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Model Criticism

o< 4] Goals: Test if a (complicated)
, ¥ et model fits the data.
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Outline

m The kernel Stein discrepancy Chwialkowski, Strathmann, G. ICML 2016

Comparing two models via samples: MMD and the witness function.
Comparing a sample and a model: Stein modification of the witness
class

m A Linear-Time Kernel Goodness-of-Fit Test
Jitkrittum, Xu, Szabo, Fukumizu, G. NeurIPS 2017

Features learned to maximise (estimate of) test power
Better asymptotic relative efficiency vs a “naive” linear time test

m Relative hypothesis tests with latent variables
Kanagawa, Jitkrittum, Mackey, Fukumizu, G. 2019
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Integral probability metrics

Integral probability metric:
Find a "well behaved function" f(z) to maximize

Eqf(Y) - Epf(X)

Smooth function
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The MMD: an integral probability metric

Maximum mean discrepancy: RKHS function for P vs @

MMD(P, Q; F):= sup [Eqgf(Y)—Epf(X)]

Prob. density and f(x)
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The MMD: an integral probability metric

Maximum mean discrepancy: RKHS function for P vs @

sup [Eqf(Y) - Epf(X)]

MMD(P, Q; F) :=
Ifll z<1

Functions are linear combinations of features:

T _901(1)
f1 —~J
[
f@) = {f, ol ;—me |l |29
. wale) T

15 =22 /2 < 1 -
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The MMD: an integral probability metric

Maximum mean discrepancy: RKHS function for P vs @

MMD(P, Qi) = sup [Bof(¥) =~ Erf(X)

For characteristic RKHS F, MMD(P,Q; F)=0iff P = Q

Other choices for witness function class:

m Bounded continuous [pudiey, 2002]
m Bounded varation 1 (Kolmogorov metric) puiter, 1997
m Lipschitz (Wasserstein distances) [pudiey, 2002
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The MMD: an integral probability metric

Maximum mean discrepancy: RKHS function for P vs @

MUD(P, Qi F):= sup [Bof(¥)~Brf(X)

Expectations of functions are linear combinations of
expected features

Ep(f(X)) =Epr(/, SD(X)>J-‘ =(f, EP‘P(X)>J-‘ = (f, ,U'P>]-‘

(if feature map ¢ Bochner integrable; always true if kernel is bounded)
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Integral prob. metric vs feature mean difference

The MMD: .
Population witness function f

MMD(P, Q; F) 2 08

= 04

= sup [Epf(X) — EQf(Y)] § 02

Ifli<1 o
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Integral prob. metric vs feature mean difference

The MMD: use
MMD(P, Q; F) Epf(X)=Ep(o(X),f)r
= \|§1\|l£1 [Epf(X) —Eqof(Y)] ={up,f)F

= sup (f,pup — 1Q)x
IFl1<1
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Integral prob. metric vs feature mean difference

The MMD:

MMD(P, Q;F)

= sup [Epf(X)—Eqf(Y)]
[If11<1

= sup (f,pup — LQ)r
I7]I<1
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Integral prob. metric vs feature mean difference

The MMD:
Q
\ /\y
<92 )
MMD(P, Q; F) Do“ v
= sup [Epf(X)—Eqf(Y)]
IFlI<1 F*
= sup (f,pup — LQ)r
IFlI<1
. P~ UQ

e = el
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Integral prob. metric vs feature mean difference

The MMD:

MMD(P, Q; F)

= sup [Epf(X)—-Egf(Y)]
IIFII<1

= sup (f,pup — LQ)r
T

= [lup — poll

Consequently,
) ={fe(v)) £
x {up — 1o, p(v)) £
= (Ep
E

9(X) = Eqe(Y), p(v)) £
rk(X,v) —Egk(Y,v)
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The maximum mean discrepancy

The maximum mean discrepancy in terms of expected kernels:

MMD*(P, Q; F) = |lup — koll%
- EPk(x’ xl) + EQk(y’ y/) - 2EP,Qk(:E7 y)
(a) (a) (b)

(a)= within distrib. similarity, (b)= cross-distrib. similarity.
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The maximum mean discrepancy

The maximum mean discrepancy in terms of expected kernels:

MMD*(P, Q; F) = |lup — koll%
= Epk(z,z') + Egk(y,y') — 2Ep gk(z, v)
(a) (a) (b)

(a)= within distrib. similarity, (b)= cross-distrib. similarity.

Proof:

lup — polle = (up — Lo, kP — KQ) 5
= (P, bP)F + (L@ Q) 5 — 2{1P, Q) £ -
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Model criticism

MMD(P, @; F) = sup| s .<1[Eqf — Epf]

Population witness function f

o o o
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Prob. density and f(x)
o

-0.2
0.4
-0.6
0-8 Il Il Il
-1 -0.5 0 0.5 1
X

Can we compute MMD with samples from @ and a model P?

