Advances in kernel exponential families

Arthur Gretton

Gatsby Computational Neuroscience Unit, University College London

NIPS, 2017

Outline

Motivating application:
■ Fast estimation of complex multivariate densities
The infinite exponential family:

- Multivariate Gaussian \rightarrow Gaussian process

■ Finite mixture model \rightarrow Dirichlet process mixture model
■ Finite exponential family \rightarrow ???
In this talk:
■ Guaranteed speed improvements by Nystrom
■ Conditional models

Goal: learn high dimensional, complex densities

We want:

- Efficient computation and representation
- Statistical guarantees

The exponential family

The exponential family in in \mathbb{R}^{d}

Examples:
Gaussian density: $T(x)=\left[\begin{array}{ll}x & x^{2}\end{array}\right]$

- Gamma density: $T(x)=\left[\begin{array}{ll}\ln x & x\end{array}\right]$

Can we extend this to infinite dimensions?

Infinitely many features using kernels

Kernels: dot products
of features

Feature $\operatorname{map} \varphi(x) \in \mathcal{H}$,
$\varphi(x)=\left[\ldots \varphi_{i}(x) \ldots\right] \in \ell_{2}$

For positive definite k,
$k\left(x, x^{\prime}\right)=\left\langle\varphi(x), \varphi\left(x^{\prime}\right)\right\rangle_{\mathcal{H}}$

$$
=\left\langle k(x, \cdot), k\left(x^{\prime}, \cdot\right)\right\rangle_{\mathcal{H}}
$$

Infinitely many features $\varphi(x)$, dot product in
closed form!

Infinitely many features using kernels

Kernels: dot products of features

Feature $\operatorname{map} \varphi(x) \in \mathcal{H}$,

$$
\varphi(x)=\left[\ldots \varphi_{i}(x) \ldots\right] \in \ell_{2}
$$

For positive definite k,
$k\left(x, x^{\prime}\right)=\left\langle\varphi(x), \varphi\left(x^{\prime}\right)\right\rangle_{\mathcal{H}}$

$$
=\left\langle k(x, \cdot), k\left(x^{\prime}, \cdot\right)\right\rangle_{\mathcal{H}}
$$

Infinitely many features $\varphi(x)$, dot product in closed form!

Exponentiated quadratic kernel

$$
k\left(x, x^{\prime}\right)=\exp \left(-\gamma\left\|x-x^{\prime}\right\|^{2}\right)
$$

Features: Gaussian Processes for Machine learning, Rasmussen and Williams, Ch. 4.

Functions of infinitely many features

Functions are linear combinations of features:

$$
f(x)=\langle f, \varphi(x)\rangle_{\mathcal{H}}=\sum_{\ell=1}^{\infty} f_{\ell} \varphi_{\ell}(x)=\left[\begin{array}{c}
f_{1} \\
f_{2} \\
f_{3} \\
\vdots
\end{array}\right]^{\top} \xrightarrow{\rightarrow \varphi_{x}} \xrightarrow{\varphi_{2}(x)}
$$

How to represent functions?

Function with exponentiated quadratic kernel:

$$
\begin{aligned}
f(x): & =\sum_{i=1}^{m} \alpha_{i} k\left(x_{i}, x\right) \\
& =\sum_{i=1}^{m} \alpha_{i}\left\langle\varphi\left(x_{i}\right), \varphi(x)\right\rangle_{\mathcal{H}} \\
& =\left\langle\sum_{i=1}^{m} \alpha_{i} \varphi\left(x_{i}\right), \varphi(x)\right\rangle_{\mathcal{T}} \\
& =\sum_{\ell=1}^{\infty} f_{\ell} \varphi_{\ell}(x)
\end{aligned}
$$

How to represent functions?

Function with exponentiated quadratic kernel:

$$
\begin{aligned}
f(x): & =\sum_{i=1}^{m} \alpha_{i} k\left(x_{i}, x\right) \\
& =\sum_{i=1}^{m} \alpha_{i}\left\langle\varphi\left(x_{i}\right), \varphi(x)\right\rangle_{\mathcal{H}} \\
& =\left\langle\sum_{i=1}^{m} \alpha_{i} \varphi\left(x_{i}\right), \varphi(x)\right\rangle_{\mathcal{H}}
\end{aligned}
$$

How to represent functions?

