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Motivating example: Expectation Propagation
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Motivating example: Expectation Propagation

set of ¢ variables projected
connected to f message \

proj. | [ A\ (V) Ty mvii) | arwi)

mev, (Vi) = ( my,—¢(vi) \ . My, (Vi)

. . Incomin
proj [T'f—>vi] .= arg MiNgcexpFam KL [rf—Ni H q] J

(projection onto exponential family) IEsEeg)e
from V;

e Expensive integral (besides special cases).

My f e Goal: Learn an uncertainty aware message operator
\1 s, (regression function)
TR [ 15—
\ MV~ f Mvi—fli—y = 4f=Vi-
MVa— f e Challenges: dealing with huge sample size, knowing

when to consult expensive oracle.



Overview

e Introduction to reproducing kernel Hilbert spaces

— Kernels and feature spaces

— Mapping probabilities to feature space

e Learning with distribution-valued inputs

— Learning rates achievable when samples from disributions available

[AISTATS15, JMLR in revision]

— Approximate, uncertainty-aware regression with application to EP

[UAI15]

— Learning to predict direction of causality opez=pazctat, 2ors)

e Learning with distribution-valued outputs (not this talk)



Kernels: similarity between features

e We have two objects z and z’ from a set X' (documents, images, ..

How similar are they?

).



Kernels: similarity between features

We have two objects x and 2’ from a set X (documents, images, ..

How similar are they?

Define features of objects:

— ., € F are features of x,

— @, € F are features of 2’

A kernel is the dot product between these features:

k(z,a') == (@e, Par)

A function in the RKHS F is a linear combination of features,
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Infinite dimensional feature space

- / |z —2'|?
Squared exponential kernel: k(x,x’) =exp | — 5
o



Infinite dimensional feature space

- / |z — 2’|
Squared exponential kernel: k(x,x’) =exp | — 5
o
Aj o B b<1
ej(r) o< exp(—(c— a)xQ)Hj(mJ?c),

a, b, c are functions of o, and H; is jth order Hermite polynomial.
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The kernel trick

Example RKHS function, squared exponential kernel:

flx):=> fipd
=1




The kernel trick

Example RKHS function, squared exponential kernel:

f(x) = Z a;k(x;, x)




The kernel trick

Example RKHS function, squared exponential kernel:

m
=2
1=1

where f;

m

= Z aik(x;, x
i=1
m

— Z Ozigpg)
i=1
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Probabilities in feature space: the mean trick

The kernel trick

e Given z € X for some set X,

define feature map ¢, € F,

Pr = [gpgj)} c Uy

e For positive definite k(z, x'),
k(z,2') = (@, Pur) F
e Function in the RKHS:
Vf e F,

f(CC) — <f7 9033>}—



Probabilities in feature space: the mean trick

The kernel trick

_ The mean trick
e Given z € X for some set X,

define feature map o, € F e Given P a Borel probability

| measure on X, define mean
Dr = [ X 90:(157) X } € Ly embedding up € F

up = [...Ep [gpg‘g)} } e la(J)

e For positive definite k(z, x'),
e For positive definite k(z, x'),

k(z,2') = (@, Pur) F
Bp ok(X,Y) = (1p1q) 7

e Function in the RKHS: for X ~ P and YV ~ Q.

\V/f - F) Need to ensure Bochner integrability of ¢y for x ~ P

fx) = {f, ¢z)F o Ep(f(X))=:{up,f)r



Kernels on distributions in supervised learning

e Kernels have been very widely used in supervised learning

— Support vector classification /regression, kernel ridge regression . ..



