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First motivating question

e How do you detect dependence. ..

e ...in a discrete domain? (e amt crossio, doss)

. no doubt there is great pressure on
provincial and municipal governments in
relation to the issue of child care, but the
reality is that there have been no cuts to
child care funding from the federal gov-
ernment to the provinces. In fact, we
have increased federal investments for

early childhood development. ..

il est évident que les ordres de
gouvernements provinciaux et munici-
paux subissent de fortes pressions en
ce qui concerne les services de garde,
mais le gouvernement n’a pas réduit le
financement qu’il verse aux provinces
pour les services de garde. Au con-
traire, nous avons augmenté le finance-
ment fédéral pour le développement des

jeunes enfants. ..



Second motivating question: differences in brain signals

The problem: Do local field potential (LFP) signals change
when measured near a spike burst?
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Second motivating question: differences in brain signals

The problem: Do local field potential (LFP) signals change
when measured near a spike burst?

Neural data, h=50
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Second motivating question: differences in brain signals

The problem: Do local field potential (LFP) signals change
when measured near a spike burst?

Neural data, h=500
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Overview

e Kernel metric on the space of probability measures:
Maximum Mean Discrepancy MM D (P, Q)

— Distance between means of (nonlinear) features

— Function revealing differences in distributions

— Dependence detection: Py, vs P,P, using MM D(P,, P.P,)



Overview

e Kernel metric on the space of probability measures:
Maximum Mean Discrepancy MM D (P, Q)

— Distance between means of (nonlinear) features

— Function revealing differences in distributions

— Dependence detection: Py, vs P,P, using MM D(P,, P.P,)

e Optimal kernel choice:
— A criterion for kernel choice

— What is a difficult testing problem?



Kernel distance between distributions



Feature mean difference

e Simple example: 2 Gaussians with different means

e Answer: t-test

Two Gaussians with different means

Prob. density




Prob. density

Feature mean difference

e Two Gaussians with same means, different variance
e Idea: look at difference in means of features of the RVs

o In Gaussian case: second order features of form ¢(x) = z°

Two Gaussians with different variances
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Prob. density

Feature mean difference

e Two Gaussians with same means, different variance

e Idea: look at difference in means of features of the RVs

e In Gaussian case: second order features of form ¢, = x

Two Gaussians with different variances
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Feature mean difference

e Gaussian and Laplace distributions

e Same mean and same variance

e Difference in means using higher order features

Gaussian and Laplace densities
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© o o o o
w BN (&) » ~

o
no
T

0.1




Function Showing Difference in Distributions

e Are P and @ different?

Samples from P and Q
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e Are P and @ different?

Samples from P and Q
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Function Showing Difference in Distributions

e Maximum mean discrepancy: smooth function for P vs Q

MMD(P,Q; F) := ?161113 [Epf(x) — Eqf(y)].

Smooth function
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Function Showing Difference in Distributions

e What if the function is not smooth?

MMD(P,Q; F) := ?1612 [Epf(x) — Eqf(y)].

Bounded continuous function

0.5

0 0.2 0.4 0.6 0.8 1



Function Showing Difference in Distributions

e What if the function is not smooth?

MMD(P,Q; F) := ?"EIF) [Epf(x) — Eqf(y)].

Bounded continuous function
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Function Showing Difference in Distributions

e Maximum mean discrepancy: smooth function for P vs Q

MMD(P,Q; F) := ]Sflellﬁ)’ [Epf(x) — Eqf(y)].

e Gauss P vs Laplace Q

Witness f for Gauss and Laplace densities
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Function Showing Difference in Distributions

e Maximum mean discrepancy: smooth function for P vs Q

MMD(P,Q; F) := ?161112 [Epf(x) — Eqf(y)].

e (Classical results: MMD(P, Q; F') = 0 iff P = Q, when
— F =bounded continuous mudtey, 2a62]
— [ = bounded variation 1 (Kolmogorov metric) puiiten, to97

— F' = bounded Lipschitz (Earth mover’s distances) pudtey, 2002



Function Showing Difference in Distributions

e Maximum mean discrepancy: smooth function for P vs Q

MMD(P,Q; F) := ?16,1]1; [Epf(x) — Eqf(y)].

e (Classical results: MMD(P, Q; F') = 0 iff P = Q, when
— F' =bounded continuous pudtey, 2062]
— " = bounded variation 1 (Kolmogorov metric) fpuiiten, to97]
— I = bounded Lipschitz (Earth mover’s distances) pudicy, 2002]

e MMD(P,Q; F') =0 iff P = Q when F' =the unit ball in a characteristic

RKHS ./_" [Grettonmret—all, 2007, Sriperumbudur—et—al, 2010, (Grettonmret—all, 2012|



Functions in the RKHS

e 7/ RKHS from X to R with positive definite kernel k(x;, x;)
o F =span{k(z,-)|lr € X}

— Example: f(x) =>", a;k(x;, z) for arbitrary m € N, a; € R,
r; € X.




