa^{6}+21\kappa^{4}+20\kappa^{2}+12
ight)}.$$

Theorem 4 (FSSD is at least two times more efficient).

• Fix $\sigma_k^2 = 1$ for $n \widehat{\text{FSSD}^2}$.

Then, $\forall \mu_q \neq 0$, $\exists v \in \mathbb{R}$, $\forall \kappa^2 > 0$, we have Bahadur efficiency

 $\frac{c^{(\mathrm{FSSD})}(\mu_q, v, \sigma_k^2)}{c^{(\mathrm{LKS})}(\mu_q, \kappa^2)} > 2.$