Function with exponentiated quadratic kernel:

$$
\begin{aligned}
f(x): & =\sum_{i=1}^{m} \alpha_{i} k\left(x_{i}, x\right) \\
& =\sum_{i=1}^{m} \alpha_{i}\left\langle\varphi\left(x_{i}\right), \varphi(x)\right\rangle_{\mathcal{H}} \\
& =\left\langle\sum_{i=1}^{m} \alpha_{i} \varphi\left(x_{i}\right), \varphi(x)\right\rangle_{\mathcal{H}} \\
& =\sum_{\ell=1}^{\infty} f_{\ell} \varphi_{\ell}(x)
\end{aligned}
$$

$$
f_{\ell}=\sum_{i=1}^{m} \alpha_{i} \varphi_{\ell}\left(x_{i}\right)
$$

The kernel exponential family

Kernel exponential families [Canu and Smola (2006), Fukumizu (2009)] and their GP counterparts [Adams, Murray, MacKay (2009), Rasmussen(2003)]

$$
\mathcal{P}=\left\{p_{f}(x)=e^{\langle f, \varphi(x)\rangle_{\mathcal{H}}-A(f)} q_{0}(x), x \in \Omega, f \in \mathcal{F}\right\}
$$

where

$$
\mathcal{F}=\left\{f \in \mathcal{H}: A(f)=\log \int e^{f(x)} q_{0}(x) d x<\infty\right\}
$$

The kernel exponential family

Kernel exponential families [Canu and Smola (2006), Fukumizu (2009)] and their GP counterparts [Adams, Murray, MacKay (2009), Rasmussen(2003)]

$$
\mathcal{P}=\left\{p_{f}(x)=e^{\langle f, \varphi(x)\rangle_{\mathcal{H}}-A(f)} q_{0}(x), x \in \Omega, f \in \mathcal{F}\right\}
$$

where

$$
\mathcal{F}=\left\{f \in \mathcal{H}: A(f)=\log \int e^{f(x)} q_{0}(x) d x<\infty\right\}
$$

Finite dimensional RKHS: one-to-one correspondence between finite dimensional exponential family and RKHS.

- Example: Gaussian kernel, $T(x)=\left[\begin{array}{ll}x & x^{2}\end{array}\right]=\varphi(x)$ and $k(x, y)=x y+x^{2} y^{2}$

Fitting an infinite dimensional exponential family

Given random samples, X_{1}, \ldots, X_{n} drawn i.i.d. from an unknown density, $p_{0}:=p_{f_{0}} \in \mathcal{P}$, estimate p_{0}

How not to do it: maximum likelihood

Maximum likelihood:

$$
\begin{aligned}
f_{M L} & =\arg \max _{f \in \mathcal{F}} \sum_{i=1}^{n} \log p_{f}\left(X_{i}\right) \\
& =\arg \max _{f \in \mathcal{F}} \sum_{i=1}^{n} f\left(X_{i}\right)-n \log \int e^{f(x)} q_{0}(x) d x
\end{aligned}
$$

Solving the above yields that $f_{M L}$ satisfies

$$
\frac{1}{n} \sum_{i=1}^{n} \varphi\left(x_{i}\right)=\int \varphi(x) p_{f_{M L}}(x) d x
$$

where $p_{f_{M L}}=\frac{d \mathbb{P}_{M L}}{d x}$.
Ill posed for infinite dimensional $\varphi(x)$!

Score matching

Estimation of Non-Normalized Statistical Models by Score Matching

Aapo Hyvärinen

AAPO.HYVARINEN@HELSINKI.FI
Helsinki Institute for Information Technology (BRU)
Department of Computer Science
FIN-00014 University of Helsinki, Finland
Editor: Peter Dayan

Loss is Fisher Score:

$$
D_{F}\left(p_{0}, p_{f}\right):=\frac{1}{2} \int p_{0}(x)\left\|\nabla_{x} \log p_{0}(x)-\nabla_{x} \log p_{f}(x)\right\|^{2} d x
$$

Score matching (general version)

