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A motivation: comparing two samples

m Given: Samples from unknown distributions P and Q.
m Goal: do P and @ differ?
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Training implicit generative models

m Have: One collection of samples X from unknown distribution P.
m Goal: generate samples @ that look like P

LSUN bedroom samples P Generated @, MMD GAN
Using a critic D(P, Q) to train a GAN
(Binkowski, Sutherland, Arbel, G., ICLR 2018), - 3/62

(Arbel. Sutherland. Binkowski. G.. NeurIPS 2018)



Outline

m Measures of distance between distributions
The MMD: an integral probability metric
f-divergences vs integral probability metrics

m Gradient penalties for GAN critics
The optimisation viewpoint
The regularisation viewpoint

m Theory
Relation of MMD critic and Wasserstein
Gradient bias

m Evaluating GAN performance, experiments
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The Maximum Mean Discrepancy:
An Integral Probability Metric



Integral probability metrics

Are P and @ different?
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Integral probability metrics

Are P and @ different?
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Integral probability metrics

Integral probability metric:

Find a "well behaved function" f(z) to maximize

Epf(X) - Eqf(Y)

Smooth function
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Integral probability metric:

Find a "well behaved function" f(z) to maximize
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Smooth function
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Integral probability metrics

What if the function is not well behaved?

Epf(X) - Eqf(Y)

Bounded continuous function

0.5¢
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Integral probability metrics

What if the function is not well behaved?
Epf(X)—Eof(Y)

Bounded continuous function
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The MMD: an integral probability metric

Maximum mean discrepancy: smooth function for P vs @

MMD(P, Q; F) := \|§1|\1<pl [Epf(X) —Eqf(Y)]
(F = unit b;ll in RKHS F)
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The MMD: an integral probability metric

Maximum mean discrepancy: smooth function for P vs @

MMD(P, Q; F) := H?ngl [Epf(X) —Eqf(

(F = unit ball in RKHS F)

Yl

Functions are linear combinations of features:

bt
fo
f(@) = (f oz ]:—ZféSOE =1 /3

2
IfIF =2, /% <1




The MMD: an integral probability metric

Maximum mean discrepancy: smooth function for P vs @

MMD(P, Q; F) := H?ngl [Epf(X) —Eqf(Y)]

(F = unit ball in RKHS F)

For characteristic RKHS F, MMD(P,Q; F)=0iff P = Q

Other choices for witness function class:

m Bounded continuous [pudiey, 2002]
m Bounded varation 1 (Kolmogorov metric) puiter, 1997)
m Lipschitz (Wasserstein distances) [pudiey, 2002]
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The MMD: an integral probability metric

Maximum mean discrepancy: smooth function for P vs @

MMD(P, Q; F) := chhlgl [Epf(X) —Eqf(Y)]
(F = unit b;ll in RKHS F)

Expectations of functions are linear combinations
of expected features

Ep(f(X)) =/ Epo(X))r = (f,1P)x

(always true if kernel is bounded)
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Integral prob. metric vs feature mean difference

The MMD:

Smooth function

MMD(P, Q; F)

=sup [Epf(X) — Eqf(Y)]
feF
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Integral prob. metric vs feature mean difference

The MMD:
use

MMD(P, Q; F)

=sup [Epf(X) - Eqf(Y)]
feF

=sup(f,up — 1o) £
fer

Epf(X) = (upr,f)F
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Integral prob. metric vs feature mean difference

The MMD:

MMD(P, Q; F)

=sup [Epf(X) —Egf(Y)]
fer

=sup (f, up — 1Q) £
fer
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Integral prob. metric vs feature mean difference

The MMD: Q
\ 2
2\ Q
MMD(P, Q; F) D**“b :
=sup[Epf(X) - Eqf(Y)] f
fer

=sup (f, up — 1Q) £
fer
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Integral prob. metric vs feature mean difference

The MMD:
Q
N

) 9

MMD(P, Q; F) DO\‘ >

=sup [Epf(X) —Egf(Y)]

fer f*

= sup (fimp — Q)£

« . _HPTHQ
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Integral prob. metric vs feature mean difference

The MMD:

MMD(P, Q; F)

=sup [Epf(X) — Eqf(Y)]
feF

=sup(f, kP — 1Q) £
feF

= llup — poll

IPM view equivalent to feature mean
difference (kernel case only)
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Construction of MMD witness

Construction of empirical witness function (proof: next slide!)