The RKHS as feature map

o Feature map of x € R?, written ¢,

P = [ r7 x5 T129V2 ] ol = exp (—M!w - -HZ)
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The RKHS as feature map

o Feature map of x € R?, written ¢,

oV =} 3 meaV? o9 = exp (=Afle — )
e Inner product between feature maps:
<90§;p), 90§,p)>F = (w,y) <90§;9), sog(f])>f = exp (—A |2 — y|\2)

e In general,
(P15 Pag) F = (21, 22)
for positive definite k(x,y)

Kernels are inner products of feature maps




The RKHS as feature map

e Function in RKHS:

f(:C) — Zaik(xiax) — Zai <9096w SO:C>]—“ — <fa SO:E>]-“ J = Z@igpxi
1=1 1=1 1=1
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Function view vs feature mean view

e The (kernel) MMD: smBos, N1Pso6a)

MMD?(P, Q; F)
2
= | sup [Epf(x) — Eqf(y)]
feF
Witness f for Gauss and Laplace densities
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Function view vs feature mean view

e The (kernel) MMD: smBos, N1Pso6a)

MMD?(P, Q; F) Lse
_<Sup[EPf(x)_EQf(y)]> Er(f(x)) = Bpl(ps £
Jet =: (up, f)r
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Function view vs feature mean view

e The (kernel) MMD: smBos, N1Pso6a)

MMD?(P, Q; F)

= (Sup Epf(x) — Eqf (y)]> Hee

JEF
2 10]| 7 = sup(f,0) 7
JEF
= (sup (fspp — MQ>]—“>

JEF

2
— HMP — NQ”]—"

Function view and feature view equivalent




Function view vs feature mean view

e The (kernel) MMD: smBos, N1Pso6a)

MMD?(P, Q; F)

= (Sup Epf(x) — Eqf (y)]> Hee

JEF
2 10]| 7 = sup(f,0) 7
JEF
= (sup (fspp — MQ>]—“>

JEF

2
— HMP — NQ”]—"

e An unbiased empirical estimate: for {x;},~; ~ P and {y;};"; ~ Q,

2 m m



Statistical hypothesis testing



Statistical test using MMD

e Two hypotheses:
— Hy: null hypothesis (P = Q)
— Hy: alternative hypothesis (P # Q)



Statistical test using MMD

e Two hypotheses:

— Hy: null hypothesis (P = Q)

— Hy: alternative hypothesis (P # Q)
e Observe samples  := {x1,...,2;,} from P and y from Q
e If empirical 1\71\@2 1S

—  “far from zero”: reject Hy

—  “close to zero”: accept Hj



Statistical test using MMD

e When P = Q, U-statistic degenerate: [cretronetat, 2007, 2012]

e Distribution is

M MMD NZ)\Z 2 2]
=1

e where MMD density under HO
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Statistical test using MMD

Given P = Q, want threshold 7" such that P(l\fl\ﬁ)2 >T) <«
Bootstrap for empirical CDF' (arcones and-cime, res2)

Pearson curves by matching first four moments gotmsonetat, oo
Large deviation bounds [#oeffding, 1963, tichiarmid, t989]

Consistent test using kernel eigenspectrum jcrettonetat, 2aos]

P # Q (neuro)
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MMD for independence

® Dependence measure: [ALT05, NIPS07a, ALT07, ALT08, JMLR10]

2
(Supf [pryf - EPxny]) — ||?”ng <f7 HPxy — MPXPY>.27:><Q

— H:LLPXY — :LLPXPYH,27-“><Q = MMD(PXYa PXPY)

Dependence witness and sample
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MMD for independence

® Dependence measure: [ALT05, NIPS07a, ALT07, ALT08, JMLR10]

2
HP PY>]—“><g

2
(Supf [pryf - EPXny]) = Sup <f7,uPXy —
[flI<1
— H:LLPXY — :LLPXPYH,27-“><Q = MMD(PXYa PXPY)
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Experiment: dependence testing for translation

. ... il est évident que les ordres de

L]
Tra;nslat ]_O I I eXaI I Iple . [NIPSO7b] ... no doubt there is great pressure on gouvernements provinciaux et munici-
provincial and municipal governments in paux subissent de fortes pressions en

relation to the issue of child care, but the ce qui concerne les services de garde,

C anadlan a’ns ar reality is that there have been no cuts to mais le gouvernement n’a pas réduit le

child care funding from the federal gov- financement qu’il verse aux provinces

(a ricult ure) ernment to the provinces. In fact, we pour les services de garde. Au con-
g have increased federal investments for traire, nous avons augmenté le finance-

early childhood development. .. ment fédéral pour le développement des

jeunes enfants. . .