Assuming p_{f} to be differentiable (w.r.t. x) and $\int p_{0}(x)\left\|\nabla_{x} \log p_{f}(x)\right\|^{2} d x<\infty, \forall \theta \in \Theta$

$$
\begin{aligned}
& D_{F}\left(p_{0}, p_{f}\right):= \frac{1}{2} \int p_{0}(x)\left\|\nabla_{x} \log p_{0}(x)-\nabla_{x} \log p_{f}(x)\right\|^{2} d x \\
& \stackrel{(a)}{=} \int p_{0}(x) \sum_{i=1}^{d}\left(\frac{1}{2}\left(\frac{\partial \log p_{f}(x)}{\partial x_{i}}\right)^{2}+\frac{\partial^{2} \log p_{f}(x)}{\partial x_{i}^{2}}\right) d x \\
&+\frac{1}{2} \int p_{0}(x)\left\|\frac{\partial \log p_{0}(x)}{\partial x}\right\|^{2} d x
\end{aligned}
$$

where partial integration is used in (a) under the condition that

$$
p_{0}(x) \frac{\partial \log p_{f}(x)}{\partial x_{i}} \rightarrow 0 \text { as } x_{i} \rightarrow \pm \infty, \forall i=1, \ldots, d
$$

Empirical score matching

p_{n} represents n i.i.d. samples from P_{0}

$$
D_{F}\left(p_{n}, p_{f}\right):=\frac{1}{n} \sum_{a=1}^{n} \sum_{i=1}^{d}\left(\frac{1}{2}\left(\frac{\partial \log p_{f}\left(X_{a}\right)}{\partial x_{i}}\right)^{2}+\frac{\partial^{2} \log p_{f}\left(X_{a}\right)}{\partial x_{i}^{2}}\right)+C
$$

Since $D_{F}\left(p_{n}, p_{f}\right)$ is independent of $A(f)$,

$$
f_{n}^{*}=\arg \min _{f \in \mathcal{F}} D_{F}\left(p_{n}, p_{f}\right)
$$

should be easily computable, unlike the MLE.

Empirical score matching

p_{n} represents n i.i.d. samples from P_{0}

$$
D_{F}\left(p_{n}, p_{f}\right):=\frac{1}{n} \sum_{a=1}^{n} \sum_{i=1}^{d}\left(\frac{1}{2}\left(\frac{\partial \log p_{f}\left(X_{a}\right)}{\partial x_{i}}\right)^{2}+\frac{\partial^{2} \log p_{f}\left(X_{a}\right)}{\partial x_{i}^{2}}\right)+C
$$

Since $D_{F}\left(p_{n}, p_{f}\right)$ is independent of $A(f)$,

$$
f_{n}^{*}=\arg \min _{f \in \mathcal{F}} D_{F}\left(p_{n}, p_{f}\right)
$$

should be easily computable, unlike the MLE.

Add extra term $\lambda\|f\|_{\mathcal{H}}^{2}$ to regularize.

A kernel solution

Infinite exponential family:

$$
p_{f}(x)=e^{\langle f, \varphi(x)\rangle_{\mathcal{H}}-A(f)} q_{0}(x)
$$

Thus

$$
\frac{\partial}{\partial x} \log p_{f}(x)=\frac{\partial}{\partial x}\langle f, \varphi(x)\rangle_{\mathcal{H}}+\frac{\partial}{\partial x} \log q_{0}(x)
$$

A kernel solution

Infinite exponential family:

$$
p_{f}(x)=e^{\langle f, \varphi(x)\rangle_{\mathcal{H}}-A(f)} q_{0}(x)
$$

Thus

$$
\frac{\partial}{\partial x} \log p_{f}(x)=\frac{\partial}{\partial x}\langle f, \varphi(x)\rangle_{\mathcal{H}}+\frac{\partial}{\partial x} \log q_{0}(x)
$$

Kernel trick for derivatives:

$$
\frac{\partial}{\partial x_{i}} f(X)=\left\langle f, \frac{\partial}{\partial x_{i}} \varphi(X)\right\rangle_{\mathcal{H}}
$$

Dot product between feature derivatives:

$$
\left\langle\frac{\partial}{\partial x_{i}} \varphi(X), \frac{\partial}{\partial x_{j}} \varphi\left(X^{\prime}\right)\right\rangle_{\mathcal{H}}=\frac{\partial^{2}}{\partial x_{i} \partial x_{d+j}} k\left(X, X^{\prime}\right)
$$

A kernel solution

Infinite exponential family:

$$
p_{f}(x)=e^{\langle f, \varphi(x)\rangle_{\mathcal{H}}-A(f)} q_{0}(x)
$$

Thus

$$
\frac{\partial}{\partial x} \log p_{f}(x)=\frac{\partial}{\partial x}\langle f, \varphi(x)\rangle_{\mathcal{H}}+\frac{\partial}{\partial x} \log q_{0}(x)
$$