Observe X = {xy,...,X,} ~ P

Yt~ @
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Construction of MMD witness

Construction of empirical witness function (proof: next slide!)
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Construction of MMD witness

Construction of empirical witness function (proof: next slide!)
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Construction of MMD witness

Construction of empirical witness function (proof: next slide!)

witness(v)
—————
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Derivation of empirical witness function

Recall the witness function expression

ffocpp —pg
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Derivation of empirical witness function

Recall the witness function expression

ffocpp —pg

The empirical feature mean for P
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n
> ()

15/62



Derivation of empirical witness function
Recall the witness function expression

ffocpp —pg

The empirical feature mean for P

§\l—\

n
> ()

The empirical witness function at v

()=o) #
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Derivation of empirical witness function
Recall the witness function expression

ffocpp —pg

The empirical feature mean for P
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Derivation of empirical witness function
Recall the witness function expression

ffocpp —pg

The empirical feature mean for P

S\l—\
||M:
3:3

1=1 1=1

Don’t need explicit feature coefficients f* := [ 5
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Interlude: divergence measures
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Divergences
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Divergences

tesr! prob. Metrig,,

Dy (P,Q)
= sup |[Ex.pg(X) —Ey.qg(Y)|
gEH
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Divergences

tesr! prob. Metrig,,

wasserstein

Dy (P,Q)
= sup |[Ex.pg(X) —Ey.qg(Y)|
gEH
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Divergences

sesr prob. Metrig,

wasserstein

Dy (P,Q)
= sup |[Ex.pg(X) —Ey.qg(Y)|
gEH
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Divergences

¢tesra| pI'Ob. met’.'-q’

wasserstein

Dy (P,Q)
= sup |[Ex.pg(X) —Ey.qg(Y)|
gEH

Sriperumbudur, Fukumizu, G, Schoelkopf, Lanckriet (2012)
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Training Generative Adversarial
Networks: Critics and Gradient
Penalties



Visual notation: GAN setting
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Visual notation: GAN setting

feed back

?iif

‘1 ‘,

£ =
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What I won’t cover: the generator

Stride 2

Project and reshape

CONV 2

CONV 3 64

CONV 4 .
G(2)

Radford, Metz, Chintala, ICLR 2016

24/62



F-divergence as critic

P~

An unhelpful critic? Jensen-Shannon,
Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017]

Dys(P, Q) = $Dxr (10, %) + 3 Dgy (q, 1‘%”)

Djs(P, Q) =log2
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F-divergence as critic

- An unhelpful critic? Jensen-Shannon,
Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017]

Dys(P, Q) = $Dxr (10, %) + 3 Dgy (q, 1‘%”)

What is done in practice?
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F-divergence as critic

An unhelpful critic? Jensen-Shannon,
Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017]

D;s(P, Q) = 3Dxr (P, %) + 3 Dgy (q, 1’%")

What is done in practice?
m Use a variational approximation to the critic, alternate generator and

critic training (we will return to this!) Goodfellow et al. [NeurIPS 2014,
Nowozin et al. [NeurIPS 2016]
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F-divergence as critic

- An unhelpful critic? Jensen-Shannon,
Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017]

Dys(P, Q) = $Dxr (10, %) + 3 Dgy (q, 1’7*’1>

What is done in practice?

m Use a variational approximation to the critic, alternate generator and
critic training (we will return to this!) Goodfellow et al. [NeurIPS 2014,

Nowozin et al. [NeurIPS 2016]
m Add “instance noise” to the reference and generator observations
Sonderby et al. [arXiv 2016], Arjovsky and Bottou [ICLR 2017]
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F-divergence as critic

An unhelpful critic? Jensen-Shannon,
Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017]

D;s(P, Q) = 3Dxr (P, %) + 3 Dgy (q, 1’%")

What is done in practice?

m Use a variational approximation to the critic, alternate generator and
critic training (we will return to this!) Goodfellow et al. [NeurIPS 2014,
Nowozin et al. [NeurIPS 2016]

m Add “instance noise” to the reference and generator observations
Sonderby et al. [arXiv 2016], Arjovsky and Bottou [ICLR 2017]

e ...or (approx. equivalently) a data-dependent gradient penalty for the
variational critic (we will return to this!) Roth et al [NeurIPS 2017],
Nagarajan and Kolter [NeurIPS 2017], Mescheder et al. [ICML 2018]
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Wasserstein distance as critic