Kernels on distributions in supervised learning

e Kernels have been very widely used in supervised learning

e Simple kernel on distributions (population counterpart of set kernel)

[Haussten, 1999, (Girtmer—et—ahl, 2002]

K(P,Q) = (up, Q)7

e Squared distance between distribution embeddings (MMD)

MMDQ(MP, ,LLQ) = HMP — ,UQH?F — EPk(Xa X/) T EQk<y7y/) — 2]EF’,QIC(XJ y)



Kernels on distributions in supervised learning

e Kernels have been very widely used in supervised learning

e Simple kernel on distributions (population counterpart of set kernel)

e WaWaW-N

K(P,Q) = (up, Q)7

e Can define kernels on mean embedding features [christmann, Steinwart

NIPS10],[AISTATS15]

Mee—wally [lee—rall 5 s o1 PN
TR e 20 (1 +llwe — pall=/67) (1+||MP—MQ||;:) ,0<2

lup — pallx = Epk(x,x) + Eqk(y,y") — 2Ep qk(x,y)



Expectation Propagation

set of c variables projected
connected to f message \

proj [f dW{vid F(V) T m\@—)f(vj)} qi-v, (Vi)

mf%vi(\)i) - ( m\/i_ﬂc(\)i) \ . mVi—>f(Vi)

. . Incomin
Proj [Tf—NJ .= arg MiNgcExpFam KL [Tf%vi H q] J

(projection onto exponential family) IMESEEg)e
from V;

e Expensive integral (besides special cases)

My f e Goal: Learn an uncertainty aware message operator
\1 s, (regression function)
T [ 15—
MV, f mvi—fl,—y = 4f—=Vs-
My e Challenges: dealing with huge sample size, knowing

when to consult expensive oracle.



Distribution regression using random Fourier features

Kernel representation by random Fourier features mahimiamdRechs, 2oos]

e Bochner’s theorem: Continuous, translation-invariant kernel
k(a,b) = k(a —b) on R™ positive definite iff 3 prob. meas. K(w)

k(a —b) = EwngEctio 27 |2 cos(w' a+ ¢)cos(w'b+ c)]



Distribution regression using random Fourier features

Kernel representation by random Fourier features mahimiamdRechs, 2oos]

e Bochner’s theorem: Continuous, translation-invariant kernel
k(a,b) = k(a —b) on R™ positive definite iff 3 prob. meas. K(w)

k(a —b) = EwngEctio 27 |2 cos(w' a+ ¢)cos(w'b+ c)]
e Random features: pg4(a) € R? such that

k(a—b) ~ pa(a) va(b)

1. Draw iid. {w;}?, ~ R(w).
2. Draw iid. {¢}%, ~ U[0,2n]

9 T
3. wyla) = \/; [cos (wlTa + cl) , ..., COS (wga + cd)] c R4



Distribution regression using random Fourier features

e Given incoming messages P :=my, .y and Q := my,

e Approximate random Fourier mean embeddings:

e = Exop [@a(x)]



Distribution regression using random Fourier features

Given incoming messages P :=my, . and Q := my,

Approximate random Fourier mean embeddings:

e = Exop [@a(x)]

Approximate embeddings for kernel K on up € R

1st Mp,d _ MQ,d 2 2nd
Ka(pp,pnq) = exp (-H 22 ‘d> ~ Yo (P) va(Q).

TV
finite-dimensional Gaussian kernel

Gaussian process regression directly on features gy (P) € R? (wans
— Bayesian uncertainty estimates tell us when to consult oracle

— Efficient rank-1 updates, solution size constant as number of samples

lncreases



Expectation Propagation for Classification

@ Binary Logistic Regression

{. dot .loglstlc () . Bernoulli .]

i=1,.

e Sequentially present 4 real datasets to the operator to learn.

e If predictive variance > threshold, ask oracle.

5

x 10
06 Il infer.NET 2.5 .
Il sampling o o Il sampling
5 0.4| Il Sampling + KJIT = s Il Sampling + KJIT
- | £ 4l
0.2 =
0.5t
Banknote  Blood Fertility lonosphere Banknote  Blood Fertility lonosphere

e Left: Binary classification error with learned posterior w,
Right: EP runtime.



