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Outline

Motivating application:

Fast estimation of complex multivariate densities

The infinite exponential family:

Multivariate Gaussian ! Gaussian process

Finite mixture model ! Dirichlet process mixture model

Finite exponential family ! ???

In this talk:

Guaranteed speed improvements by Nystrom

Conditional models
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Goal: learn high dimensional, complex densities
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We want:

Efficient computation and representation
Statistical guarantees
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The exponential family

The exponential family in in Rd

p(x ) = exp

0BBBBBBBB@
*

�|{z}
natural

parameter

; T (x )| {z }
sufficient
startistic

+
� A(�)| {z }

log
normaliser

1CCCCCCCCA
q0(x )| {z }
base

measure

Examples:

Gaussian density: T (x ) =
h

x x 2
i

Gamma density: T (x ) =
h
ln x x

i
Can we extend this to infinite dimensions?
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Infinitely many features using kernels

Kernels: dot products
of features

Feature map '(x ) 2 H,

'(x ) = [: : : 'i (x ) : : :] 2 `2

For positive definite k ,

k(x ; x 0) = h'(x ); '(x 0)iH
=


k(x ; �); k(x 0; �)

�
H

Infinitely many features
'(x ), dot product in
closed form!
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Exponentiated quadratic kernel

k(x ; x 0) = exp
�
�
 kx � x 0k2

�

Features: Gaussian Processes for Machine learning, Ras-
mussen and Williams, Ch. 4. 5/39



Functions of infinitely many features

Functions are linear combinations of features:
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How to represent functions?

Function with exponentiated quadratic kernel:

f (x ) : =
mX

i=1

�ik(xi ; x )

=
mX

i=1

�i h'(xi ); '(x )iH

=

* mX
i=1

�i'(xi ); '(x )

+
H

=
1X
`=1

f`'`(x )
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The kernel exponential family

Kernel exponential families [Canu and Smola (2006), Fukumizu (2009)] and their
GP counterparts [Adams, Murray, MacKay (2009), Rasmussen(2003)]

P =
n
pf (x ) = ehf ;'(x )iH�A(f )q0(x ); x 2 
; f 2 F

o
where

F =

�
f 2 H : A(f ) = log

Z
e f (x )q0(x ) dx <1

�

Finite dimensional RKHS: one-to-one correspondence between finite
dimensional exponential family and RKHS.

Example: Gaussian kernel, T (x ) =
h

x x 2
i
= '(x ) and

k(x ; y) = xy + x 2y2
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Fitting an infinite dimensional exponential family

Given random samples, X1; : : : ;Xn drawn i.i.d. from an unknown
density, p0 := pf0 2 P, estimate p0
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How not to do it: maximum likelihood

Maximum likelihood:

fML = argmax
f 2F

nX
i=1

log pf (Xi )

= argmax
f 2F

nX
i=1

f (Xi )� n log
Z

e f (x )q0(x ) dx :

Solving the above yields that fML satisfies

1
n

nX
i=1

'(xi ) =

Z
'(x )pfML(x ) dx

where pfML = dPML
dx .

Ill posed for infinite dimensional '(x )!
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Score matching

Loss is Fisher Score:

DF (p0; pf ) :=
1
2

Z
p0(x ) krx log p0(x )�rx log pf (x )k2 dx
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Score matching (general version)
Assuming pf to be differentiable (w.r.t. x ) andR

p0(x )krx log pf (x )k2 dx <1; 8 � 2 �

DF (p0; pf ) :=
1
2

Z
p0(x ) krx log p0(x )�rx log pf (x )k2 dx

(a)
=

Z
p0(x )

dX
i=1

 
1
2

�
@ log pf (x )

@xi

�2

+
@2 log pf (x )

@x 2
i

!
dx

+
1
2

Z
p0(x )





@ log p0(x )
@x





2

dx

where partial integration is used in (a) under the condition that

p0(x )
@ log pf (x )

@xi
! 0 as xi ! �1; 8 i = 1; : : : ; d
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Empirical score matching

pn represents n i.i.d. samples from P0

DF (pn ; pf ) :=
1
n

nX
a=1

dX
i=1

 
1
2

�
@ log pf (Xa)

@xi

�2

+
@2 log pf (Xa)

@x 2
i

!
+C

Since DF (pn ; pf ) is independent of A(f ),

f �n = argmin
f 2F

DF (pn ; pf )

should be easily computable, unlike the MLE.