. A helpful critic witness:
@// Wi(P, Q) = sups),<1 Brf(X) — Bof(Y).
1]z := supyy 1F(2) — F(¥)| /llz — 9l

W1=0.88




Wasserstein distance as critic

. A helpful critic witness:
@/ Wi(P, Q) = sups),<1 Brf(X) — Bof(Y).
1]z := supyy 1F(2) — F(¥)| /llz — 9l

W1=0.65

° oo ®0
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MMD as critic

> A helpful critic witness:
MMD(P, Q) = supy.<1 Brf(X) — Eqf(Y).
MMD=1.8

Real
points
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MMD as critic

pea A helpful critic witness:
MMD(P, Q) = sup|s.<1 Erf(X) — Bqf(Y)
MMD=1.1

o 00 \ ¥ W
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MMD as critic

An unhelpful critic witness:
MMD(P, Q) with a narrow kernel.

MMD=0.64




MMD as critic

An unhelpful critic witness:
MMD(P, Q) with a narrow kernel.

MMD=0.64

o 0@ \ ¥ W
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MMD for GAN critic

Can you use MMD as a critic to train GANs?
From ICML 2015:

Generative Moment Matching Networks

Yujia Li! YUJIALI@CS.TORONTO.EDU
Kevin Swersky' KSWERSKY @CS.TORONTO.EDU
Richard Zemel'? ZEMEL@CS.TORONTO.EDU

! Department of Computer Science, University of Toronto, Toronto, ON, CANADA
2Canadian Institute for Advanced Research, Toronto, ON, CANADA

From UAI 2015:

Training generative neural networks via Maximum Mean Discrepancy

optimization
Gintare Karolina Dziugaite Daniel M. Roy Zoubin Ghahramani
University of Cambridge University of Toronto University of Cambridge
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MMD for GAN critic

Can you use MMD as a critic to train GANs?

7|02/

HEFICFEIE
MAnRIEE

Need better image features.
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CNN features for an MMD witness

m Add convolutional features!
m The critic (teacher) also needs to be trained.

o B @ X M
e =Rt

Rz, y) = hy " (2)hy(v) Rz, y) = £(hy(2), hy(y))

where hy(z) is a CNN map: where hy(z) is a CNN map,
k ise.g. an exponentiated quadratic
m Wasserstein GAN Arjovsky kernel
et al. [ICML 2017] MMD Li et al., [NeurIPS 2017
B WGAN-GP Gulrajani et al. Cramer Bellemare et al. [2017]
[NeurIPS 2017] Coulomb Unterthiner et al., [[CLR 2018

Demystifying MMD GANs Binkowski,
Sutherland, Arbel, G., [ICLR 2018] /62



CNN features for an MMD witness

m Add convolutional features!
m The critic (teacher) also needs to be trained.

= WY
£ 22

Rz, y) = hy " (2)hy(y) Rz, y) = £(hy(2), hy(y))
where hy(z) is a CNN map: where hy(z) is a CNN map,
k is e.g. an exponentiated quadratic

m Wasserstein GAN Arjovsky kernel
et al. [ICML 2017] MMD Li et al., [NeurIPS 2017]
m WGAN-GP Gulrajani et al. Cramer Bellemare et al. [2017]
[NeurIPS 2017] Coulomb Unterthiner et al., [[CLR 2018]

Demystifying MMD GANSs Bink28/62,
Sutherland, Arbel, G., [ICLR 2018]




Gradient penalty:
the optimisation viewpoint



WGAN-GP

Wasserstein GAN Arjovsky et al. [ICML 2017]
WGAN-GP Gulrajani et al. [NeurIPS 2017]

Gradient close to 1 here

Real
points
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WGAN-GP

Wasserstein GAN Arjovsky et al. [ICML 2017
WGAN-GP Gulrajani et al. [NeurIPS 2017]

L Given a generator Gy with parameters 8 to be trained.
Samples Y ~ Gyp(Z) where Z ~ R

5O
&>
| Given critic features hy with parameters ¢ to be trained. f,

a linear function, &(z,y) = hy ' (z)hy(y).
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WGAN-GP

Wasserstein GAN Arjovsky et al. [ICML 2017]
WGAN-GP Gulrajani et al. [NeurIPS 2017]

Given a generator Gy with parameters 8 to be trained.
Samples Y ~ Gg(Z) where Z ~ R

rz‘&'? 53
] Given critic features hy with parameters 9 to be trained. f,

a linear function, &(z,y) = hy ' (z)hy(y).
WGAN-GP gradient penalty:

m{Z‘XEXNPf«p(X) —Ez rfy(Ge(Z)) + AEx <HV3~(f¢(’)?)H - 1>2

where

X =7z + (1 - 7)Ge(%)
¥~ U0,1]) z € {z}l, 7 € {z},
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DiracGAN toy example

From ICML 2018:

Which Training Methods for GANs do actually Converge?