Expectation Propagation for Classification

§ * * [ |
8 -84 | ! | Predictive variance
g 86 |‘ | Moving average
> |
2z _ggl | ! |} — Threshold
£ R L L A R || T
g - | "~ 111 " L
2 —9.2 "Banknote «Blbod | wFertility . lonosphere | \
- 1000 2000 3000 4000 5000 6000
Factor invocations
e Initial silent period = parameter selection + mini-batch training.
e x — start of a new problem.
e Sharp rises after x indicates ability to detect distribution (problem)
change.
6h Banknote
c 4f Blood
2 Al Fertility o .
5 lonosphere Distributions of
2 ol
(@] B
S -2 . m,— ¢ = Gaussian(z).
4l o e 2




Regression using population mean embeddings

i.i.d.
o Samples z := {(up,, 4i)Yic1 =~ p(up,y) = p(ylue)p(up),

pp, = Ep, (o]

e Regression function

folpp) = /Rydp(ymP),



Regression using population mean embeddings

i.i.d.

Samples z := {(up;, 4i) Yiz1 ~ p(kpsy) = pylpe)p(up),

pp; = Ep; [ox]

Regression function

folpp) = /Rydp(ymP),

Ridge regression for labelled distributions

1

14
2 = argmin © 3 (/.
1=1

fer A

) —u) + A fl5e, (A >0)

Define RKHS H with kernel K (up, 1q) := (¥up, Vg )#:

functions from F' C F to R, where

F:={up : PP}

P set of prob. meas. on X



Regression using population mean embeddings

e Lixpected risk, Excess risk

RIf] = Epupy) (Fp) — y)° E(f, fo) = RIf2] — RIfo):

e Minimax rate jcapommettoand¥ita, 2007

E(f), 1) =0, (W%) (1<b,ce(1,2]).

— b size of input space, ¢ smoothness of f,



Regression using population mean embeddings

Expected risk, Excess risk

R =Byupg) (Flp) —v)* £ F5) = RILT = RIfo]
Minimax rate jeapommettoamd-vita, 2oaT]
E(f), 1) =0, (e—bc%) (1<bece(1,2]).
— b size of input space, ¢ smoothness of f,

N
Replace pp, with jip, = N1 Z Pa; T LR P,
j=1

Given N = ‘éa log(f) and a = 2, (and Holder condition on ¥ : F — H)
EF 1) =0, (z—%il) (1<b,ce(1,2).

Same rate as for population pp, embeddings! [aistaTsis, JMLR in revision]



Learning causal direction with mean embeddings

Additive noise model to direct an edge between random variables x and y

[Hoyer—et—all, 2009

residual variance at x

y < f(z)+e

¥ residual variance at y

X
Figure: D. Lopez-Paz



Learning causal direction with mean embeddings

Classification of cause-effect relations [opez=pPazetat, 2ots]
e Tuebingen cause-effect pairs: 82 scalar real-world examples where causes

and eﬁeCtS known [Zscheischler, J., 2014]

e Training data: artificial, random nonlinear functions with additive

gausslan noise. n,
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e Performance
81% correct

Figure:Mooij et al.(2015)



Overview

e Introduction to reproducing kernel Hilbert spaces

— Kernels and feature spaces

— Mapping probabilities to feature space

e Learning with distribution-valued inputs

— Learning rates achievable when samples from disributions available

[AISTATS15, JMLR in revision]

— Approximate, uncertainty-aware regression with application to EP

[UAI15]

— Learning to predict direction of causality (opezrazetat, 2015
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Learning when the outputs are distributions



Motivating example: Bayesian inference without a model

R

Challenges:
e No parametric model of camera dynamics (only samples)
e No parametric model of map from camera angle to image (only samples)

e Want to do filtering: Bayesian inference



Conditional distribution embedding

Bayes rule:

P = T8y mly)dy
e P(z|y) is likelihood

® T is prior

How would this look with kernel embeddings?



