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Outline

Motivating application:
m Fast estimation of complex multivariate densities
The infinite exponential family:
m Multivariate Gaussian — Gaussian process
m Finite mixture model — Dirichlet process mixture model
m Finite exponential family — 777
In this talk:

m Guaranteed speed improvements by Nystrom

m Conditional models
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Goal: learn high dimensional, complex densities
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We want:

m Efficient computation and representation

m Statistical guarantees
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The exponential family

The exponential family in in R¢

p(w)zexp< n o, T(z) >— A(n) 9o()
~—

N—— e N——
natural sufficient log base
parameter startistic normaliser measure

Examples:
m Gaussian density: T'(z) = [ z 2 }
m Gamma density: T'(z) = [ Inz «z ]

Can we extend this to infinite dimensions?
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Infinitely many features using kernels

Kernels: dot products
of features

Feature map ¢(z) € H,

p(z)=[..0iz).. ] €L

For positive definite k&,

k(z,2') = {(p(z), o(z"))n

Infinitely many features
o(z), dot product in
closed form!
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Infinitely many features using kernels

Kernels: dot products
of features

Feature map ¢(z) € H,

p(z)=[..0iz).. ] €L

For positive definite k&,

k(z,2') = {(p(z), o(z"))n

Infinitely many features
o(z), dot product in
closed form!

Exponentiated quadratic kernel

k(z,a') = exp (—v ||z - 2'||%)

_901(517) /\

(@) = | ZONN_
pa(z) |~

— s

Features: Gaussian Processes for Machine learning, Ras-
mussen and Williams, Ch. 4. 5/39




Functions of infinitely many features

Functions are linear combinations of features:

flx) =

(f0(x))y

Zfew(x)

f1
f2
f3

T

o1(z) N‘
j/ —
a2(x)
AVAN
#33)  I~o
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How to represent functions?

Function with exponentiated quadratic kernel:

flz): =) auk(z, z) o
i=1 o
=3 e 0(a), 02y £,

1=1
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How to represent functions?

Function with exponentiated quadratic kernel:

f(z):= iaik(xi, ) 0;
i=1 0sl
= > ai (p(w), p(@))y, £,
i=1
= <Z aip(zi), w(z)> ol
=1 H -
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How to represent functions?

Function with exponentiated quadratic kernel:

1r

f(z): = iaik(xi, ) ogf
1=1 0.6t
=3 0 (p(@:), 9(2))y =
i=1
= <Z (), w(z)> Wy
=1 H -

= > Jepe(z)
z:z1 e fo= 32121 aipe(Ti)
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The kernel exponential family

Kernel exponential families [canu and smola (2006), Fukumizu (2000)] and their
G‘P Counterparts [Adams, Murray, MacKay (2009), Rasmussen(2003)]

P = {pi(2) = U #Dn 4 gy(a), s € 0, f € F)

where
F = {f eEH : A(f) :log/ef(m)qo(:z:) dz < oo}
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The kernel exponential family

Kernel exponential families [canu and smola (2006), Fukumizu (2000)] and their
G‘P Counterparts [Adams, Murray, MacKay (2009), Rasmussen(2003)]

P = {pi(2) = U #Dn 4 gy(a), s € 0, f € F)

where
F = {f eEH : A(f) :log/ef(m)qo(:z:) dz < oo}

Finite dimensional RKHS: one-to-one correspondence between finite
dimensional exponential family and RKHS.

m Example: Gaussian kernel, T'(z) = [ r z° ] = ¢(z) and

k(z,y) = zy + z?y?
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Fitting an infinite dimensional exponential family

Given random samples, Xj,..., X, drawn i.i.d. from an unknown
density, po := pf, € P, estimate po
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How not to do it: maximum likelihood

Maximum likelihood:

n
— arg max lo X;
fur gfef_z g o (X:)

= argmaXZf ) — nlog/ ef(:”)qo(:c) dz

fE]T

Solving the above yields that fis;, satisfies

=S 0(@) = [ pl(e)pnu(e) do

I1l posed for infinite dimensional ¢(z)!
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Score

matching

Journal of Machine Leaming Research 6 (2005) 695-708 Submitted 11/04; Revised 3/05; Published 4/05

Estimation of Non-Normalized Statistical Models
by Score Matching

Aapo Hyvirinen AAPO.HYVARINEN@HELSINKI.FI

Helsinki Institute for Information Technology (BRU)
Department of Computer Science
FIN-00014 University of Helsinki, Finland