Add extra term �kf k2
H to regularize.

13/39



Empirical score matching

pn represents n i.i.d. samples from P0

DF (pn ; pf ) :=
1
n

nX
a=1

dX
i=1

 
1
2

�
@ log pf (Xa)

@xi

�2

+
@2 log pf (Xa)

@x 2
i

!
+C

Since DF (pn ; pf ) is independent of A(f ),

f �n = argmin
f 2F

DF (pn ; pf )

should be easily computable, unlike the MLE.

Add extra term �kf k2
H to regularize.

13/39



A kernel solution
Infinite exponential family:

pf (x ) = ehf ;'(x )iH�A(f )q0(x )

Thus
@

@x
log pf (x ) =

@

@x
hf ; '(x )iH +

@

@x
log q0(x ):

Kernel trick for derivatives:
@

@xi
f (X ) =

�
f ;

@

@xi
'(X )

�
H

Dot product between feature derivatives:*
@

@xi
'(X );

@

@xj
'(X 0)

+
H

=
@2

@xi@xd+j
k(X ;X 0)

By representer theorem:

f �n = ��̂ +
nX
`=1

dX
j=1

�`j
@'(X`)

@xj
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An RKHS solution

The RKHS solution

f �n = ��̂ +
nX
`=1

dX
j=1

�`j
@'(X`)

@xj

Need to solve a linear system

��n = �
1
�

0B@GXX| {z }
nd�nd

+ n�I

1CA
�1

hX

Very costly in high dimensions!

-5 0 5

x

-0.6

-0.4

-0.2

0

0.2

0.4

f(
x
)

15/39



The Nystrom approximation
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Nystrom approach for efficient solution

Find best estimator f �n ;m in HY := span f@ik(ya ; �)ga2[m ];i2[d ] ; where
ya 2 fxig

n
i=1 chosen at random.

Nystrom solution:

��n ;m = �

0B@ 1
n

B>
XY BXY| {z }

md�nd

+ � GYY| {z }
md�md

1CA
y

hY

Solve in time O(nm2d3), evaluate in time O(md):
� Sill cubic in d , but similar results if we take a random dimension per

datapoint.
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Consistency: original solution

Define C as the covariance between feature derivatives. Then from
[Sriperumbudur et al. JMLR (2017)]

Rates of convergence: Suppose
� f0 2 R(C �) for some � > 0.

� � = n�max
�

1
3 ;

1
2(�+1)

	
as n !1:

Then
DF (p0; pfn ) = Op0

�
n�min

�
2
3 ;

�

2(�+1)

	�

Convergence in other metrics: KL, Hellinger, Lr ; 1 < r <1.
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Consistency: Nystrom solution

Define C as the covariance between feature derivatives.

Suppose
� f0 2 R(C �) for some � > 0.
� Number of subsampled points m = 
(n� logn) for

� = (min(2�; 1) + 2)�1 2
� 1
3 ;

1
2

�
� � = n�max

�
1
3 ;

1
2(�+1)

	
as n !1:

Then
DF (p0; pfn;m ) = Op0

�
n�min

�
2
3 ;

�

2(�+1)

	�

Convergence in other metrics: KL, Hellinger, Lr ; 1 < r <1. Same
rate but saturates sooner.

� Full KL original saturates at Op0

�
n�

1
2

�
� Nystrom saturates at Op0

�
n�

1
3

�
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Experimental results: ring
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Experimental results: comparison with autoencoder
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(JMLR, 2014)]
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Experimental results: grid of Gaussians
Sample:
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Experimental results: comparison with autoencoder
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The kernel conditional exponential
family
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The kernel conditional exponential family
Can we take advantage of the
graphical structure of
(X1; :::;Xd)?