Conditional distribution embedding

Bayes rule:

P —
) = TRy ey
e P(z|y) is likelihood
® T is prior

How would this look with kernel embeddings?

Define RKHS G on Y with feature map 1, and kernel I(y, -)

We need a conditional mean embedding: for all g € G,

Ey+9(Y) = (9, tp(yla))g

This will be obtained by RKHS-valued ridge regression



Ridge regression and the conditional feature mean

Ridge regression from X := R to a finite vector output ) := RY (these
could be d' nonlinear features of y):

Define training data

X:[ml R i e R4xm Y:[yl ym}GRd/xm



Ridge regression and the conditional feature mean

Ridge regression from X := R to a finite vector output ) := RY (these
could be d' nonlinear features of y):

Define training data
X:[azl ZCm}ERdxm Y:[yl ym}GRd/xm
Solve

A= arg min (Y~ AXI® + N A]fs)

AeRd/ X d

where
min{d,d’}

|Allfs = tr(A"A) = Z VA



Ridge regression and the conditional feature mean

Ridge regression from X := R to a finite vector output ) := RY (these
could be d' nonlinear features of y):

Define training data
X:[azl ZCm}ERdxm Y:[yl ym}GRd/xm
Solve

A= arg min (Y~ AXI® + N A]fs)

AeRd/ X d

where
min{d,d’}

|Allfs = tr(A"A) = Z VA

Solution: A = Cy x (Cxx + m)\l)_



Ridge regression and the conditional feature mean

Prediction at new point x:

y* = Ax

where

and



Ridge regression and the conditional feature mean

Prediction at new point x:

v

y* = Ax
= Cyx (CXX + m)\I)_l €T
= > Bilz)y
i=1
where
Gile) = (K +xmD) ™| k(er,2) ... k@m.a) |
and
K=X'X k(z1,2) = «

What if we do everything in kernel space?



Ridge regression and the conditional feature mean

Recall our setup:
e Given training pairs:
(@3, i) ~ Pxy
e F on X with feature map ¢, and kernel k(x, -)
e G on Y with feature map 1, and kernel I(y, -)

We define the covariance between feature maps:

Cxx = Ex (px ® ¢x) Cxy = Exy (ox ® ¥y)

and matrices of feature mapped training data

X =1 @z ... g@xm} YZ:[wyl %m}



Ridge regression and the conditional feature mean

ObJeCtlve: [Weston et al. (2003), Micchelli and Pontil (2005), Caponnetto and De Vito (2007), ICML12,

ICML13 ]

A=ar min (E Y—AX2—|—)\A2>, All4q = %
¢ min o (Bxv IV = AXIG - AIAlRs) . JAlls =303

Solution same as vector case:
A = Cyx (CXX -+ m)\I)_l :

Prediction at new = using kernels:

Ap, = [ Vyy - Yy, } (K +xmI)™* [ k(xy,2) ... k(xm,z)

where K;; = k(z;, ;)



Ridge regression and the conditional feature mean

How is loss ||Y — AX Hé relevant to conditional expectation of some

EY|$g(Y)? Deﬁne: [Song et al. (2009), Grunewalder et al. (2013)]

Ly |z = Apg



Ridge regression and the conditional feature mean

How is loss ||Y — AX Hé relevant to conditional expectation of some

EY|$g(Y)? Deﬁne: [Song et al. (2009), Grunewalder et al. (2013)]

Ky |z = Apy

We need A to have the property

Ey,9(Y) = (g, iy |2)g
— <gaA90:)3>§7



Ridge regression and the conditional feature mean

How is loss ||Y — AX Hé relevant to conditional expectation of some
EY|$g(Y)? Deﬁne: [Song et al. (2009), Grunewalder et al. (2013)]
Ky |z = Apy

We need A to have the property

Ey,9(Y) = (g, iy |2)g
— <97A90:)3>Q

Natural risk function for conditional mean
. 142

R(Aa PXY) = ||Sl||l£1 Ex (EY\Xg(Y)) o éga ASOX>QJ 3
g < \ - ~ _J/ -~

Target Estimator




Ridge regression and the conditional feature mean

The squared loss risk provides an upper bound on the natural risk.