Kernel trick for derivatives:

$$
\frac{\partial}{\partial x_{i}} f(X)=\left\langle f, \frac{\partial}{\partial x_{i}} \varphi(X)\right\rangle_{\mathcal{H}}
$$

Dot product between feature derivatives:

$$
\left\langle\frac{\partial}{\partial x_{i}} \varphi(X), \frac{\partial}{\partial x_{j}} \varphi\left(X^{\prime}\right)\right\rangle_{\mathcal{H}}=\frac{\partial^{2}}{\partial x_{i} \partial x_{d+j}} k\left(X, X^{\prime}\right)
$$

By representer theorem:

$$
f_{n}^{*}=\alpha \hat{\xi}+\sum_{\ell=1}^{n} \sum_{j=1}^{d} \beta_{\ell j} \frac{\partial \varphi\left(X_{\ell}\right)}{\partial x_{j}}
$$

An RKHS solution

The RKHS solution

$$
f_{n}^{*}=\alpha \hat{\xi}+\sum_{\ell=1}^{n} \sum_{j=1}^{d} \beta_{\ell j} \frac{\partial \varphi\left(X_{\ell}\right)}{\partial x_{j}}
$$

Need to solve a linear system
$\beta_{n}^{*}=-\frac{1}{\lambda}(\underbrace{G_{X X}}_{n d \times n d}+n \lambda I)^{-1} h_{X}$

Very costly in high dimensions!

The Nystrom approximation

Nystrom approach for efficient solution

■ Find best estimator $f_{n, m}^{*}$ in $\mathcal{H}_{Y}:=\operatorname{span}\left\{\partial_{i} k\left(y_{a}, \cdot\right)\right\}_{a \in[m], i \in[d]}$, where $y_{a} \in\left\{x_{i}\right\}_{i=1}^{n}$ chosen at random.

- Nystrom solution:

$$
\beta_{n, m}^{*}=-(\frac{1}{n} B_{X Y}^{\top} \underbrace{B_{X Y}}_{m d \times n d}+\lambda \underbrace{G_{Y Y}}_{m d \times m d})^{\dagger} h_{Y}
$$

Solve in time $\mathcal{O}\left(n m^{2} d^{3}\right)$, evaluate in time $\mathcal{O}(m d)$.

- Sill cubic in d, but similar results if we take a random dimension per datapoint.

Consistency: original solution

Define C as the covariance between feature derivatives. Then from
[Sriperumbudur et al. JMLR (2017)]

■ Rates of convergence: Suppose

- $f_{0} \in \mathcal{R}\left(C^{\beta}\right)$ for some $\beta>0$.
- $\lambda=n^{-\max \left\{\frac{1}{3}, \frac{1}{2(\beta+1)}\right\}}$ as $n \rightarrow \infty$.

Then

$$
D_{F}\left(p_{0}, p_{f_{n}}\right)=O_{p_{0}}\left(n^{-\min \left\{\frac{2}{3}, \frac{\beta}{2(\beta+1)}\right\}}\right)
$$

Consistency: original solution

Define C as the covariance between feature derivatives. Then from
[Sriperumbudur et al. JMLR (2017)]

■ Rates of convergence: Suppose

- $f_{0} \in \mathcal{R}\left(C^{\beta}\right)$ for some $\beta>0$.
- $\lambda=n^{-\max \left\{\frac{1}{3}, \frac{1}{2(\beta+1)}\right\}}$ as $n \rightarrow \infty$.

Then

$$
D_{F}\left(p_{0}, p_{f_{n}}\right)=O_{p_{0}}\left(n^{-\min \left\{\frac{2}{3}, \frac{\beta}{2(\beta+1)}\right\}}\right)
$$

■ Convergence in other metrics: KL, Hellinger, $L_{r}, 1<r<\infty$.

Consistency: Nystrom solution

Define C as the covariance between feature derivatives.

- Suppose
- $f_{0} \in \mathcal{R}\left(C^{\beta}\right)$ for some $\beta>0$.
- Number of subsampled points $m=\Omega\left(n^{\theta} \log n\right)$ for

$$
\begin{aligned}
\theta & =(\min (2 \beta, 1)+2)^{-1} \in\left[\frac{1}{3}, \frac{1}{2}\right] \\
-\lambda & =n^{-\max \left\{\frac{1}{3}, \frac{1}{2(\beta+1)}\right\}} \text { as } n \rightarrow \infty .
\end{aligned}
$$

■ Then

$$
D_{F}\left(p_{0}, p_{f_{n, m}}\right)=O_{p_{0}}\left(n^{-\min \left\{\frac{2}{3}, \frac{\beta}{2(\beta+1)}\right\}}\right)
$$

Consistency: Nystrom solution

Define C as the covariance between feature derivatives.