Problem: usualy can’t compute E, f in closed form. 0/62



Stein idea

To get rid of E,f in
sup [Eqf — E,f]

IFl7<1
we define the (1-D) Stein operator
1 d
Tof1(2) = 575 25 U(@)o(@)
Then
E,T,f =0

subject to appropriate boundary conditions.

Gorham and Mackey (NeurIPS 15), Oates, Girolami, Chopin (JRSS B 2016)
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Stein idea

To get rid of E,f in

sup [Eqf — E,f]
Ifll =<1

we define the (1-D) Stein operator

[Tpf](2) =

Then

E,T,f =0
subject to appropriate boundary conditions.
Proof:

B (7o) = [ |5y 35 V(@) pl@)as

Gorham and Mackey (NeurIPS 15), Oates, Girolami, Chopin (JRSS B 2016)
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Stein idea

To get rid of E,f in
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Ifll =<1

we define the (1-D) Stein operator

[Tpf](2) =

Then

E,T,f =0
subject to appropriate boundary conditions.
Proof:

B (T.f) [ | g U(ehp(@)] péeas
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Stein idea

To get rid of E,f in

sup [Eqf — E,f]
Ifll =<1

we define the (1-D) Stein operator

[Tpf](2) =

Then

E,T,f =0
subject to appropriate boundary conditions.
Proof:

B (T.f] [ iy 4s U(@)p(a)] piatie

[ |5 Clewia)] s
= [f(2)p

(2)] %% =0

10/52
Gorham and Mackey (NeurIPS 15), Oates, Girolami, Chopin (JRSS B 2016) /



Kernel Stein Discrepancy

Stein operator
1 d

Tl = oy g5 UEI(a)

Kernel Stein Discrepancy (KSD)

KSD,(Q)= sup E;T,9—-E,Tpg
llgllF<1
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Kernel Stein Discrepancy

Stein operator
1 d

Tl = oy g5 UEI(a)

Kernel Stein Discrepancy (KSD)

KSD,(Q) = sup E;Tp,9—-E, Fyg= sup E;T,g
llgll7<1 llgll7<1
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The witness function: Chicago Crime

it
AN

—

Model p = 10-component Gaus-
sian mixture.
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The witness function: Chicago Crime

Witness function g shows mis-
match




Simple expression using kernels

Re-write stein operator as:

1 d
p(z) dz
—f(:c)ilo (z) + if(o:)
N dz &P dz

[Tpf](2) =

(f(z)p(z))

Can we define “Stein features” in F7?
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Simple expression using kernels

Re-write stein operator as:

1 d
p(z) dz
—f(:c)ilo (z) + if(o:)
N dz &P dz

[Tpf](2) =

(f(z)p(z))

Can we define “Stein features” in F7?

(T,1)(2) = (5 g p(2) ) £(2) + 2 5(2)
= <f: f((I)) >]:

N’
stein features

where E;.,¢(z) = 0.
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The kernel trick for derivatives

Reproducing property for the derivative: for differentiable k(z, z'),

1@ = (1, 20(@)

F
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The kernel trick for derivatives

Reproducing property for the derivative: for differentiable k(z, z'),

1@ = (1, 20(@)

F

Using kernel derivative trick in ,

(T,5)(2) = (5 logp(2) ) f(2) + 5 f(2)
- <f, (55 0g5(2)) pla) + ;‘;so(:c)>
" F

= (f,¢(2)) £ -
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Kernel stein discrepancy: derivation

Closed-form expression for KSD:

KSD,(Q) = Hj\upﬂ Eznq ([Tp9] (2))

Chwialkowski, Strathmann, G., (ICML 2016) Liu, Lee, Jordan (ICML 2016)
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Kernel stein discrepancy: derivation

Closed-form expression for KSD:

KSD,(Q) = Hj\upﬂ Eznq ([Tp9] (2))

= 8’up Em~q<9,£z>}'
[l9ll=<1

Chwialkowski, Strathmann, G., (ICML 2016) Liu, Lee, Jordan (ICML 2016)
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Kernel stein discrepancy: derivation

Closed-form expression for KSD:

KSD,(Q) = Hj\upﬂ Eznq ([Tp9] (2))

= 8’up Em~q<9,£z>}'
[l9ll=<1

= sup (g,Equfz)]::HEqusz}-
(2] Jlgllz<1

Caution: (a) requires a condition for the Riesz theorem to hold,

d 2
E;q (dmlogp(x)> < 00.

Chwialkowski, Strathmann, G., (ICML 2016) Liu, Lee, Jordan (ICML 2016)
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Does the Riesz condition matter?

Consider the standard normal,

Then
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Does the Riesz condition matter?

Consider the standard normal,

Then

I logp(z) = —z.

If q is a Cauchy distribution, then the integral

Esng (di 10gp(:v)>2 = /oo z?q(z)dz

is undefined.