Lars Mescheder ! Andreas Geiger !> Sebastian Nowozin *

Gives an optimisation viewpoint on gradient regularisation.
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DiracGAN toy example

D(P, Q;v:) = Eqfy.(Y) — Epfy.(X)
= Y6,

Mescheder et al. [[CML 2018] 33/62



DiracGAN toy example

Gradient descent on generator:

%D(P, Q;’lpt) = %Tﬁt@t =1
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DiracGAN toy example

Gradient descent on generator:

%D(P, Q;’lpt) = %Tﬁt@t =1

0
0111 =106¢ — ’Y@D(P: Q%) = 0 — vy
34/62

for stepsize v



DiracGAN toy example

Gradient descent on generator:

%D(P, Q;’lpt) = %Tﬁt@t =1

i D(P, Q;v%t) = 0t — s

Oiy1=6: — T30
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DiracGAN toy example

Gradient descent on generator:

%D(P, Q;’lpt) = %Tﬁt@t =1

i D(P, Q;v%t) = 0t — s

Oiy1=6: — T30
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DiracGAN toy example

Gradient ascent on critic:

%D(P: Q;¥e) = 011

35,62



DiracGAN toy example

Gradient ascent on critic:

%D(P, Q;¥e) = 011

Yip1 =Pt + C%D(P: Q;Yt) = Y + (Ot11

for stepsize (

35,62



DiracGAN toy example

Gradient ascent on critic:

%D(P, Q;¥e) = 011

Yip1 =Pt + C%D(P: Q;Yt) = Y + (Ot11

35,62



DiracGAN toy example

Gradient ascent on critic:

fl/Jt+1 (iL') = d}t—i-la

%D(P, Q;¥e) = 011

Yip1 =Pt + C%D(P: Q;Yt) = Y + (Ot11

35,62



DiracGAN toy example

Idealised continuous system (infinitely small learning rate)

0: — _V¢D(P1 Q: 1/})

Y VeD(P, Q;9)
Every integral curve (¢(t),0(t)) of the gradient vector field satisfies
P2(¢t) + 6%(t) = c for all ¢ € [0, 00).

Mescheder et al. [ICML 2018, Lemma 2.3] 36/62



WGAN toy example

WGAN-GP style gradient penalty may not converge near solution

Nagarajan and Kolter [NeurIPS 2017], Mescheder et al. [ICML 2018], Balduzzi et al.
[ICML 2018]

Recall the WGAN-GP penalisation

meEXNmep(X) —Ez rfy(Go(Z)) + AE3 (Hv%ﬁﬁ(y)u B 1>2
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WGAN toy example

WGAN-GP style gradient penalty may not converge near solution
Nagarajan and Kolter [NeurIPS 2017], Mescheder et al. [ICML 2018], Balduzzi et al.
[ICML 2018]
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Figure from Mescheder et al. [[CML 2018]



WGAN toy example

WGAN-GP style gradient penalty may not converge near solution

Nagarajan and Kolter [NeurIPS 2017], Mescheder et al. [ICML 2018], Balduzzi et al.
[ICML 2018]

A solution? Modified control of witness gradient

g ) B () 10 [ A

R
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14, v x /7
ll’///
M

) 9 37/62
Figure from Mescheder et al. [[CML 2018]



Gradient penalty:
the regularisation viewpoint



CNN features for an MMD witness

m Add convolutional features!
m The critic (teacher) also needs to be trained.

