Kernel approaches to covariate shift

Arthur Gretton

Carnegie Mellon University
Max Planck Institute for Biological Cybernetics

December 2009



Transfer learning and covariate shift

Patterns X', labels Y
Training: get Z;, are n, pairs (:ctr, ytr) from Py,
Test: get Zi. are ny. pairs (2", y*®) from Py,

Predict on P;. given data from Py,

Examples:
— Medical diagnosis
— Brain computer interfaces

— (ene expression profiles
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Transfer learning and covariate shift

Patterns X', labels Y
Training: get Z;, are n, pairs (:ctr, ytr) from Py,
Test: get Zi. are ny. pairs (2", y*®) from Py,

Predict on P;. given data from Py,

Examples:
— Medical diagnosis
— Brain computer interfaces

— (ene expression profiles

Assumption: P (x,y) = P(y|z)P () and Pio(z,y) = P(y|x)Pie(x)

Conditional probs unchanged: covariate shitt




A toy example

e Toy data [shimodaira, 2000]
— Py(z) ~ N(0.5,0.5%),
— Pio(x) ~ N(0,0.3%)

o y=—x+ 23 + ¢, where
e ~ N(0,0.3%)

e Linear regression
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A toy example

() TO'y data [Shimodaira, 2000]
— Py (z) ~ N(0.5,0.5%),
o Pte(x) ~ N(07032)

o y=—x+ 22 + ¢, where
e ~ N(0,0.3%)

e Linear regression
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A toy example

() TO'y data [Shimodaira, 2000]
— Py (z) ~ N(0.5,0.5%),
o Pte(x) ~ N(07032)

o y=—x+ 22 + ¢, where
e ~ N(0,0.3%)

e Linear regression
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The solution procedure

e Classical setting: (regularized) expected risk
R[P,(z,y,0)] = El(z,y,0)] + AQ2[0)

— Loss l(x,y,0), eg —log P(y|z, 0)

— Minimize over 6
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The solution procedure

e Classical setting: (regularized) expected risk
R[P,(z,y,0)] = El(z,y,0)] + AQ2[0)

— Loss l(x,y,0), eg —log P(y|z, 0)
— Minimize over 6

e Covariate shift setting:

R[P,l(x,y,0)] = Ep, [l(z,y,0)] + AQ0
= Ep, [0(r,0)l(z,y,0)] + 220

e Importance weighting:

P c ] .
Ep, [l(z,y,0)] = Ep,, { PZ Ei z; l(x,y,e)] provided Py < Py,

J/
-~

::Bimp (xay)



Importance weighting

e Variance of importance weighted risk [robert and Casella, 2004]
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Importance weighting

e Variance of importance weighted risk [robert and Casella, 2004]

var (l(x, g, ) Diel® y))

P (z,y)
Pi(z,y)
PtrQ(xv y)
Pie(,y)
Ptr (LU, y)

— EPtr l2($7y79) ] — R2[Pt6707l(xay79)]

— EPte l2(:r;,y,9) ] o RQ[Pte797l($7y79)]



Importance weighting

e Variance of importance weighted risk [robert and Casella, 2004]

var (l(x, g, ) Diel® y))

P (z,y)
Pio? (z,y)
Ptr (:U,y)
Pte(a%y)
\Ptr( z,y)

N~

<B

— EPtr [l2($7y79) ] T R2[Pt6707l(xay79)]

— EPte [ZQ (ZIJ, Y, ‘9)




Importance weighting

e Variance of importance weighted risk [robert and Casella, 2004]

var (l(x, g, 0) el y))

P (z,y)
Pio? (z,y)
Ptr (:U,y)
Pte(a%y)
\Ptr( z,y)

N~

<B

— EPtr [l2($7y79) ] T R2[Pt6707l(xay79)]

— EPte [ZQ (ZIJ, Y, ‘9)

e P, should have heavier tails than P,



Importance weighting

e Eixample: kernel ridge regression

o Lossl(x,y,0) = (y — <(I)($)76>)2



Importance weighting

e Eixample: kernel ridge regression
e Loss U(z,5,0) = (y — (®(x),0))°

e Solve

Nty

minimize Y  Gi(y;" — (@ ("), 0))* + A |6]]". (2)
1=1



Importance weighting

Example: kernel ridge regression
Loss U(,y,0) = (y — (®(x),0))"

Solve

Nty

. e . ' 1;1'_ 1?1' 2 2
minipize >G4 — (@), 07 42101 g

Equivalently:

minimize (y— Ka)' fly — Ka)+ o' Ko

«

_ B = diag(f1, .-, Bn.,)
Ky = k(:cgr,CC;-r) _ <q>(g;t.1"), é[)(xt.r)>
Solution

o=\ +K) Yy



Importance weighting

e Ridge regression, linear kernel

e Importance weighting improves performance

Test/Train ratio
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Alternatives to density estimation

e Difficulties with direct density estimation
— Empirical Py, and P4, difficult for structured /high dimensional data

— Variance can be large if empirical Py, /Py, large



Alternatives to density estimation

e Difficulties with direct density estimation
— Empirical Py, and P4, difficult for structured /high dimensional data

— Variance can be large if empirical Py, /Py, large

e Some other reweighting approaches:

— Minimize classification error of Pi; vS Pic [Qin, 1998, Cheng and Chu, 2004,

Bickel et al., 2009]

— Minimize KL divergence between Py, and P, (KLIEP) (sugiyama et al..