16/52



Kernel stein discrepancy: population expression
Test statistic when z € R?, given independent z, z' ~ g,
2
KSD%(Q) = HEqumef = Egzinghp(z, fL’I)
where

hy(z,2') = sp(z) 'sp(a)) k(z, &) + s,(z)  ka(, 2)
+s,(z") ki (z, ') + tr [kia(z, 2')]
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Kernel stein discrepancy: population expression
Test statistic when z € R?, given independent z,z’ ~ q,
2
KSD%(Q) = HEqumef = Egzinghp(z, fL’I)
where

hy(z,2') = sp(z) 'sp(a)) k(z, &) + s,(z)  ka(, 2)
+s,(z") ki (z, ') + tr [kia(z, 2')]

ms,(z) ERY = VZ(’S;)

u kll(ai b) = vzk($7 $I)|$:a,1":b € Rd’
ka(a,b) i= Vyk(z,2')|s—a0—p € RY,
m kio(a,d) = VoVuk(z,2')|pmap=p € RIX?

'3
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Kernel stein discrepancy: population expression

Test statistic when z € R?, given independent z, z' ~ g,
2
KSD%(Q) = HEquExH]: = Em,x’wth(m: l’l)

where

m ki(a,b) =V k(z,2")|zmq,z=b € RY,
k‘Q(a, b) - vm’k(m; $/)|$:a,z’:b € Rdy
B kia(a, b) =V Vpk(z,z')|z=0,=b € Raxd

Do not need to normalize p, or sample from it.
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Kernel stein discrepancy: population expression

Test statistic when z € R?, given independent z,z’ ~ q,
2
KSD%(Q) = HEquEmH]: = Em,x’wth(my ml)

where

m ki(a,b) =V k(z,2")|zmq,z=b € RY,
k‘Q(a, b) - vm’k(m; $/)|z:a,z’:b € Rdy
B kia(a, b) =V Vpk(z,z')|z=0,=b € Raxd

q(z)

If kernel is Co-universal and Q satisfies E;q HV <log P m) H2 < 00, then

KSD2(Q) =0iff P = Q.
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KSD for discrete-valued variables
Discrete domains: X = {1,..., L}? with L € N.
The population KSD (discrete):

KSD?(Q) = Eg,a/nghp(z, z')
where
hp(z,2") = s,(2) Tsp(2) k(z, 2') — s,(2) " ha(z, 2')
—s,(z)’ + t1 [ki2(z, 2')]

, A1 is cyclic backwards difference on z,

Ranganath et al. (NeurIPS 2016), Yang et al. (ICML 2018)
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Discrete domains: X = {1,..., L}? with L € N.
The population KSD (discrete):

KSD?(Q) = Eg,a/nghp(z, z')
where
hp(z,2") = s,(2) Tsp(2) k(z, 2') — s,(2) " ha(z, 2')
—s,(z)’ + t1 [ki2(z, 2')]

, A1 is cyclic backwards difference on z,

A discrete kernel: k(z,z') = exp (—dg(z, z')), where
dg(z,z') = D0 I(z4 # z)).

Ranganath et al. (NeurIPS 2016), Yang et al. (ICML 2018)
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KSD for discrete-valued variables

Discrete domains: X = {1,..., L}? with L € N.
The population KSD (discrete):

KSD?(Q) = Eg,a/nghp(z, z')
where
hp(z,2") = s,(2) Tsp(2) k(z, 2') — s,(2) " ha(z, 2')
—s,(z)’ + t1 [ki2(z, 2')]

, A1 is cyclic backwards difference on z,

A discrete kernel: k(z,z') = exp (—dg(z, z')), where
dg(z,z') = D0 I(z4 # z)).

2 o . _ .
KSD3(Q) =0iff P = Q if
B Gram matrix over all the configurations in X is strictly positive definite,
B P>0and Q > 0.

Ranganath et al. (NeurIPS 2016), Yang et al. (ICML 2018)
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Empirical statistic and asymptotics

The empirical statistic:

KSD? 2(Q) :

Zh (zi, z).

n—l 1#
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Empirical statistic and asymptotics

The empirical statistic:

KSDAQ) = ot Y ol )
Asymptotic distribution when P 7£ Q #j

Jn (@(Q) - KSDf,(Q)) 4 N(0,02) o = aVar,[Ea[hy(z, o))

Prob

A

0.51

0.0

KSDIQ)  KSDX(Q)
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Empirical statistic and asymptotics

The empirical statistic:

KSD2(Q nln 1) > (@i, 7).
z;ﬁj

Asymptotic distribution when P = Q:

nKSD(Q) ~ > AcZ}

Zy ~N(0,1) iid.

Test threshold via wild bootstrap.
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A naive linear time statistic

A running average:

n/2
LKS2 Zh 1’21 1:1"27, .

Asymptotically normal when P # @ and when P = Q.
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A naive linear time statistic

A running average:

n/2
LKS2 Zh 1’21 1:1"27,

Asymptotically normal when P # @ and when P = Q.