Start from a general
factorization of P

P(X1; :::;Xd)

=
Y
i

P(Xi j X�(i)| {z }
parents
of Xi

)

Estimate each factor
independently
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Kernel conditional exponential family
General definition, kernel conditional exponential family
[Smola and Canu, 2006]

pf (y jx ) = ehf ; (x ;y)iH�A(f ;x )q0(y) A(f ; x ) = log
Z

qo(y)ehf ; (x ;y)iHdy

(joint feature map  (x ; y))
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Kernel conditional exponential family
Our kernel conditional exponential family:

pf (x ) = ehfx ;�(y)iG�A(f ;x )q0(y) A(f ; x ) = log
Z

qo(y)ehfx ;�(y)iG

linear in the sufficient statistic �(y) 2 G.
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Kernel conditional exponential family
Our kernel conditional exponential family:

pf (x ) = ehfx ;�(y)iG�A(f ;x )q0(y) A(f ; x ) = log
Z

qo(y)ehfx ;�(y)iG

linear in the sufficient statistic �(y) 2 G.

What does this RKHS look like?
[Micchelli and Pontil, (2005)]

hfx ; �(y)iG
= h��x f ; �(y)iG
= hf ;�x�(y)iH

��x : H ! G is a linear
operator�x : G ! H is a linear
operator.

The feature map
 (x ; y) := �x�(y)
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What is our loss function?

The obvious approach: minimise

DF [p0(x )p0(y jx )kpf (x )pf (y jx )]

Problem: the expression still contains
R

p0(y jx )dy .

Our loss function:

eDF (p0; pf ) :=

Z
DF (p0(y jx )jjpf (y jx ))�(x )dx

for some �(x ) that includes the support of p(x ):
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Finite sample estimate of the conditional density
Use the simplest operator-valued RKHS �x = IGk(x ; �).

�x : G ! H

�x�(y) 7! �(y)k(x ; �)

Solution:

f �n (y jx ) =
nX

b=1

dX
i=1

�(b;i)k(Xb ; x )@iK(Yb ; y) + ��̂

where

��n = �
1
�
(G + n�I )�1 h

(G)(a ;i);(b;j ) =k(Xa ;Xb)@i@j+dK(Ya ;Yb);

and h�(y); �(y 0)iG = K(y ; y 0).
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Expected conditional score: a failure case

P(Y jX = 1)
P(Y jX = �1)
P(Y ) = 1

2(P(Y jX = 1) + P(Y jX = �1))

eDF (p(y jx )| {z }
target

; p(y)| {z }
model

) = 0
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Expected conditional score: a failure case

Why does it fail? Recall

eDF (p0(y jx ); pf (y jx )) :=
Z
�(x )DF (p0(y jx ); pf (y jx ))dx

Note that

DF (p(y jx = 1)| {z }
target

; p(y)| {z }
model

) =

Z
p(y j1) krx log p(y j1)�rx log p(y)k2 dy

Model p(y) puts mass where target conditional p(y j1) has no support.

Care needed when this failure mode approached!
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Unconditional vs conditional model in practice

Red Wine: Physiochemical measurements on wine samples.

Parkinsons: Biomedical voice measurements from patients with early
stage Parkinson’s disease.

Parkinsons Red Wine
Dimension 15 11
Samples 5875 1599
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Unconditional vs conditional model in practice

Red Wine: Physiochemical measurements on wine samples.
Parkinsons: Biomedical voice measurements from patients with early
stage Parkinson’s disease.

Comparison with

LSCDE model: with consistency guarantees [Sugiyama et al., (2010)]

RNADE model: mixture models with deep features of parents, no
guarantees [Uria et al. (2016)]

Negative log likelihoods (smaller is better, average over 5 test/train
splits)

Parkinsons Red wine

KCEF 2:86� 0:77 11:8� 0:93
LSCDE 15:89� 1:48 14:43� 1:5
NADE 3:63� 0:0 9:98� 0:0
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Results: unconditional model
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Results: conditional model
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External collaborators:
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Questions?
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Score matching: 1-D proof

DF (p0; pf )

=
1
2

Z b

a
p0(x )

�
d log p0(x )

dx
�

d log pf (x )
dx

�2

dx

DF (p0; pf )

=
1
2

Z b

a
p0(x )

�
d log p0(x )

dx
�

d log pf (x )
dx

�2

dx

=
1
2

Z b

a
p0(x )

�
d log p0(x )

dx

�2

dx +
1
2

Z b

a
p0(x )

�
d log pf (x )

dx

�2

dx

�

Z b

a
p0(x )

�
d log pf (x )

dx

��
d log p0(x )

dx

�
dx

Final term:Z b

a
p0(x )

�
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