5-line extracts,

k-spectrum kernel, k = 10,
repetitions=300,

sample size 10

Empirical

MMD(PXy, PXpy):

1
—trace(KHLH)

m?2

k-spectrum kernel: average Type II error 0 (o = 0.05)
Bag of words kernel: average Type II error 0.18






Part 2: optimal kernel choice for two-sample tests



Empirical estimate of MMD: more detail
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MMD in terms of kernels:
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Empirical estimate of MMD: more detail

2
MMD? = |lup — pqllz = (P — hq, 1P — hQ)F

MMD in terms of kernels:

MMD? = |lup — piqllz = (up — kQ: P — HQ) F
= (up, up) + (HQ, Q) — 2 (1P, Q)
= (Epys, Eppys) + ...
= Ep (pz,00) + ..
— Epk(z,2’) + Eqk(y,y') — 2Ep qk(z, )



Quadratic time estimate of MMD

MMD? = ||up — uqll> = Epk(z,2') + Eqk(y,y') — 2Ep gk(z, )



Quadratic time estimate of MMD

MMD? = [|up — pqllF = Epk(z,2') + Eqk(y,y') — 2Ep qk(z, y)
Given i.id. X :={z1,...,xpn}t and Y :={y1,...,ym} from P, Q,

respectively:

The earlier estimate: (quadratic time)

Epk(z,z') = ! ZZI@(J?Z,J?])
=1 i




Quadratic time estimate of MMD

MMD? = [|up — pqllF = Epk(z,2') + Eqk(y,y') — 2Ep qk(z, y)
Given i.id. X :={z1,...,xpn}t and Y :={y1,...,ym} from P, Q,

respectively:

The earlier estimate: (quadratic time)

~ 1
Epk(z,2') = k(x;,x;)
1) 27 2 M 00
New, linear time estimate:
~ 2
Epk(xz,2') = — k(x1,22) + k(x3,24) + .. ]

2fm/2
= — ) k(21,22
m; (251, T2;)



Linear time MMD

Shorter expression with explicit £ dependence:
MMD2 —- nk(pa Q) — Eww’yy’hk(wa ZU,) Y, y/) —- Evhk(v)a

where
hk(xaxlaya y,) — k(CE‘,CEl) + k(y7y/) o k(ﬂ?,y/) o k(xla y)a

and v := [z, 2/, y, V]



Linear time MMD

Shorter expression with explicit £ dependence:
MMD2 —- nk(pa Q) — Ewm’yy’hk(wa xla Y, y/) —- Evhk(v)a

where
hk(xaxlvya y,) — k(CC,CU/) + k(y7y/) o k(x7y/) o k(xla y)a

and v := [z, 2/, y, V]

The linear time estimate again:

9 m/2
Me = m Z hi(vi),
1=1
where v; := [x2;—1, T2i, Y2i—1, Y2i] and

hi(vs) == k(x2i—1,22i) + k(y2i—1,y2:) — k(x2i-1,Y2i) — k(x2i, Yy2i—1)



Linear time vs quadratic time MMD

Disadvantages of linear time MMD vs quadratic time MMD
e Much higher variance for a given m, hence. ..

e ...a much less powerful test for a given m



Linear time vs quadratic time MMD

Disadvantages of linear time MMD vs quadratic time MMD
e Much higher variance for a given m, hence. ..

e ...a much less powerful test for a given m

Advantages of the linear time MMD vs quadratic time MMD

e Very simple asymptotic null distribution (a Gaussian, vs an infinite

weighted sum of x?)
e Both test statistic and threshold computable in O(m), with storage O(1).

e Given unlimited data, a given Type II error can be attained with less

computation



Asymptotics of linear time MMD

By central limit theorem,
1/2 (= D N 2
m= (i — me(ps @) = N (0, 20%)

e assuming 0 < E(h%) < oo (true for bounded k)
o 02 = E,h2(v) — [Eq(he(0))].



Hypothesis test

Hypothesis test of asymptotic level a:
tho = m_l/zak\/icb_l(l — Q) where ®~! is inverse CDF of A/(0, 1).