Can we do better? Wishlist:
1 still linear-time

2 adaptive (parameters automatically tuned)

3 more interpretable
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Linear-time, interpretable
Goodness-of-fit Test



Stein Witness Function at a Single Location

Idea:

(Stein) witness(v) = Ex.,[ Tyke(x) |—Ey,[ Tpko(y) |

22/52



Stein Witness Function at a Single Location

Idea:

(Stein) witness(v) = Exq[ T} /;\] —E, [T, /v\]

22/52



Stein Witness Function at a Single Location

Idea:

(Stein) witness(v) = Ey.q| /\ik/]—Epr[ /\‘k/]

22/52



Stein Witness Function at a Single Location

Idea:
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Stein Witness Function at a Single Location

Idea:

(Stein) witness(v) = Ex[ /\wX/]
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Stein Witness Function at a Single Location

Idea:

(Stein) witness(v) = Ex[ Tpk(x) |
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Stein Witness Function at a Single Location
Idea:

(Stein) witness(v) = Exq[ Tpko(x) ]

Proposal: Good v should have high

|witness(v)|

score(v) = standard deviation(v)’
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Stein Witness Function at a Single Location
Idea:

(Stein) witness(v) = Exq[ Tpko(x) ]

Proposal: Good v should have high

it
score(v) |witness(v)|

~ standard deviation(v)’

signal-to-noise
ratio

m witness(v) and standard deviation(v) can be estimated in linear
time.

22/52



Proposal: Model Criticism with the Stein Witness

o ©
°. -4
L0 0% oo
)
° L) o= @O
e Y0
o’ &0
3'
witness
score(v) = | (v)

~ standard deviation(v)’
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Proposal: Model Criticism with the Stein Witness

|witness(v)|

score(v) = standard deviation(v)
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Proposal: Model Criticism with the Stein Witness

score: 0.034

|witness(v)|

score(v) = standard deviation(v)
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Proposal: Model Criticism with the Stein Witness

score: (0.089

|witness(v)|

score(v) = standard deviation(v)
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Proposal: Model Criticism with the Stein Witness

score: 0.17

|witness(v)|

score(v) = standard deviation(v)
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Proposal: Model Criticism with the Stein Witness

score: .26

|witness(v)|

score(v) = standard deviation(v)
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Proposal: Model Criticism with the Stein Witness

score: 0.33

|witness(v)|

score(v) = standard deviation(v)
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Proposal: Model Criticism with the Stein Witness

score: 0.37

|witness(v)|

score(v) = standard deviation(v)
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Proposal: Model Criticism with the Stein Witness

score: 0.37

|witness(v)|

score(v) = standard deviation(v)
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Proposal: Model Criticism with the Stein Witness

score: (.45

|witness(v)|

score(v) = standard deviation(v)
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Proposal: Model Criticism with the Stein Witness

score: (.44

|witness(v)|

score(v) = standard deviation(v)

23/52



Proposal: Model Criticism with the Stein Witness

score: 0.39

|witness(v)|

score(v) = standard deviation(v)
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Proposal: Model Criticism with the Stein Witness

score: (.31

|witness(v)|

score(v) = standard deviation(v)
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Proposal: Model Criticism with the Stein Witness

score: (.32

|witness(v)|

score(v) = standard deviation(v)
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Proposal: Model Criticism with the Stein Witness

score: (.32

|witness(v)|

score(v) = standard deviation(v)
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Proposal: Model Criticism with the Stein Witness

score: 0.37

|witness(v)|

score(v) = standard deviation(v)
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Proposal: Model Criticism with the Stein Witness

score: 0.48

|witness(v)|

score(v) = standard deviation(v)
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Proposal: Model Criticism with the Stein Witness

score: 0.49

|witness(v)|

score(v) = standard deviation(v)
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Proposal: Model Criticism with the Stein Witness

score: 0.47

|witness(v)|

score(v) = standard deviation(v)
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Proposal: Model Criticism with the Stein Witness

score: (.44

|witness(v)|

score(v) = standard deviation(v)’
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F'SSD is a Discrepancy Measure

Theorem 1.

Let V ={vi,...,v;} C R? be drawn i.i.d. from a distribution n which
has a density. Let X be a connected open set in R%. Assume

1 (Nice RKHS) Kernel k: X x X — R is Cy-unwversal, and real
analytic.

2 (Riesz condition holds) ||g||% < oo.

3 (Finite Fisher divergence) Ex.4||Vx log %W <00 .

4 (vanishing boundary condition) lim|x||-e0 P(X)g(x) = 0.
Then, n-almost surely

FSSD? = 0 if and only if p = q, for any J > 1. I

2
m Gaussian kernel k(x,Vv) = exp (—”"20‘;'2) works.
k

m In practice, J =1or J =5.
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More on FSSD?

m When d > 1, the Stein witness g has d outputs.

| Deﬁne 1
X, V) = ——V X X,V c Rd.

m d-output Stein witness

g(v) = EXNqE(X, V) € Rd.

m General form:

1 J
FSSD? = — 3" [lg(v))I,
=1

e

where unbiased estimator FSSD?2 computable in O(d?Jn).