- Suppose
- $f_{0} \in \mathcal{R}\left(C^{\beta}\right)$ for some $\beta>0$.
- Number of subsampled points $m=\Omega\left(n^{\theta} \log n\right)$ for

$$
\begin{aligned}
\theta & =(\min (2 \beta, 1)+2)^{-1} \in\left[\frac{1}{3}, \frac{1}{2}\right] \\
-\lambda & =n^{-\max \left\{\frac{1}{3}, \frac{1}{2(\beta+1)}\right\}} \text { as } n \rightarrow \infty .
\end{aligned}
$$

- Then

$$
D_{F}\left(p_{0}, p_{f_{n, m}}\right)=O_{p_{0}}\left(n^{-\min \left\{\frac{2}{3}, \frac{\beta}{2(\beta+1)}\right\}}\right)
$$

■ Convergence in other metrics: KL, Hellinger, $L_{r}, 1<r<\infty$. Same rate but saturates sooner.

- Full KL original saturates at $O_{p_{0}}\left(n^{-\frac{1}{2}}\right)$
- Nystrom saturates at $O_{p_{0}}\left(n^{-\frac{1}{3}}\right)$

Experimental results: ring

Sample:

Score:

Experimental results: comparison with autoencoder

■ Comparison with regularized auto-encoders [Alain and Bengio (JMLR, 2014)]

- $\mathrm{n}=500$ training points

$$
\begin{array}{ll}
- & \text { full } \\
\longrightarrow- & \text { nyström, } m=42 \\
\boxed{x} & \text { nyström, } m=167 \\
-\times & \text { dae, } m=100 \\
-\times & \text { dae, } m=5000
\end{array}
$$

Experimental results: grid of Gaussians

Sample:

Score:

Experimental results: comparison with autoencoder

■ Comparison with regularized auto-encoders [Alain and Bengio (JMLR, 2014)]

- $\mathrm{n}=500$ training points

$$
\begin{array}{ll}
\longrightarrow & \text { full } \\
\cdots & \text { nyström, } m=42 \\
\boxed{x} & \text { nyström, } m=167 \\
-\times & \text { dae, } m=100 \\
-\times & \text { dae, } m=5000
\end{array}
$$

The kernel conditional exponential family

The kernel conditional exponential family

- Can we take advantage of the graphical structure of $\left(X_{1}, \ldots, X_{d}\right)$?

■ Start from a general factorization of P

$$
\begin{aligned}
& P\left(X_{1}, \ldots, X_{d}\right) \\
& =\prod_{i} P(X_{i} \left\lvert\, \underbrace{X_{\pi(i)}}_{\begin{array}{c}
\text { parents } \\
\text { of } X_{i}
\end{array}}\right.)
\end{aligned}
$$

Conditional densities $\mathrm{P}_{\mathrm{YIX}}$

- Estimate each factor independently

Kernel conditional exponential family

General definition, kernel conditional exponential family
[Smola and Canu, 2006]
$p_{f}(y \mid x)=e^{\langle f, \psi(x, y)\rangle_{\mathcal{H}}-A(f, x)} q_{0}(y) \quad A(f, x)=\log \int q_{o}(y) e^{\langle f, \psi(x, y)\rangle_{\mathcal{H}}} d y$
(joint feature map $\psi(x, y)$)

Kernel conditional exponential family

Our kernel conditional exponential family:

$$
p_{f}(x)=e^{\left\langle f_{x}, \phi(y)\right\rangle_{\mathcal{G}}-A(f, x)} q_{0}(y) \quad A(f, x)=\log \int q_{0}(y) e^{\left\langle f_{x}, \phi(y)\right\rangle_{\mathcal{G}}}
$$

linear in the sufficient statistic $\phi(y) \in \mathcal{G}$.

Kernel conditional exponential family

Our kernel conditional exponential family:

$$
p_{f}(x)=e^{\left\langle f_{x}, \phi(y)\right\rangle_{\mathcal{G}}-A(f, x)} q_{0}(y) \quad A(f, x)=\log \int q_{0}(y) e^{\left\langle f_{x}, \phi(y)\right\rangle_{\mathcal{G}}}
$$

linear in the sufficient statistic $\phi(y) \in \mathcal{G}$.