Editor: Peter Dayan

Loss is Fisher Score:

Dr(po, pf) : /po )|V log po(z) — V5 log ps(z)|* dz

11/39



Score matching (general version)

Assuming ps to be differentiable (w.r.t. z) and
J po(2)| V2 log ps(2)||? dz < 00, VO € ©

Dr(po, pr) /po z) ||V log po(z) — V. log ps(z)|| dz
é/ Z“’: <alogpf( )>2+3210gpf($) i
~\2 oz dz?
/ Halogpo( )
*3

where partial integration is used in (a) under the condition that

Olog ps(z
po(z) ailf()
(3

‘da:

—0asz; — Foo,Ve=1,...,d
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Empirical score matching

Py, represents n i.i.d. samples from Py

310gpf(X)>2 8° log ps(Xa)
Dy (pn, pf) ZZ<2( 3z, 3 +C

alzl i

Since Dp(pn, pr) is independent of A(f),
fr = argmin Dr(pn, py)

should be easily computable, unlike the MLE.
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Empirical score matching

P, represents n i.i.d. samples from Py

310gpf(X)>2 8° log ps(Xa)
Dy (pn, pf) ZZ<2< 3z, 3 +C

alzl i

Since Dp(pn, pr) is independent of A(f),
fr = argmin Dr(pn, py)

should be easily computable, unlike the MLE.

Add extra term A|[f||3, to regularize.
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A kernel solution

Infinite exponential family:

pr(z) = €
Thus

) ) 8
55 08 pf(z) = 32 (fro(z))y + 5 108 q(z).

14/39



A kernel solution

Infinite exponential family:

frp(@))n—A(f)

ps(z) = €' do()

Thus

) ) 8
55 08 pf(z) = 32 (fro(z))y + 5 108 q(z).

Kernel trick for derivatives:

5] 15}

X) = —p(X
52100 = (£, p(5))
Dot product between feature derivatives:

K (X) 9 (X' _872;9()( )'d)
3:1% v ' B:Ej v ’H N (9:121'3(1:(1_1_]‘ '

14/39



A kernel solution

Infinite exponential family:

Thus 5 5 5
—1 = — —1 .
5g 108 Pr(2) = o {f,9(2))y + 5 -log qo(2)
Kernel trick for derivatives:

5 f 00 = (. 5m0X))

Dot product between feature derivatives:

9 (X)i (X' _872;9()( )'d)
3:1% v ' B:Ej v ’H N (9:121'3(1:(1_1_]‘ '
By representer theorem:
=af+ Z Z Be ]

=1j=1 ] 14/39



An RKHS solution

The RKHS solution

—a£+zz,3]

{=17=1

Need to solve a linear system
-1
Br=—=| Gxx +nAl hx
——

ndxnd

Very costly in high dimensions!

0.4
0.2

-0.2
-0.4
-0.6
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The Nystrom approximation



Nystrom approach for efficient solution

m Find best estimator f; ,, in Hy := span {0:k(Ya, ')}ag[m],iqd] , Where
Yo € {z;}]; chosen at random.

m Nystrom solution:

t
Brm = — 1p} Bxy + X Gyy | hy
n,m n XY

mdxnd mdxmd

Solve in time O(nm?d?), evaluate in time O(md).

Sill cubic in d, but similar results if we take a random dimension per
datapoint.
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Consistency: original solution

Define C as the covariance between feature derivatives. Then from

[Sriperumbudur et al. JMLR (2017)]

m Rates of convergence: Suppose
fo € R(CP) for some 8 > 0.
)\ = nimax{é’m} asn — oo.
Then )
L2
Dr(po, pf.) = Opo (n_mln{372(ﬁ+1)}>
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Consistency: original solution

Define C as the covariance between feature derivatives. Then from

[Sriperumbudur et al. JMLR (2017)]

m Rates of convergence: Suppose
* fo € R(CP) for some B > 0.

— max{

i 1
e A=n 3’2<ﬁ+1>}asn—>oo.