25/52



Asymptotic Distributions of FSSD?

m 7(x) := vertically stack £(x,v1),...€(x,vs) € R¥. Feature vector of
X.

m Mean feature: p:= Exq[T(x)].
= Equivalently, FSSD? = || u/|2 (mean feature).
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Asymptotic Distributions of FSSD?

m 7(x) := vertically stack £(x,v1),...€(x,vs) € R¥. Feature vector of
X.

m Mean feature: p:= Exq[T(x)].
= Equivalently, FSSD? = || u/|2 (mean feature).
B 3, = covxr[T(X)] € R¥X4 for r € {p, ¢}
Proposition 1 (Asymptotic distributions).
Let Zy,..., 245 G N(0,1), and {w;}?’, be the eigenvalues of T,.
1 Under Hy: p = q, asymptotically nFSsD? 4 Zfil(Zf — Dw;.

Easy to simulate to get p-value.
Stmulation cost independent of n.
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Asymptotic Distributions of FSSD?

m 7(x) := vertically stack £(x,v1),...€(x,vs) € R¥. Feature vector of
X.

m Mean feature: p:= Exq[T(x)].
= Equivalently, FSSD? = || u/|2 (mean feature).
B 3, = covxr[T(X)] € R¥X4 for r € {p, ¢}

Proposition 1 (Asymptotic distributions).
ii.d.

Let Zy,...,Z4 "~" N(0,1), and {w;}¥/, be the eigenvalues of .
1 Under Hy: p = q, asymptotically nFSsD? 4 Zfil(Zf — Dw;.

Easy to simulate to get p-value.
Stmulation cost independent of n.

2 Under Hy : p # q, we have \/ﬁ(FgéB2 — FSSD?) A N(0,0%,)
where 0% = 4p' Dopu. Implies P(reject Ho) — 1 as n — oo.
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Asymptotic Distributions of FSSD?

m 7(x) := vertically stack £(x,v1),...€(x,vs) € R¥. Feature vector of
X.

m Mean feature: p:= Exq[T(x)].
= Equivalently, FSSD? = || u/|2 (mean feature).
B 3, = covxr[T(X)] € R¥X4 for r € {p, ¢}
Proposition 1 (Asymptotic distributions).
Let Zy,..., 245 G N(0,1), and {w;}?’, be the eigenvalues of T,.

1 Under Hy : p = q, asymptotically nFSSD?2 4 Zfil(Zf — Dw;.
Easy to simulate to get p-value.
Stmulation cost independent of n.

2 Under Hy : p # q, we have \/ﬁ(FgéB2 — FSSD?) A N(0,0%,)
where 0% = 4p' Dopu. Implies P(reject Ho) — 1 as n — oo.
But, how to estimate 3,7 No sample from p!

m Theorem: Using 33, (computed with {x;}? , ~ q) still leads to 26/52
asvmptotically consistent test.



Parameter Tuning

m Jointly optimise locations V' = {vy,..., v} for more test power
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Parameter Tuning

m Jointly optimise locations V' = {vy,..., v} for more test power

Proposition 2 (Approx. power for large n).

Under Hy, for large n and fized threshold r, the test power
P(reject Hy | Hy true)

S FSSD?
Py (nFSSD2 > r) 1 —
Hl( ) (\/>O_Hl \/> Hl >

where ® = CDF of N(0,1).
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Parameter Tuning

m Jointly optimise locations V' = {vy,..., v} for more test power

Proposition 2 (Approx. power for large n).

Under Hy, for large n and fized threshold r, the test power
P(reject Hy | Hy true)

S FSSD?
Py, (nFSSD?2 > r)~ 1 — ,
Hl( ) (\/>O_Hl \/> Hl >

where ® = CDF of N(0,1).

m For large n, second term dominates. So

——

FSSD?

arg max (power) = arg max ——
V,o? Ve OH;

m Split {x;} ; into independent training/test sets. Optimize V" on tr.
Test on te.
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Interpretable Features: Chicago Crime

X -:.: Model P = 2-componen‘t GauS'
sian mixture.
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Interpretable Features: Chicago Crime

Score surface
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Interpretable Features: Chicago Crime

% = optimized v.
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Interpretable Features: Chicago Crime

% = optimized v.
No robbery in Lake Michigan.
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Interpretable Features: Chicago Crime

Model p = 10-component Gaus-
sian mixture.

it
AN

P
o A
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Interpretable Features: Chicago Crime

Capture the right tail better.




Interpretable Features: Chicago Crime

Still, does not capture the left
tail.




Interpretable Features: Chicago Crime

Still, does not capture the left
tail.