What does this RKHS look like?
[Micchelli and Pontil, (2005)]
$\left\langle f_{x}, \phi(y)\right\rangle_{\mathcal{G}}$

Kernel conditional exponential family

Our kernel conditional exponential family:

$$
p_{f}(x)=e^{\left\langle f_{x}, \phi(y)\right\rangle_{\mathcal{G}}-A(f, x)} q_{0}(y) \quad A(f, x)=\log \int q_{0}(y) e^{\left\langle f_{x}, \phi(y)\right\rangle_{\mathcal{G}}}
$$

linear in the sufficient statistic $\phi(y) \in \mathcal{G}$.

What does this RKHS look like?
[Micchelli and Pontil, (2005)]

$$
\begin{array}{ll}
\left\langle f_{x}, \phi(y)\right\rangle_{\mathcal{G}} & ■ \Gamma_{x}^{*}: \mathcal{H} \rightarrow \mathcal{G} \text { is a linear } \\
=\left\langle\Gamma_{x}^{*} f, \phi(y)\right\rangle_{\mathcal{G}} & \text { operator }
\end{array}
$$

Kernel conditional exponential family

Our kernel conditional exponential family:

$$
p_{f}(x)=e^{\left\langle f_{x}, \phi(y)\right\rangle_{\mathcal{G}}-A(f, x)} q_{0}(y) \quad A(f, x)=\log \int q_{0}(y) e^{\left\langle f_{x}, \phi(y)\right\rangle_{\mathcal{G}}}
$$

linear in the sufficient statistic $\phi(y) \in \mathcal{G}$.

What does this RKHS look like?
[Micchelli and Pontil, (2005)]

$$
\begin{aligned}
& \left\langle f_{x}, \phi(y)\right\rangle_{\mathcal{G}} \\
& =\left\langle\Gamma_{x}^{*} f, \phi(y)\right\rangle_{\mathcal{G}} \\
& =\left\langle f, \Gamma_{x} \phi(y)\right\rangle_{\mathcal{H}}
\end{aligned}
$$

$\square \Gamma_{x}: \mathcal{G} \rightarrow \mathcal{H}$ is a linear operator.

- The feature map
$\psi(x, y):=\Gamma_{x} \phi(y)$

What is our loss function?

The obvious approach: minimise

$$
D_{F}\left[p_{0}(x) p_{0}(y \mid x) \| p_{f}(x) p_{f}(y \mid x)\right]
$$

Problem: the expression still contains $\int p_{0}(y \mid x) d y$.

What is our loss function?

The obvious approach: minimise

$$
D_{F}\left[p_{0}(x) p_{0}(y \mid x) \| p_{f}(x) p_{f}(y \mid x)\right]
$$

Problem: the expression still contains $\int p_{0}(y \mid x) d y$.

Our loss function:

$$
\widetilde{D}_{F}\left(p_{0}, p_{f}\right):=\int D_{F}\left(p_{0}(y \mid x) \| p_{f}(y \mid x)\right) \pi(x) d x
$$

for some $\pi(x)$ that includes the support of $p(x)$.

Finite sample estimate of the conditional density

Use the simplest operator-valued RKHS $\Gamma_{x}=I_{\mathcal{G}} k(x, \cdot)$.

$$
\begin{array}{rll}
\Gamma_{x} & : \quad \mathcal{G} \rightarrow \mathcal{H} \\
\Gamma_{x} \phi(y) & \mapsto & \phi(y) k(x, \cdot)
\end{array}
$$

Finite sample estimate of the conditional density

Use the simplest operator-valued RKHS $\Gamma_{x}=I_{\mathcal{G}} k(x, \cdot)$.

$$
\begin{array}{rll}
\Gamma_{x} & : \mathcal{G} \rightarrow \mathcal{H} \\
\Gamma_{x} \phi(y) & \mapsto \phi(y) k(x, \cdot)
\end{array}
$$

Solution:

$$
f_{n}^{*}(y \mid x)=\sum_{b=1}^{n} \sum_{i=1}^{d} \beta_{(b, i)} k\left(X_{b}, x\right) \partial_{i} \mathfrak{K}\left(Y_{b}, y\right)+\alpha \hat{\xi}
$$

where

$$
\begin{gathered}
\beta_{n}^{*}=-\frac{1}{\lambda}(G+n \lambda I)^{-1} h \\
(G)_{(a, i),(b, j)}=k\left(X_{a}, X_{b}\right) \partial_{i} \partial_{j+d} \mathfrak{K}\left(Y_{a}, Y_{b}\right),
\end{gathered}
$$

and $\left\langle\phi(y), \phi\left(y^{\prime}\right)\right\rangle_{\mathcal{G}}=\mathfrak{K}\left(y, y^{\prime}\right)$.