Then )
- f2
Dr(po, pf.) = Opo <n_mln{372(ﬁ+1)}>

m Convergence in other metrics: KL, Hellinger, L,,1 < r < 00.
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Consistency: Nystrom solution

Define C as the covariance between feature derivatives.

m Suppose
fo € R(CP) for some B > 0.
Number of subsampled points m = Q(n? logn) for
6 = (min(28,1) +2)7* € [3, ]
A= @5 ) asn o oo,
m Then

DF(pO:pfn,m) — OPO (n_min{g’Z(ﬂil)})

19/39



Consistency: Nystrom solution

Define C as the covariance between feature derivatives.

m Suppose
fo € R(CP) for some B > 0.
Number of subsampled points m = Q(n? logn) for
6 = (min(28,1) +2)7* € [3, ]
A= @5 ) asn o oo,
m Then

DF(pO:pfn,m) — OPO (n_min{g’Z(ﬂil)})

m Convergence in other metrics: KL, Hellinger, L,,1 < r < co. Same
rate but saturates sooner.
Full KL original saturates at Op, (n_i)
Nystrom saturates at Op, (n_i)
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Experimental results: ring

200

150

100
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Experimental results: comparison with autoencoder

Score

m Comparison with regularized

auto-encoders [Alain and Bengio

(JMLR, 2014)] %=
m n=>500 training points e

full

nystrom, m = 42

nystrom, m = 167
dae, m = 100
dae, m = 5000
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Experimental results: grid of Gaussians
Sample:
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Experimental results: comparison with autoencoder

500 -

Score

m Comparison with regularized

auto-encoders [Alain and Bengio

(JMLR, 2014)] %=
m n=>500 training points e

full

nystrom, m = 42

nystrom, m = 167
dae, m = 100
dae, m = 5000
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The kernel conditional exponential
family



The kernel conditional exponential family

m Can we take advantage of the
graphical structure of
(X1, .y X4)?

m Start from a general
factorization of P

Conditional densities PYIX

Xy X2)

parents
of )(;

m Estimate each factor
independently
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Kernel conditional exponential family

General definition, kernel conditional exponential family

[Smola and Canu, 2006]

pr(yle) = eV V@In=Al2) gy (y) log/ go(y) e H@n gy

(joint feature map ¥(z,v))
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Kernel conditional exponential family

Our kernel conditional exponential family:

ps(z) = eV?Wem AUl gy (y) log/ go(y) el

linear in the sufficient statistic ¢(vy) € G.
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Kernel conditional exponential family

Our kernel conditional exponential family:

linear in the sufficient statistic ¢(y) € G.

What does this RKHS look like?

[Micchelli and Pontil, (2005)]

(fe, 0(¥))g
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Kernel conditional exponential family

Our kernel conditional exponential family:

ps(z) = el #(¥e= 402N gy (y) log/ go(y) et

linear in the sufficient statistic ¢(y) € G.

What does this RKHS look like?

[Micchelli and Pontil, (2005)]

<fm¢£y)>g m ]_"; : H — G is a linear
= (T2f,8(v))g operator
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Kernel conditional exponential family

Our kernel conditional exponential family:

ps(z) = el #(¥e= 402N gy (y) log/ go(y) et

linear in the sufficient statistic ¢(y) € G.

What does this RKHS look like?

[Micchelli and Pontil, (2005)]

(fz, 8(¥))g
= (T2, ¢(¥))g m [, : G— Hisalinear
= (f,T20(¥))n operator.

m The feature map

Y(z,y) = Tz(y)
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What is our loss function?

The obvious approach: minimise

Dr [po(z)po(yl|z)l ps(z)pr(y|2)]

Problem: the expression still contains [ po(y|z)dy.
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What is our loss function?

The obvious approach: minimise

Dr [po(z)po(yl|z)l ps(z)pr(y|2)]

Problem: the expression still contains [ po(y|z)dy

Our loss function:

Br(po, 1) i= [ Dalpo(ylo)lIps(y]2))m(a)ds

for some 7(z) that includes the support of p(z).
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Finite sample estimate of the conditional density

Use the simplest operator-valued RKHS I'; = Igk(z, ).

', : G—oH
P:z:¢(y) = ¢(y)k($))
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Finite sample estimate of the conditional density
Use the simplest operator-valued RKHS I'; = Igk(z, ).

r, : G—H
Tep(y) = o(v)k(z,)
Solution:
n d
Frwlz) =300 By k(Xs, )3, 8( Vs, v) + af
b—1:1=1
where

B = —% (G+nAI) th
(G)(a,i)(b.5) =k(Xa, X5)0:0; 1 aR(Ya, Y3),
and (¢(v), d(v'))g = S, v').
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Expected conditional score: a failure case

m P(Y|X =1)

~
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Expected conditional score: a failure case

m P(Y|X =1)
s P(Y|X = -1)