= WY
£ 22

A=z, y) = hy T (2)hy(y) A(z,y) = k(hy(z), hy(y))
where hy(z) is a CNN map: where hy(z) is a CNN map,
m Wasserstein GAN Arjovsky et al. | k£ is e.g. an exponentiated quadratic
[ICML 2017] kernel
m WGAN-GP Gulrajani et al. MMD Li et al., [NeurIPS 2017]
[NeurIPS 2017 Cramer Bellemare et al. [2017]

Coulomb Unterthiner et al., [[CLR 2018
Demystifying MMD GANS Binkoyski
Sutherland, Arbel, G., [ICLR 2018]
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Witness function, kernels on deep features

Reminder: witness function,

k(z,y) is exponentiated quadratic
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Witness function, kernels on deep features

Reminder: witness function,
k(hy(z), hy(y)) with nonlinear 4y and exp. quadratic &

40/62



Challenges for learned critic features

Learned critic features:

MMD with kernel k(hy(z), hy(y)) must give useful gradient to
generator.

41/62



Challenges for learned critic features

Learned critic features:

MMD with kernel k(hy(z), hy(y)) must give useful gradient to
generator.

Relation with test power?

If the MMD with kernel k(hy(z), hy(y)) gives a powerful test, will it
be a good critic?
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Challenges for learned critic features

Learned critic features:

MMD with kernel k(hy(z), hy(y)) must give useful gradient to
generator.

Relation with test power?

If the MMD with kernel k(hy(z), hy(y)) gives a powerful test, will it
be a good critic?

Real
points
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A simple 2-D example

Samples from target P and model @

e target
« model
L]
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A simple 2-D example

Witness gradient, MMD with exp. quad. kernel k(z, y)

MMD Gaussian

‘ N AL
iR
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A simple 2-D example

What the kernels k(z, y) look like

MMD Gaussian

® - . target
. « model
A s
. . .. ’
LU )
W) () ),
L oo ¢ hd .E
ot . 0 .
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A data-adaptive gradient penalty: NeurIPS 2018

m New gradient regulariser Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]
m Also related to Sobolev GAN Mroueh et al. [ICLR 2018]

On gradient regularizers for MMD GANs

Michael Arbel Dougal J. Sutherland
Gatsby Computational Neuroscience Unit Gatsby Computational Neuroscience Unit
University College London University College London
michael.n.arbel@gmail.com dougal@gmail.com
Mikotaj Bifikowski Arthur Gretton
Department of Mathematics Gatsby Computational Neuroscience Unit
Imperial College London University College London
mikbinkowski@gmail.com arthur.gretton@gmail.com
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A data-adaptive gradient penalty: NeurIPS 2018

m New gradient regulariser Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]
m Also related to Sobolev GAN Mroueh et al. [ICLR 2018]

Modified witness constraint:

WD = o[/ (X) ~ B/ (V)

where 9 5 5 9
IS = 1/ 1zypy + IV pgmy + AN
Zi0N 4 Zi0S

‘ L, norm Gradient RKHS

control control smoothness

————

Maximise MMD wrt critic features
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A data-adaptive gradient penalty: NeurIPS 2018

m New gradient regulariser Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]
m Also related to Sobolev GAN Mroueh et al. [ICLR 2018]

Modified witness constraint:

MMD := sup [Epf(X)—Eof(V)]
17 <1

Problem: not computationally feasible: O(n?®) per iteration.

43/62



A data-adaptive gradient penalty: NeurIPS 2018

m New gradient regulariser Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]
m Also related to Sobolev GAN Mroueh et al. [ICLR 2018]

Modified witness constraint:

WD = o[/ (X) ~ B/ (V)

Maximise scaled MMD over critic features:
SMMD(P,\) =opx MMD

where
d

obn =t [ E(hy(a), (@) dP(@) Y, [ 08iak(hy(2), 1)) dP(a)
=1

Replace expensive constraint with cheap upper bound:

2 ~1 2
1715 < opp lIfIT
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A data-adaptive gradient penalty: NeurIPS 2018

m New gradient regulariser Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]
m Also related to Sobolev GAN Mroueh et al. [ICLR 2018]

Maximise scaled MMD over critic features:
SMMD(P,\) =o0px MMD

where
d

obp =Nt [ E(hy(@), (@) dP(@)+Y, [ 08iak(hy(2), 1)) dP(a)
1=1

Replace expensive constraint with cheap upper bound:

2 ~1 2
1715 < opy IIfIT%

Idea: rather than regularise the critic or witness function, regularise
features directly

43/62



Simple 2-D example revisited

Samples from target P and model @

e target
e model
0
0 ¢ o0
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. . . .
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Simple 2-D example revisited
Use kernels k(hy(z), hy(y)) with features

() = Ls ([ Lo D

where Ly, Ly, L3 are fully connected with quadratic nonlinearity.
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Simple 2-D example revisited

Witness gradient, maximise SMMD(P, A)
to learn hy(z) for k(hy(z), hy(y))

vector field movie, use Acrobat Reader to play  44/62



Simple 2-D example revisited

What the kenels %(hy(z), hy(y)) look like

isolines movie, use Acrobat Reader to play
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Our empirical observations

Data-adaptive critic loss:
m Witness function class for SMMD(P, ) depends on P.