R(A,Pxy) < Exy ||[¢y — ASOXH?;




Ridge regression and the conditional feature mean

The squared loss risk provides an upper bound on the natural risk.

R(A,Pxy) < Exy ||[¢y — ASOX\@

Proof: Jensen

R(A,Pxy) = sup Ex [(By1xg(Y)) — (g, Apx)g]?.
< Exy IISllllgl 9(Y) — (g, Apx)g]



Ridge regression and the conditional feature mean

The squared loss risk provides an upper bound on the natural risk.

R(A,Pxy) < Exy ||[¢y — ASOX\@

Proof: Jensen

R(A,Pxy) = sup Ex [(By1xg(Y)) — (g, Apx)g]?.
< Exy IISllllgl 9(Y) — (g, Apx)g]’

= Exy sup [(9,%y)g — <97A90X>9]2
lg]]<1



Ridge regression and the conditional feature mean

The squared loss risk provides an upper bound on the natural risk.

R(A,Pxy) < Exy ||[¢y — ASOX\@

Proof: Jensen

R(A,Pxy) = sup Ex [(By1xg(Y)) — (g, Apx)g]?.
< Exy IISllllgl 9(Y) — (g, Apx)g]

=Exy sup (g, %y — Apx)¢
lg]|<1



Ridge regression and the conditional feature mean

The squared loss risk provides an upper bound on the natural risk.

R(A,Pxy) < Exy ||[¢y — ASOX\@

Proof: Jensen

R(A,Pxy) = sup Ex [(By1xg(Y)) — (g, Apx)g]?.
< Exy IISllllgl 9(Y) — (g, Apx)g]

=Exy sup (g, %y — Apx)¢
lg]|<1

= Exvy vy — Apx|l;



Ridge regression and the conditional feature mean

The squared loss risk provides an upper bound on the natural risk.

R(A,Pxy) < Exy ||[¢y — ASOX\@

Proof: Jensen

R(A,Pxy) = sup Ex [(By1xg(Y)) — (g, Apx)g]?.
< Exy IISllllgl 9(Y) — (g, Apx)g]

=Exy sup (g, %y — Apx)¢
lg]|<1

= Exvy vy — Apx|l;

If we assume Ey [g(Y)|X = x| € F then upper bound tight



Kernel Bayes’ law

e Prior: Y ~ n(y)
e Likelihood: (X|y) ~ P(z|y) from training distrib. P(z,y)

e Joint distribution: Q(z,vy) = P(x|y)n(y)

Warning: Q # P, change of measure from P(y) to m(y)

R




Kernel Bayes’ law

e Prior: Y ~ n(y)
e Likelihood: (X|y) ~ P(z|y) from training distrib. P(z,y)

e Joint distribution: Q(z,vy) = P(x|y)n(y)

Warning: Q # P, change of measure from P(y) to m(y)

e Bayes’ law: Want nq(,,) with law

P(z|y)m(y)




Kernel Bayes’ law

e Posterior embedding via the usual conditional update,

—1
Ha(ylz) = CQua) Cqem P



Kernel Bayes’ law

e Posterior embedding via the usual conditional update,

—1
ragle) = Cae)Cqem Po-
e Given mean embedding of prior: g, (y)

e Learn marginal covariance by regression:

CQ(:B,&:) — /(@x & 90:13) P(x\y)ﬂ(y)d:cdy — C(a::c)ycy_ylﬂﬁ(y)



Kernel Bayes’ law

Posterior embedding via the usual conditional update,

—1
Hagylz) = Cae) Cqe.e)Pe-
Given mean embedding of prior: p,(y)