Learned test locations are

interpretable.
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Experiment: Restricted Boltzmann Machine (RBM)
40 hidden units/_N

50 visible units

Model p =
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40 hidden unitsq Perturb one weight

50 visible units

Model p =
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Experiment: Restricted Boltzmann Machine (RBM)

40 hidden units/'N Perturb one weight

50 visible units

Model p
4 075
O
i
=
g| £0.50
ol <
=l B 0.95 MMD test
% : —(quadratic-time)
g/ [Gretton et al., 2012]
0.00

2000 4000
Sample size n
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Experiment: Restricted Boltzmann Machine (RBM)

40 hidden units/'N Perturb one weight

50 visible units

Model p
A @0'75 Proposed

g K-/ (linear-time)

8| £0.50]

B <

=l B 0.95 MMD test
% : —(quadratic-time)
g/ [Gretton et al., 2012]

0.00

2000 4000
Sample size n

29/52



Model Criticism

"All models are wrong."

G. Box (1976)
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Relative model comparison

m Have: two candidate models P and @, and samples {z;}? ; from
reference distribution R
m Goal: which of P and @ is better?

Samples from GAN, Goodfellow Samples from LSGAN,
et al. (2014) Mao et al. (2017)

Which model is better?
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Most interesting models have latent structure

Graphical model representation of hierarchical LDA with a nested CRP
prior, Blei et al. (2003)

&
Onl=0

<

A |

b

=5 3
o | | Q.
} I !
=@
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Relative goodness-of-fit testing

m Two generative models P and @, data {z;}}"; ~ R.
m Neither model gives a perfect fit ( P # R and Q # R).
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Joint asymptotic normality

Joint asymptotic normality when P # R and @ # R

ﬁ[@(R)—KSDi(R)]_d)NQO] [ o3, %hqb
| KSD?(R) — KSD2(R) | 0 |"| onn, F,

o
KSD(R)

A

KSD?(R) ’

KSDR)  KSD(R)
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Joint asymptotic normality

Joint asymptotic normality when P # R and @Q # R

Aa(|0).] o o
0 Ohyhy Uhq

KSD?(R) — KSD2(R)

g

KSD?(R) — KSD?(R)

n

Difference in statistics is asymptotically normal:
Jn [KSD?,(R) — KSD(R) — (KSD}(R) - KSD%(R))}
d
- N (0, 0';21p + a%q — 2ahphq)

—> a statistical test with KSDZ%(R) - KSD%(R) <0is
straightforward.
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Latent variable models

Can we compare latent variable
models with KSD?

p(a) = [ plal2)p(2)dz
a(v) = [ alylw)p(w)du

1

"

&\
£

\
&

Recall multi-dimensional Stein operator:

17,](2) = <vp’(’g),f<x)> (9, £(2)).
~———

Expression requires marginal p(z), often intractable. ..
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Latent variable models

Can we compare latent variable
models with KSD?

p(a) = [ plal2)p(2)dz
a(v) = [ alylw)p(w)du

1

"

&\
£

\
&

Recall multi-dimensional Stein operator:

17,](2) = <vp’(’g),f<x)> (9, £(2)).
~———

Expression requires marginal p(z), often intractable. ..

...but sampling can be straightforward!
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Monte Carlo approximation

Approximate the integral using {zj};n:l ~ p(2):

p(a) = [ p(zl2)p(z)dz
1 m
R pm(T) = mjzlp(w\zj)

Estimate KSDs with approxiomate densities:

- - ~ QT2 anZ
KSD2(R) — KSD?(R) ~ KSD?, (R) — KSD? (R)
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Monte Carlo approximation

Approximate the integral using {zj};n:l ~ p(2):

p(a) = [ p(zl2)p(z)dz

1 m
~ pm(z) = — ) p(zl7)
m “
71=1
Estimate KSDs with approxiomate densities:

- - ~ QT2 anZ
KSD2(R) — KSD?(R) ~ KSD?, (R) — KSD? (R)

Recall
Jn [KSD%(R) —~ KSD?(R) — (KSD3(R) — KSD@(R))}
i> N (0’0.}2Lp + 0';2Lq — 2Uhphq)

— if m is large, can we simply substitute p,, and g, ?
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Simple proof of concept

FAN2( P ~ RAD2. : .
Check KSD7(R) ~ KSDj (R) with a toy model:
m Model: Beta-Binomial BetaBinom(a, §)

N
T

p(z|z) = ( )zm(l —2)"?%, p(z) = Beta(a, b)

Latent z € (0, 1): success probability for binomial likelihood
Marginal p(z): tractable (given by the beta function)
m Generate \/ﬁKSD?)(R) and \/ﬁKSD%m(R)
— what do their distribution look like?
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Effect of sampling the latents (Beta-binomial)

Prob

0.5

0.0

A

,\/EKSD;

>

v/n U-stat
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Effect of sampling the latents (Beta-binomial)

Prob
A

0.5

VnKSD?