Expected conditional score: a failure case

- $P(Y \mid X=1)$

Expected conditional score: a failure case

- $P(Y \mid X=1)$
- $P(Y \mid X=-1)$

Expected conditional score: a failure case

- $P(Y \mid X=1)$
- $P(Y \mid X=-1)$
- $P(Y)=\frac{1}{2}(P(Y \mid X=1)+P(Y \mid X=-1))$

Expected conditional score: a failure case

- $P(Y \mid X=1)$
- $P(Y \mid X=-1)$
- $P(Y)=\frac{1}{2}(P(Y \mid X=1)+P(Y \mid X=-1))$

$$
\tilde{D}_{F}(\underbrace{p(y \mid x)}_{\text {target }}, \underbrace{p(y)}_{\text {model }})=0
$$

Expected conditional score: a failure case

Why does it fail? Recall

$$
\widetilde{D}_{F}\left(p_{0}(y \mid x), p_{f}(y \mid x)\right):=\int \pi(x) D_{F}\left(p_{0}(y \mid x), p_{f}(y \mid x)\right) d x
$$

Note that

$$
D_{F}(\underbrace{p(y \mid x=1)}_{\text {target }}, \underbrace{p(y)}_{\text {model }})=\int p(y \mid 1)\left\|\nabla_{x} \log p(y \mid 1)-\nabla_{x} \log p(y)\right\|^{2} d y
$$

Model $p(y)$ puts mass where target conditional $p(y \mid 1)$ has no support.

■ Care needed when this failure mode approached!

Unconditional vs conditional model in practice

- Red Wine: Physiochemical measurements on wine samples.

■ Parkinsons: Biomedical voice measurements from patients with early stage Parkinson's disease.

	Parkinsons	Red Wine
Dimension	15	11
Samples	5875	1599

Unconditional vs conditional model in practice

- Red Wine: Physiochemical measurements on wine samples.

■ Parkinsons: Biomedical voice measurements from patients with early stage Parkinson's disease.

Comparison with
■ LSCDE model: with consistency guarantees [Sugiyama et al., (2010)]
■ RNADE model: mixture models with deep features of parents, no guarantees [Uria et al. (2016)]

Unconditional vs conditional model in practice

- Red Wine: Physiochemical measurements on wine samples.

■ Parkinsons: Biomedical voice measurements from patients with early stage Parkinson's disease.

Comparison with

- LSCDE model: with consistency guarantees [Sugiyama et al., (2010)]
- RNADE model: mixture models with deep features of parents, no guarantees [Uria et al. (2016)]
Negative log likelihoods (smaller is better, average over 5 test/train splits)

	Parkinsons	Red wine
KCEF	$\mathbf{2 . 8 6} \pm \mathbf{0 . 7 7}$	11.8 ± 0.93
LSCDE	15.89 ± 1.48	$\mathbf{1 4 . 4 3} \pm 1.5$
NADE	3.63 ± 0.0	$\mathbf{9 . 9 8} \pm \mathbf{0 . 0}$

Results: unconditional model

Results: conditional model

Co-authors

From Gatsby:

■ Michael Arbel

- Heiko Strathmann

■ Dougal Sutherland

Questions?

External collaborators:

- Kenji Fukumizu

■ Bharath Sriperumbudur

Score matching: 1-D proof

$$
\begin{aligned}
& D_{F}\left(p_{0}, p_{f}\right) \\
& =\frac{1}{2} \int_{a}^{b} p_{0}(x)\left(\frac{d \log p_{0}(x)}{d x}-\frac{d \log p_{f}(x)}{d x}\right)^{2} d x
\end{aligned}
$$

Score matching: 1-D proof

$$
\begin{aligned}
& D_{F}\left(p_{0}, p_{f}\right) \\
& =\frac{1}{2} \int_{a}^{b} p_{0}(x)\left(\frac{d \log p_{0}(x)}{d x}-\frac{d \log p_{f}(x)}{d x}\right)^{2} d x \\
& =\frac{1}{2} \int_{a}^{b} p_{0}(x)\left(\frac{d \log p_{0}(x)}{d x}\right)^{2} d x+\frac{1}{2} \int_{a}^{b} p_{0}(x)\left(\frac{d \log p_{f}(x)}{d x}\right)^{2} d x \\
& \quad-\int_{a}^{b} p_{0}(x)\left(\frac{d \log p_{f}(x)}{d x}\right)\left(\frac{d \log p_{0}(x)}{d x}\right) d x
\end{aligned}
$$