~
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Expected conditional score: a failure case

m P(Y|X =1)
m P(Y|X =-1)
m P(Y)=4(P(Y|X =1)+ P(Y|X =-1))

AN

~
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Expected conditional score: a failure case

m P(Y|X =1)
m P(Y|X =-1)
m P(Y)=4(P(Y|X =1)+ P(Y|X =-1))

AN

Drp(p(ylz), p(y)) =0
~——— N~
target model

~
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Expected conditional score: a failure case

Why does it fail? Recall

Dr(po(ylz), ps(y|z)) == /W(%)DF(JOo(ylﬂc),ZfJf(yIfE))dﬂc
Note that

Dr(p(yle = 1), p(s)) = [ p(v[1) [ V=log p(v]1) — Valog p(v) dy

target model

Model p(y) puts mass where target conditional p(y|1) has no support.

m Care needed when this failure mode approached!
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Unconditional vs conditional model in practice

m Red Wine: Physiochemical measurements on wine samples.

m Parkinsons: Biomedical voice measurements from patients with early
stage Parkinson’s disease.

Parkinsons Red Wine
Dimension 15 11
Samples 5875 1599
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Unconditional vs conditional model in practice

m Red Wine: Physiochemical measurements on wine samples.
m Parkinsons: Biomedical voice measurements from patients with early
stage Parkinson’s disease.

Comparison with

m LSCDE model: with consistency guarantees [sugiyama et a1, (2010)]
m RNADE model: mixture models with deep features of parents, no
guarantees [uria et al. (2016)]
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Unconditional vs conditional model in practice

m Red Wine: Physiochemical measurements on wine samples.
m Parkinsons: Biomedical voice measurements from patients with early
stage Parkinson’s disease.

Comparison with

m LSCDE model: with consistency guarantees [sugiyama et a1, (2010)]

m RNADE model: mixture models with deep features of parents, no
guarantees [uria et al. (2016)]

Negative log likelihoods (smaller is better, average over 5 test/train
splits)

Parkinsons Red wine

KCEF 286+0.77 11.8+0.93
LSCDE 15.89+148 1443+15
NADE 3.63+£0.0 9.98 £ 0.0
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Results: unconditional model

Red Wine Parkinsons
Data ’ - . . . Data
61 KEF : KEF
4 -
. 21
~ 21 ' 9
x ¢ <
0 - v X
0 -
_2 _
_4 -
_6 T T T T T _2 i T
-6 -4 -2 O 2 4 -1 1
X6 X15
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Results: conditional model

Red Wine Parkinsons
) Data
61 KCEF
4 -
2 .
2 -
L 2
0 - X
0 .
_2 . .
4 Data *
KCEF 5 ] .
_6 T T T T T T
-6 -4 -2 0 2 4 -1 1
X6 X15
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Co-authors

From Gatsby:
m Michael Arbel

m Heiko Strathmann

m Dougal Sutherland

External collaborators:

m Kenji Fukumizu

m Bharath Sriperumbudur

Questions?
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Score matching: 1-D proof

Dr(po, py)

/ (dlogpo z) dlogpf(cv))Qdm
2 dz
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Score matching: 1-D proof

Dr(po, pf)
2/ (dlogpo z) dlogpf( )>2dm

:;/tlpo(:z:) (dlogio ) dz + - / (dlogpf )>2dm

_pro(m)<d10gd§f( )) (dlogdzo( )> iz
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Score matching: 1-D proof

Dr(po, py)

2/ (dlogpo z) dlogpf( )>2dm
2

L (S g (S0

_/abpo(m)<d10gd§f( )) (dlogdzo( )) iz

Final term:

/ o (dlogpf )) (dlogdg;o(a:)>d$
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Score matching: 1-D proof

Dr(po, pf)
2/ (dlogpo z) dlogpf( )>2dm

:;/tlpo(:z:) (dlogio ) dz + / (dlogpf ))zdm

_/abpo(m)<d10gd§f( )) (dlogdzo( )) iz

Final term:

/ o (dlogpf )) (dlogdg;o(a:)>d$

- [ty (D) D
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Score matching: 1-D proof

Dr(po, py)

/ (dlogpo dlogpf( )>2dm
3

_ / (dlogpo )d—l—/ (dlogpf )2dm
dz

B (leng )dlogpo )

Final term

(dlogpf )
_/M<d10gpf 2(/}%@;}3 )

[( dlog pf > / d2 log p¢(z
—_— p .

dz?

d log po(z >
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