Without data-dependent regularisation, maximising MMD over
features hy of kernel k(hy(z), hy(y)) can be unhelpful.
WGAN-GP is a pretty good data-dependent regularisation strategy

m Similar regularisation strategies apply to variational form in f-GANs
Roth et al [NeurIPS 2017, eq. 19 and 20]
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Our empirical observations

Data-adaptive critic loss:
m Witness function class for SMMD(P, ) depends on P.

Without data-dependent regularisation, maximising MMD over
features hy of kernel k(hy(z), hy(y)) can be unhelpful.
WGAN-GP is a pretty good data-dependent regularisation strategy

m Similar regularisation strategies apply to variational form in f-GANs
Roth et al [NeurIPS 2017, eq. 19 and 20]

Alternate critic and generator training:

m Weaker critics can give better signals to poor (early stage) generators.
m Incomplete training of the critic is also a regularisation strategy

45/62



Linear vs nonlinear kenels

m Critic features from DCGAN: an f-filter critic has f, 2f, 4f and 8f
convolutional filters in layers 1-4. LSUN 64 x 64.

hy T(2)hy(y), f = 64, KID=4
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Linear vs nonlinear kenels

m Critic features from DCGAN: an f-filter critic has f, 2f, 4f and 8f
convolutional filters in layers 1-4. LSUN 64 x 64.

hy T(2)hy(y), f = 16, KID=37
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The theory



Scaled MMD vs Wasserstein-1 (NeurIPS 18)

Let ky = ko hy.
Wasserstein-1 bounds SMMD,

Qk KL

SMMD(P <
( ? Q) — dLaL

wW(P, Q)
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m Conditions on the neural network layers:
hy : X — R° fully-connected L-layer network, Leaky-ReLU,

activations whose layers do not increase in width
Width of £th layer is d,.

% is the bound on condition number of the weight matrices W*

48/62



Scaled MMD vs Wasserstein-1 (NeurIPS 18)

Let ky = ko hy.
Wasserstein-1 bounds SMMD,

L

K
WP, Q)

SMMD(P, Q) <

m Conditions on the neural network layers:
hy : X — R° fully-connected L-layer network, Leaky-ReLU,
activations whose layers do not increase in width
Width of £th layer is d,.
% is the bound on condition number of the weight matrices W*
m Conditions on the and gradient regulariser:
satisfying mild smoothness conditions, summarised in < 00.
1 is a probabilty measure with support over X,

d
/k(w,x)du(x) +Z/6i6i+dk(:p,x) du(z)
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Unbiased gradients of MMD, WGAN-GP (ICLR 18)

Subject to mild conditions on

m Critic mappings h,¢ (conditions hold for almost all feedforward networks:
convolutions, max pooling, ReLU,....)

m kernel k (a growth assumption)

m Target distribution P, generator network Y ~ Gy(Z) (densities not

needed, second moments must exist),

Then for p-almost all ¢/, 8 where u is Lebesgue,

Exp [04,5k(h(X), h( Go(2)))] = 0y.sBg . [k(hy(X), iy Go( Z)]

and thus MMD gradients unbiased.
Also true for WGAN-GP.
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Bias of MMD GAN critic (ICLR 18)

Gradient bias when critic trained on a separate dataset?
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Gradient bias when critic trained on a separate dataset?
Recall definition of MMD for P vs @

MMD(P, Q; F) := H?‘hlgl [Epf(X) —Eqf(Y)]
(F' = unit ball in RKHS F)
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Bias of MMD GAN critic (ICLR 18)

Gradient bias when critic trained on a separate dataset?
Recall definition of MMD for P vs @

MMD(P, Q; F) := S [Epf(X) —Eqf(Y)]

(F' = unit ball in RKHS F)
Define f, as discriminator witness trained on {mfr}lil
iid.
{y;r}?:l R Q-
Then

iid.
~ _P’

[Epfu(X) —Eqfw(Y)] < MMD(P, Q; F)

Downwards bias. Unless bias is in f. constant, biased gradients too.
Same true for WGAN-GP.
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Bias of MMD GAN critic (ICLR 18)