V/nKsD>
\

0.0 v/n U-stat
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Effect of sampling the latents (Beta-binomial)

Prob
A

0.5

V/nKSD;

VnKSsD?
\

0.0 v/n U-stat
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Why this happens

P(KSD? )

* 2
KSD2

KSDf,m(R) is normally distributed around KSD?,(R)
(approximation error)
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Why this happens

P(KSD? )
x 2 ! 2
KSD?  KSD?_

Approximation p,, gives a random draw KSD?,W(R)
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Why this happens

P(KSD?, |pn)

P(KSD?,)

x 2 ! 2
KSD? KSD?

— . . )
KSD; (R) is normally distributed around KSD; (R)
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Why this happens

Distribution of KSng(R) is
averaged over random draws of KSD?,W(R)
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Why this happens

Distribution of KSDZZ)m(R) is
averaged over random draws of KSD?,W(R)
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Why this happens

KSDf,m(R) has a higher variance than KSD%(R)
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Correction for this effect

m BetaBinomial models with p = g, vs ¢
—numerical vs closed-form marginalisation.

m With correction for increased KSng(R) variance,
null accepted w.p. 1 —a.

2 BetaBinom(5 + a,1 + b)
©
c _—=0 mP=gn
S o= :
e~ e m R = BetaBinom(a, b)
o) /’/ m k(z,z') = exp(—I(z #
0057 _-m=- . /
’ fremmmm=== AT S m—— ® | 513))
100 200 300 m o=0.05

Sample size n

---- KSD without corrected threshold (m=100) -=-= LKSD (KSD for Latent Models) m=100
-=- KSD m=1000 -—=- LKSD m=1000
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Correction for this effect

m BetaBinomial models with p = g, vs ¢
—numerical vs closed-form mar/giﬁlisation.

m With correction for increased KSng(R) variance,
null accepted w.p. 1 —a.

0.50 m Naive Rel-KSD test has
% incorrect type-1 error
; __-© m Naive KSD: p = gn# ¢
-f—3 e = rejection rate — 1 as
.g /,/” n — 00
00577 e--mT o

LS S EEELLL L 2
100 200 300

Sample size n

---- KSD without corrected threshold (m=100) -=-= LKSD (KSD for Latent Models) m=100
-=- KSD m=1000 -—=- LKSD m=1000
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Asymptotics for approximate KSD

We have asymptotic normality for KSDf,m(R),

Vm(KSD? (R) — KSD3(R)) 5 N(0,72)

The fine print:

m inf; p(z) >0

® sup, dz(f)

m (Uniform CLT) Likelihoods {p(z|-)|z € X} and derivatives
{£ p(z|')|z € X} are p(z) - Donsker class

< 0
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Asymptotic distribution for relative KSD test

Asymptotic distribution of approximate KSD estimate
(n,m) = oo, = — 7 €[0,00):

Jn K@m(m - K/SEW(R)) ~ (KSD2(R) - KSDﬁ(R))] 2 N(0, ?)

where

mCc= qu\/l +7(7pe/pg)?

= pg = hi)n- m - Var [EI:I/h’ m(zi 513/) - EIymthm($7 "El)]
m—0o0
m 0}, = lim n- Var {KSD?,(R) — KSD@(R)}
[o.e]
Fine print:
m hy(z,z') —

hqe(z, ') has a finite third moment
m Additional technical conditions
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Relative test, further detail

Theorem (Asymptotic distribution of random kernel
U-statistic).
m Let

Un,m : a U-statistic defined by a random U-statistic kernel Hy,
U, : a U-statistic defined by a fized U-statistic kernel h

m Assume that

0% — 07 in probability

v3(Hpy) — v3(h) < oo n probability

where v3(Hp) = Eg o |Hp(z,2') — Ep o Hn(, :c’)|

Y = \/E(En[Un,m|Hm] - En[Un]) _d> Y

3

m Then, with n/m — r € [0, 00),

lim Pr[v/n(Unm —EnUp) < t| =By l@ <

n,Mm— 00

=)

Oh
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Experiment: sensitivity to model difference
m Data R = Sigmoid Belief Network SBN( W):
R(z|z) = sigmoid(Wz), R(z) = N(0,I), W € R3*10

m Models: P = SBN(W +¢[1,0,...,0]), @ =SBN(W +[1,0,...,0])
m Only the first column of weight W is perturbed by e
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Experiment: sensitivity to model difference

m Data R = Sigmoid Belief Network SBN(W):
R(z|z) = sigmoid(Wz), R(z) = N(0,I), W € R3x10

m Models: P = SBN(W +¢[1,0,...,0]), @ =SBN(W +[1,0,...,0])
m Only the first column of weight W is perturbed by €

1.00

0.50

Rejection rate

0.05

—

N,

4’/,%
M.gf’/
e ey

1 2 3 4
Perturbation €

MMD ---= LKSD (KSD for Latent Models) m=100

m Two scenarios:

Null: e<1

(a =0.05)
Alternative: € > 1
(the higher the better)

m Hamming kernel

m Sample size n = 300

-=- LKSD m=1000
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Experiment: sensitivity to model difference

m Data R = Sigmoid Belief Network SBN(W):
R(z|z) = sigmoid(Wz), R(z) = N(0,I), W € R3x10

m Models: P = SBN(W +¢[1,0,...,0]), @ =SBN(W +[1,0,...,0])
m Only the first column of weight W is perturbed by €

1.00

0.50

Rejection rate

0.05

—

A
$8=88-27,
o= @

N,

”

>4
-

1

MMD

2 3 4
Perturbation €

---= LKSD (KSD for Latent Models) m=100

KSD has higher power
(e >1)

m Sample-wise difference in
models = subtle
(MMD fails)

m Model’s information is
better utilised

-=- LKSD m=1000
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Papers referenced

A Linear-Time Kernel Goodness-of-Fit Test.
Wittawat Jitkrittum, Wenkai Xu, Zoltan Szabd, Kenji Fukumizu,
Arthur Gretton

https://arxiv.org/abs/1705.07673

m Python code: https://github.com/wittawatj/kernel-gof

A Kernel Stein Test for Comparing Latent Variable Models
Heishiro Kanagawa, Wittawat Jitkrittum, Lester Mackey,
Kenji Fukumizu, Arthur Gretton
https://arxiv.org/abs/1907.00586
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https://github.com/wittawatj/kernel-gof
https://arxiv.org/abs/1907.00586

Questions?
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Efficiency comparison,
linear-time tests
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Bahadur Slope and Bahadur Efficiency

m Bahadur slope =~ rate of p-value — 0 under H; as n — 0.
m Measure a test’s sensitivity to the departure from Hj.
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Bahadur Slope and Bahadur Efficiency

m Bahadur slope =~ rate of p-value — 0 under H; as n — 0.
m Measure a test’s sensitivity to the departure from Hj.

Ho 19:0,
Hl 9750

m Typically pval,, &~ exp (—%c(ﬁ)n) where c(6) > 0 under Hj, and
c(0) = 0. [7].

m c(6) higher — more sensitive. Good.

1.0

—— p-value of T,(Ll)

p-value of T,EQ)

p-value
(=)
t

0.0

0 50 100
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Bahadur Slope and Bahadur Efficiency

p-value

m Bahadur slope =~ rate of p-value — 0 under H; as n — 0.
m Measure a test’s sensitivity to the departure from Hj.

Ho 19:0,
Hl 9750

m Typically pval,, &~ exp (—%c(ﬁ)n) where c(6) > 0 under Hj, and
c(0) = 0. [7].
m c(6) higher — more sensitive. Good.

1.0

—— p-value of T,(Ll)

p-value of T,SQ)

Bahadur slope

c(8) := —2 plim log (1 - F(Tn)),

n— 0o n

where F'(t) = CDF of T, under Hp.

m Bahadur efficiency = ratio of slopes
of two tests. 49/52



Bahadur Slopes of FSSD and LKS

Theorem 2.

The Bahadur slope of nFSSD? s

c(FSSD) . — FSSD?/wy,

where wy 15 the mazimum eigenvalue of Ly = covap[T(x)]
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Bahadur Slopes of FSSD and LKS

Theorem 2.

The Bahadur slope of nFSSD? s
c(FSSD) . — FSSD? /uws,
where w1 is the mazimum eigenvalue of Ly := covyp[T(x)].

Theorem 3.
TheA Bahadur slope of the linear-time kernel Stein (LKS) statistic
VnS? s
(LKS) _ }[thp(x, X')]z
2 E, [hg(x, x’)] ’
where hy, 1s the U-statistic kernel of the KSD statistic.

@

m Let’s consider a specific case ...
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Gaussian Mean Shift Problem

Consider p = N(0,1) and g = N (pg, 1).
m Assume J = 1 feature for nFSSD2. Gaussian kernel (bandwidth =
o})
2 (v w)z
2(02+2)%p 2e7it A
,§+1)(ak+4<7,c (v +5)02+2)

C(FSSD)(

2 O
/-anv)a-k) = 2
Vo t1lo
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Gaussian Mean Shift Problem

Consider p = N(0,1) and g = N (pg, 1).
m Assume J = 1 feature for nFSSD2. Gaussian kernel (bandwidth =
o})
2 (v w)z
2(02+2)%p 2e7it A
,§+1)(ak+4<7,c (v +5)02+2)

C(FSSD)(

2 O
/-anv)a-k) = 2
Vo t1lo

m For LKS, Gaussian kernel (bandwidth = &2).

2(524—2)(58%—8564—21&44—2052%—12)

(LKS)(Nq; ) =
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Gaussian Mean Shift Problem

Theorem 4 (FSSD is at least two times more efficient).
m Fiz gl =1 for nFSSD2.

Then, Vg, # 0, Jv € R, Vk? > 0, we have Bahadur efficiency

FSSD)(

,U'q; U; UI%)
oK) (14, K2)

(
¢ > 2.
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