Score matching: 1-D proof

$$
\begin{aligned}
& D_{F}\left(p_{0}, p_{f}\right) \\
& =\frac{1}{2} \int_{a}^{b} p_{0}(x)\left(\frac{d \log p_{0}(x)}{d x}-\frac{d \log p_{f}(x)}{d x}\right)^{2} d x \\
& =\frac{1}{2} \int_{a}^{b} p_{0}(x)\left(\frac{d \log p_{0}(x)}{d x}\right)^{2} d x+\frac{1}{2} \int_{a}^{b} p_{0}(x)\left(\frac{d \log p_{f}(x)}{d x}\right)^{2} d x \\
& \quad-\int_{a}^{b} p_{0}(x)\left(\frac{d \log p_{f}(x)}{d x}\right)\left(\frac{d \log p_{0}(x)}{d x}\right) d x
\end{aligned}
$$

Final term:

$$
\int_{a}^{b} p_{0}(x)\left(\frac{d \log p_{f}(x)}{d x}\right)\left(\frac{d \log p_{0}(x)}{d x}\right) d x
$$

Score matching: 1-D proof

$$
\begin{aligned}
& D_{F}\left(p_{0}, p_{f}\right) \\
& =\frac{1}{2} \int_{a}^{b} p_{0}(x)\left(\frac{d \log p_{0}(x)}{d x}-\frac{d \log p_{f}(x)}{d x}\right)^{2} d x \\
& =\frac{1}{2} \int_{a}^{b} p_{0}(x)\left(\frac{d \log p_{0}(x)}{d x}\right)^{2} d x+\frac{1}{2} \int_{a}^{b} p_{0}(x)\left(\frac{d \log p_{f}(x)}{d x}\right)^{2} d x \\
& \quad-\int_{a}^{b} p_{0}(x)\left(\frac{d \log p_{f}(x)}{d x}\right)\left(\frac{d \log p_{0}(x)}{d x}\right) d x
\end{aligned}
$$

Final term:

$$
\begin{aligned}
& \int_{a}^{b} p_{0}(x)\left(\frac{d \log p_{f}(x)}{d x}\right)\left(\frac{d \log p_{0}(x)}{d x}\right) d x \\
& =\int_{a}^{b} p_{0}(x)\left(\frac{d \log p_{f}(x)}{d x}\right)\left(\frac{1}{p_{0}(x)} \frac{d p_{0}(x)}{d x}\right) d x
\end{aligned}
$$

Score matching: 1-D proof

$$
\begin{aligned}
& D_{F}\left(p_{0}, p_{f}\right) \\
& =\frac{1}{2} \int_{a}^{b} p_{0}(x)\left(\frac{d \log p_{0}(x)}{d x}-\frac{d \log p_{f}(x)}{d x}\right)^{2} d x \\
& =\frac{1}{2} \int_{a}^{b} p_{0}(x)\left(\frac{d \log p_{0}(x)}{d x}\right)^{2} d x+\frac{1}{2} \int_{a}^{b} p_{0}(x)\left(\frac{d \log p_{f}(x)}{d x}\right)^{2} d x \\
& \quad-\int_{a}^{b} p_{0}(x)\left(\frac{d \log p_{f}(x)}{d x}\right)\left(\frac{d \log p_{0}(x)}{d x}\right) d x
\end{aligned}
$$

Final term:

$$
\begin{aligned}
& \int_{a}^{b} p_{0}(x)\left(\frac{d \log p_{f}(x)}{d x}\right)\left(\frac{d \log p_{0}(x)}{d x}\right) d x \\
& =\int_{a}^{b} p_{0}(x)\left(\frac{d \log p_{f}(x)}{d x}\right)\left(\frac{1}{p_{0}(x)} \frac{d p_{0}(x)}{d x}\right) d x \\
& =\left[\left(\frac{d \log p_{f}(x)}{d x}\right) p_{0}(x)\right]_{a}^{b}-\int_{a}^{b} p_{0}(x) \frac{d^{2} \log p_{f}(x)}{d x^{2}} .
\end{aligned}
$$