Learn marginal covariance by regression:

CQ(:B,&:) — /(pr & 90:13) P(x\y)ﬂ(y)d:cdy — C(a::c)ycy_ylﬂﬁ(y)

Learn cross-covariance by regression:

CQ(y,:c) — / (gby & pr) P(I‘y)7‘&‘(y)d£€dy — C(ya:)yCy_yluw(y)'



Kernel Bayes’ law: consistency result

How to compute posterior expectation from data?
Given samples: {(z;,y;)};2q from Pyy, {(u;)}7_; from prior 7.
Want to compute E[g(Y )| X = z] for g in G

For any «x € &,
4

g, Ity xkx (2) = Elg(Y)|X = a]| = Op(n"27), (n— o0),

where

-~ gy =(9(y1),-- -, 9(yn))" €R™

— kx(z) = (k(z1,2), ..., klzn, x)) € R?

— Ry |x learned from the samples, contains the w;
Smoothness assumptions:

o /py € R(C;,/é), where py p.d.f. of Py,
o Blg(V)IX =] € R(Cqpom))



Experiment: Kernel Bayes’ law vs EKF




Experiment: Kernel Bayes’ law vs EKF

Compare with extended Kalman

filter (EKF') on camera 5/\

orientation task 5 %
3600 downsampled frames of | | |

20 x 20 RGB pixels
(Xt S [07 1]1200)

1800 training frames, remaining

for test.

Gaussian noise added to X;.



Experiment: Kernel Bayes’ law vs EKF

e Compare with extended Kalman
filter (EKF') on camera
orientation task

e 3600 downsampled frames of
20 x 20 RGB pixels
(Xt S [07 1]1200)

e 1800 training frames, remaining

for test.

e (Gaussian noise added to X;.

Average MSE and standard errors (10 runs)

KBR (Gauss) KBR (Tr) Kalman (9 dim.) Kalman (Quat.)
02 =10"* | 0.210+0.015 0.146 & 0.003 1.980 £ 0.083 0.557 = 0.023
02 =10"3 | 0.2224+0.009 0.210 £ 0.008 1.935 £ 0.064 0.541 £+ 0.022
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e Gretton, A., Borgwardt, K., Rasch, M., Schoelkopf, B., Smola, A. (2012). A kernel two- sample test. JMLR
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embeddings as regressors. ICML.

Grunewalder, S., Gretton, A., Shawe-Taylor, J. (2013). Smooth operators. ICML.
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kernel framework for nonparametric inference in graphical models. IEEE Signal Processing Magazine.

Fukumizu, K., Song, L., Gretton, A. (2013). Kernel Bayes rule: Bayesian inference with positive definite
kernels, JMLR






Conditions for ridge regression = conditional mean

Conditional mean obtained by ridge regression when Ey [g(Y )| X = x| € F
Given a function g € G. Assume Fyx [g(Y)|X = -] € F. Then

CxxEy|x [g(Y)|X =] =Cxvyyg.

Why this is useful:

By \x [9(Y)|X = 2] = (By|x [9(Y)|X =], 02)F
= (Ox%Cxv g, 0z)F
— <97\C1YXC)_(41X;SOCIJ>Q

-~

regression



Conditions for ridge regression = conditional mean

Conditional mean obtained by ridge regression when Ey [g(Y )| X = x| € F
Given a function g € G. Assume Fyx [g(Y)|X = -] € F. Then

CxxEy|x [g(Y)|X =] =Cxvyyg.
PI‘OOf: [Fukumizuet—al, 2004]

For all f € F, by definition of Cx x,

([ CxxEyx [g(YV)|X =]) -
= cov (f, By|x [9(Y)]X =)
= Ex (f(X) Ey|x [g(Y)|X])
= Exy (f(X)g(Y))

= (f,Cxvg),

by definition of C'xy .
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