— 2
Null distribution, linear time MMD = 7
0.4r
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0.25r

(17x)

0.2r
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0.15r

01l Type I error

t — (1 — a) quantile
0.05} ko= ) a




Type 1l error
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Null vs alternative distribution, P (7))
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The best kernel: minimizes Type Il error

Type II error: 7 falls below the threshold ¢ , and ng(p, q) > 0.
Prob. of a Type II error:

Plije < th o) = ((1)1(1 ) Q)\/m)

orV2
where ® is a Normal CDF.



The best kernel: minimizes Type Il error

Type II error: 7 falls below the threshold ¢ , and ng(p, q) > 0.
Prob. of a Type II error:

Pl <) =8 (3731 g BT

orV2
where ® is a Normal CDF.

Since ® monotonic, best kernel choice to minimize Type II error prob. is:

k. = a a Qo
rg rglelgnk(p q)0y

where K is the family of kernels under consideration.



Learning the best kernel in a family

Define the family of kernels as follows:

d
K= {k k=Y Buku, Bl = D, B >0, Vu € {1,...,d}}.
u=1

Properties: if at least one 5, > 0
e all k € IC are valid kernels,

e If all k£, charateristic then k characteristic



Test statistic

The squared MMD becomes

(P, @) =l (p) — (@)1 7, = Zﬁunu P, q

where 1,(p, q) := Eyhy(v).



Test statistic

The squared MMD becomes

(P, @) =l (p) — (@)1 7, = Zﬁunu P, q

where 1,(p, q) := Eyhy(v).

Denote:

o 8=(B1,052,...,Ba) €R%
o h=(hi,hs,...,hg) €RY

= hu(z, 2"y, y") = ku(z, o) + ku(y, y') — ku(z,y') — ku(2',y)
o n=Ey(h)=(n1,m2,...,na)" €R™

Quantities for test:

m(p,q) =E@B'R)=8"n o} =B cov(h)B.



Optimization of ratio n;.(p, ¢)o, "

Empirical test parameters:

k=07 O\ = \/5T (Q+)\m1) B,
() is empirical estimate of cov(h).

Note: 7, 0. computed on training data, vs 7,0 on data to be tested
(why?)



Optimization of ratio n;.(p, ¢)o, "

Empirical test parameters:

k=07 O\ = \/5T (Q+)\m1) B,
() is empirical estimate of cov(h).

Note: 7, 0. computed on training data, vs 7,0 on data to be tested
(why?)

Objective:

e . 5—1
p* = arg rgg(})( Mk (D, Q)Uk)\

— arg max (5Tﬁ) (BT (Q + )\ml) B)

5=0

=: (81, Q)

—1/2



Optmization of ratio ng(p, q)o;

Assume: 7) has at least one positive entry

A

Then there exists S =0 s.t. «(f8;1,Q) > 0.

A

Thus: a(8*;7,Q) > 0



Optmization of ratio ng(p, q)Ok_l

Assume: 7) has at least one positive entry

A

Then there exists S =0 s.t. «(f8;1,Q) > 0.

A

Thus: a(8*;7,Q) > 0

A
A

Solve easier problem: 3* = arg maxgso @*(8; 7, Q).

Quadratic program:

min{3" (Q+Anl) B: 877 =1, = 0}



Optmization of ratio ng(p, q)Ok_l

Assume: 7) has at least one positive entry

A

Then there exists S =0 s.t. «(f8;1,Q) > 0.

A

Thus: a(8*;7,Q) > 0

A
A

Solve easier problem: 3* = arg maxgso @*(8; 7, Q).

Quadratic program:

min{3" (Q+Anl) B: 877 =1, = 0}

What if 1 has no positive entries?



Test procedure

1. Split the data into testing and training.
2. On the training data:

(a) Compute 7, for all k, € K
(b) If at least one 7, > 0, solve the QP to get 5*, else choose random

kernel from K
3. On the test data:

(a) Compute 7+ using k* = Zzzl Bk,
(b) Compute test threshold i, g+ using s

4. Reject null if fg= > £ g



Convergence bounds

Assume bounded kernel, o, bounded away from 0.
If Ay = ©(m~Y3) then

' =0p (m_1/3> .

A A —1 _
SUP N0y, \ — SUPTk0y,
kel kel



Convergence bounds

Assume bounded kernel, o, bounded away from 0.
If Ay = ©(m~Y3) then

AN | —1 ~1/3
SUp N0y, \ — SUP N0y, ‘::Cha(nz / ).
kek ke

Idea:

NP 1
SUP 70y \ — SUPT)k0y,
kel kel

< sup
kel

b

NP 1 1 1
NMkOg \ — nkak,)\‘ + 211’13 ‘ﬂkﬂk,,\ — N0y |
S

< C1sup | — nk| + Casup |G\ _Uk:,AQ + C3D* M\,

kek kek



Experiments



Competing approaches

e Median heuristic

e Max. MMD: choose k, € K with the largest 7,
— same as maximizing 3'7 subject to ||8]|; < 1

o /o statistic: maximize 8'# subject to ||8]|, < 1

e Cross validation on training set

Also compare with:

e Single kernel that maximizes ratio 7y (p, q)cfk_ L



Blobs: data

Difficult problems: lengthscale of the difference in distributions not the same
as that of the distributions.