Training minibatch critic function f;,

Trained witness function ftr
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Bias of MMD GAN critic (ICLR 18)

Population critic function f*

Population witness function f

e
[T N
T
s

o
o

Prob. density and f(x)
2R o

o
o
T

I

o
, ©
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Bias of MMD GAN critic (ICLR 18)

Bias in MMD vs training minibatch size:

o
PN
o

MMD estimate
o
o
()]

o
o
S

10*

10"

Ntrain
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Evaluation and experiments
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Evaluation of GANs

The inception score? satimans et al. [NeurIPS 2016]

Based on the classification output p(y|z) of the inception model szcqeay

et al. [ICLR 2014],

Ex exp KL(P(y|X)||P(y)).
High when:

m predictive label distribution P(y|z) has low entropy (good quality
images)

m label entropy P(y) is high (good variety).
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Evaluation of GANs

The inception score? satimans et al. [NeurIPS 2016]

Based on the classification output p(y|z) of the inception model s:ezeay

et al. [ICLR 2014],

Ex exp KL(P(y|X)[|P(y))-
High when:

m predictive label distribution P(y|z) has low entropy (good quality
images)

m label entropy P(y) is high (good variety).

Problem: relies on a trained classifier! Can’t be used on new
categories (celeb, bedroom...)
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Evaluation of GANs

The Frechet inception distance? meusel et al. [NeurIPs 2017]

Fits Gaussians to features in the inception architecture (pool3 layer):

FID(P, Q) = |[up — pol® + tx(Tp) + t2(3q) — 2tr (BpS0)?)

where up and X p are the feature mean and covariance of P
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Evaluation of GANs

The Frechet inception distance? meusel et al. [NeurIPs 2017]

Fits Gaussians to features in the inception architecture (pool3 layer):

FID(P, Q) = |[up — pol® + tx(Tp) + t2(3q) — 2tr (BpS0)?)

where up and X p are the feature mean and covariance of P

50
Problem: bias. For

. 40
finite samples can

consistently give 30

FID

incorrect answer. 20

m Bias demo,
CIFAR-10 train vs

0
test 0 2000 4000 6000 8000 10000

n
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Evaluation of GANs

The FID can give the wrong answer in theory.
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Assume m samples from P and n — oo samples from Q.

Given two alternatives:

P~ N(O,(1 - m™1)?) Py~ N(0,1) Q ~ N(0,1).
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Assume m samples from P and n — oo samples from Q.
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P~ N(O,(1 - m™1)?) Py~ N(0,1) Q ~ N(0,1).

Clearly,

FID(Py, Q) = —; > FID(P;, Q) = 0
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Evaluation of GANs

The FID can give the wrong answer in theory.
Assume m samples from P and n — oo samples from Q.

Given two alternatives:

P~ N(O,(1 - m™1)?) Py~ N(0,1) Q ~ N(0,1).

Clearly,
1
FID(Py, Q) = 2 > FID(P,, Q) =0

Given m samples from P; and P,,

FID(Pi, Q) < FID(P;, Q).
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Evaluation of GANs

The FID can give the wrong answer in practice.
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Evaluation of GANs

The FID can give the wrong answer in practice.
Let d = 2048, and define

Py =relu(N(0, I3)) P, =relu(N(1,.88+.21;)) Q =relu(WN(1, 1))

where & = %CCT, with C a d x d matrix with iid standard normal
entries.
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Let d = 2048, and define

Py =relu(N(0, I3)) P, =relu(N(1,.88+.21;)) Q =relu(WN(1, 1))

where & = %CCT, with C a d x d matrix with iid standard normal

entries.

For a random draw of C':

FID(Py, Q) ~ 1123.0 > 1114.8 & FID(Ps, Q)
With m = 50000 samples,
FID(P;, Q) ~ 1133.7 < 1136.2 & FID(P, Q)
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Evaluation of GANs

The FID can give the wrong answer in practice.
Let d = 2048, and define

Py =relu(N(0, I3)) P, =relu(N(1,.88+.21;)) Q =relu(WN(1, 1))

where & = %C’CT, with C a d x d matrix with iid standard normal

entries.

For a random draw of C':

FID(Py, Q) ~ 1123.0 > 1114.8 & FID(Ps, Q)
With m = 50000 samples,
FID(P;, Q) ~ 1133.7 < 1136.2 & FID(P, Q)

At m = 100000 samples, the ordering of the estimates is correct.

This behavior is similar for other random draws of C. 56/62



The kernel inception distance (KID)

The Kernel inception distance Binkowski, Sutherland, Arbel, G. [[CLR 2018]

Measures similarity of the samples’ representations in the inception

architecture (pool3 layer)
MMD with kernel

1 3
k(z,y) = (mey + 1) .
m Checks match for feature
means, variances, skewness

m Unbiased : eg CIFAR-10
train/test

[a]

0.004
0.003
0.002
0.001

< 0.000 3

-0.001
-0.002
-0.003

0 250 500 750
n

1000 1250 1500 1750 2000
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The kernel inception distance (KID)

The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018]
Measures similarity of the samples’ representations in the inception
architecture (pool3 layer)

MMD with kernel 0.004

0.003

1 3 0.002
k(z,y) = (da:Ty + 1) . o0

m Checks match for feature 0.000

means, variances, skewness

-0.001

-0.002
m Unbiased : eg CIFAR-10 -0.003

tra]_n/test 0 250 500 750 12;)0 1250 1500 1750 2000

.but isn’t KID is computationally costly?”
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The kernel inception distance (KID)

The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018]

Measures similarity of the samples’ representations in the inception
architecture (pool3 layer)
MMD with kernel 0.004
0.003
k(z,y) = 1 + 1 3 0.002
' Y) = ((j:E y+ ) ) 0.001

m Checks match for feature 0.000

means, variances, skewness

-0.001
-0.002

m Unbiased : eg CIFAR-10 -0.003

traln/test 0 250 500 750 1(1:)0 1250 1500 1750 2000

.“but isn’t KID is computationally costly?”

“Block” KID implementation is cheaper than FID: see paper

(or use Tensorflow implementation)!
57/62



The kernel inception distance (KID)

The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018]

Measures similarity of the samples’ representations in the inception
architecture (pool3 layer)
MMD with kernel 0.004

0.003

1 3 0.002
k(z,y) = (dacTy + l) . oo

m Checks match for feature 0.000

i -0.001
means, variances, skewness

-0.002

m Unbiased : eg CIFAR-10 -0.003

traln/test 0 250 500 750 1(1:)0 1250 1500 1750 2000

Also used for automatic learning rate adjustment: if KID(ﬁtJrl, Q)
not significantly better than KID(]Bt, @) then reduce learning rate.
[Bounliphone et al. ICLR 2016]

7/62
Related: “An empirical study on evaluation metrics of generative adversarial networks”, Xu et al. ﬁa/xiv,
June 2018]



Benchmarks for comparison (all from ICLR 2018)
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Results: unconditional imagenet 64 x 64

KID scores:

m BGAN:
47

m SN-GAN:
44

m SMMD GAN:
35

ILSVRC2012 (ImageNet)
dataset, 1 281 167 images,
resized to 64 x 64. 1000
classes.
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Results: unconditional imagenet 64 x64

KID scores:

m BGAN:
47

m SN-GAN:
44

m SMMD GAN:
35

ILSVRC2012 (ImageNet)
dataset, 1 281 167 images,
resized to 64 x 64. 1000
classes.




Summary

m GAN critics rely on two sources of regularisation

Regularisation by incomplete training
Data-dependent gradient regulariser

m Some advantages of hybrid kernel/neural features:

MMD loss still a valid critic when features not optimal (unlike
WGAN-GP)
Kernel features do some of the “work”, so simpler hy features possible.

“Demystifying MMD GANSs,” including KID score, ICLR 2018:
https://github.com/mbinkowski/MMD-GAN

Gradient regularised MMD, NeurIPS 2018:
https://github.com/MichaelArbel/Scaled-MMD-GAN

60,62


https://github.com/mbinkowski/MMD-GAN
https://github.com/MichaelArbel/Scaled-MMD-GAN 

Post-credit scene: MMD flow

From NeurIPS 2019:

Maximum Mean Discrepancy Gradient Flow

Michael Arbel Anna Korba

Gatsby Computational Neuroscience Unit Gatsby Computational Neuroscience Unit

University College London University College London
michael.n.arbel@gmail.com a.korba@ucl.ac.uk
Adil Salim Arthur Gretton

Visual Computing Center Gatsby Computational Neuroscience Unit

KAUST University College London
adil.salim@kaust.edu.sa arthur.gretton@gmail.com
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Questions?
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