Blobs: data

Difficult problems: lengthscale of the difference in distributions not the same
as that of the distributions.

We distinguish a field of Gaussian blobs with different covariances.

Blob data p Blob data ¢
35 35
swﬂﬁwléf
25¢ 2571
= & tf‘f
151 . 15¢
*
bt %
10t ‘ *‘ 10 ‘ ’ ‘
* * 8“
5 — 5
5 10 15 20 25 30 35 5 35
X1

Ratio € = 3.2 of largest to smallest eigenvalues of blobs in g.



Blobs: results

o o
0] O —
T T

o
~
T

Type II error

o o
N w

o
a

Parameters: m = 10,000 (for training and test). Ratio ¢ of largest to

smallest eigenvalues of blobs in g. Results are average over 617 trials.

o
(o))
T

o
(&)
T

o
SN
T

1 T
':1*::::;11'{_1
\\
max ratio
opt
|| — 2
maxmmd
|| m— xval -
xvalc NN
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€ ratio
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Blobs: results
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Idea: no single best kernel.
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Each of the k, are univariate (along a single coordinate)
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Feature selection: results
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Amplitude modulated signals

Given an audio signal s(t), an amplitude modulated signal can be defined
u(t) = sin(wt) |a s(t) + (]

e w.: carrier frequency
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Amplitude modulated signals

Given an audio signal s(t), an amplitude modulated signal can be defined
u(t) = sin(wt) |a s(t) + (]

e w.: carrier frequency

e a = 0.2 is signal scaling, [ = 2 is oflset
Two amplitude modulated signals from same artist (in this case, Magnetic
Fields).

e Music sampled at 8KHz (very low)

e Carrier frequency is 24kHz

e AM signal observed at 120kHz

e Samples are extracts of length N = 1000, approx. 0.01 sec (very short).

e Total dataset size is 30,000 samples from each of p, q.



Amplitude modulated signals

Samples from P Samples from Q




Results: AM signals
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Conclusions

e It is possible to choose the best kernel for a kernel

two-sample test

e Kernel choice matters for “difficult” problems, where the
distributions differ on a lengthscale different to that of
the data.

e Ongoing work:

— quadratic time statistic

— avoid training/test split
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Empirical estimate of MMD

2
MMD? = |lup — pqllz = (P — hq, 1P — hQ)F

MMD in terms of kernels:

MMD? = |lup — piqllz = (up — kQ: P — HQ) F
= (pp, 1p) + (HQ, Q) — 2 (1P, Q)
= (Epys, Eppys) + ...
= Ep {0z, 00) + ...
— Epk(z,2’) + Eqk(y,y') — 2Ep qk(z, )
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More general local departures from null

e Example: fp and fq probability densities, fq = fp + dg, where 6 € R, ¢

some fized function such that fq is a valid density
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What is a hard testing problem?

e As we see more samples m, distinguish “closer” P and Q with same
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Local departures from the null

What is a hard testing problem?

e As we see more samples m, distinguish “closer” P and Q with same

Type 1I error
e Fixample: fp and fq probability densities, fq = fp + 0g, where 0 € R, g

some fized function such that fq is a valid density

— If § ~ m~ Y2, Type II error approaches a constant
e ...but other choices also possible — how to characterize them all?
General characterization of local departures from Hg:

e Write uq = pup + gm, where g,, € F chosen such that up + g,, a valid
distribution embedding

e Minimum distinguishable distance nvrri2;

|gmll 7 = em™"/?



More general local departures from null

e More advanced example of a local departure from the null

—1/2

o Recall: uq = pp + gm, and ||gn || r = cm
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Kernels vs kernels

e How does this relate to Parzen density estimate? pndersoretat, too

1 m
— E , where k satisfies / k(x)dr =1 and k(z) > 0.
m = X

e [ distance between Parzen density estimates:

Da(fp, fQ)’ :/{ Zm ;Z%(y._z)} dz
:# S k(i — miz % > k(wi —yj),

where k(x —y) = [ k(x — 2)k(y — 2)dz

e fq = fp + 09, minimum distance to discriminate fp from fq is
§ = (m)_l/zh;@dm, where h,, is width of .
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