2008]

— Ratio P, /Py, via least-squares function fitting (xanamori et al., 2009]

— Minimize Maximum Mean Discrepancy (MMD) between P, and Pq.

=

[Huang et al., 2007, (Gretton et al., 2008]




Maximum mean discrepancy



Function Showing Difference in Distributions

e Idea: avoid density estimation when comparing distributions P and Q

MMD(P,Q; F) := Sup Epf(x) —Eq/f(y)].

e Example: Gauss P vs Laplace Q

Witness f for Gauss and Laplace densities

_f
0.8l = = = (Gauss |.
||||||| Lap'ace

Prob. density and f




Function Showing Difference in Distributions

e Idea: avoid density estimation when comparing distributions P and Q

[Fortet and Mourier, (1953]
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e (Classical results: MMD(P, Q; F') = 0 iff P = Q, when
— F' =bounded continuous pudiey, 2002]
— I = bounded variation 1 (Kolmogorov metric) paiiier, 1997]

— F' = bounded Lipschitz (Earth mover’s distances) pudiey, 2002



Function Showing Difference in Distributions

e Idea: avoid density estimation when comparing distributions P and Q

[Fortet and Mourier, (1953]

MMD(P, Q; F') := Sup Epf(x) —Eq/f(y)].

e (Classical results: MMD(P, Q; F') = 0 iff P = Q, when
— F' =bounded continuous pudiey, 2002]
— I = bounded variation 1 (Kolmogorov metric) paiiier, 1997]
— F' = bounded Lipschitz (Earth mover’s distances) pudiey, 2002

e MMD(P,Q; F) =0 iff P = Q when F' =the unit ball in a characteristic

RKHS .; [Fukumizu et al., 2008, [Sriperumbudur et al., 12008]



Function Showing Difference in Distributions (2)

e 7 RKHS from X to R with positive definite kernel k(x;, x;)
o F =span{k(x, )|lr € X}
— Example: f(-) = > ", a;k(x;,-) for arbitrary m € N, a; € R, z; € X.
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Function Showing Difference in Distributions (2)

F RKHS from X to R with positive definite kernel k(z;, z;)

F = spani{k(z,-)|[r € X'}

— Example: f(-) = > ", a;k(x;,-) for arbitrary m € N, a; € R, z; € X.

Kernel is inner product between two feature maps:

(P(z1), ®(22))F = k(T1,72)

Evaluating functions at «x

— ®(x) feature map
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Function Showing Difference in Distributions

e The (kernel) MMD: (Gretton et al., 2007]

MMD?*(P,Q; F) using
— <sup [Ep f(x) — EQf(y)]> Ep(f(x)) = Ep[(2(x),[)]
feF .



Function Showing Difference in Distributions

e The (kernel) MMD: (Gretton et al., 2007]

MMD?(P, Q; F) .
, using
— <]Sflelzg Epf(x) — EQf(Y)]) Ep(f(x)) = Ep [<(I)(X)7f>]—"]

= (SUP (s b — Ny>}“>

JEF



Function Showing Difference in Distributions

e The (kernel) MMD: (Gretton et al., 2007]

MMD?(P, Q; F)
2

= <Sup Epf(x) — Eqf (y)]> using

fer

2 ||| 7 = sup(f, 1)
feFr

= (SUP (st — Ny>}“>

feFr

2
= || pte — :uij-"



Function Showing Difference in Distributions

e The (kernel) MMD: [Gretton et al., 2007
MMD?(P, Q; F)

e X' isa R.V.

independent of x

with distribution

2
= (SUP <f7 Lo — Ny>j:> P
fer
e v is a R.V. inde-
pendent of y with
= (Ha — Ky, o — [y) F distribution Q.
= Eppk(x,x') + Eqqk(y,y) — 2Ep qgk(x,y)

— (sup Ep f(x) — EQf(Y)])

JEF

2
= ||tz — ,uij_-



Function Showing Difference in Distributions

e The (kernel) MMD: [Gretton et al., 2007
MMD?(P, Q; F)

e X' isa R.V.

independent of x

with distribution

2
= (SUP <f7 Lo — Ny>j:> P
fer
e v is a R.V. inde-
pendent of y with
= (Ha — Ky, o — [y) F distribution Q.
= Eppk(x,x') + Eqqk(y,y) — 2Ep qgk(x,y)

— (sup Ep f(x) — EQf(Y)])

feF
2
= ||tz — ,uij_-

e Mean map:

= Ep®(x) = /k(,az) dP(x)



Transfer learning using maximum mean discrepancy
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Kernel mean matching (KMM)
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Kernel mean matching (KMM)

e Reweight training points so feature means match

miniﬁmize |1(Pte) — Ep,, [B(z)®(x)]]]

subject to B(x) > 0 and Ep_ |6(x)] = 1.

o If Py, < Py, characteristic kernel, solution is Pio(2) = Bimp ()P (2)



Transter learning by KMM

Kernel mean matching (KMM)

e Reweight training points so feature means match

miniﬁmize |1(Pte) — Ep,, [B(z)®(x)]]]

subject to B(x) > 0 and Ep_ |6(x)] = 1.

o If Py, < Py, characteristic kernel, solution is Pio(2) = Bimp ()P (2)

e What about non-characteristic?



Transter learning by KMM

Kernel mean matching (KMM)

e Reweight training points so feature means match

miniﬁmize |11(Pte) — Ep,, [8(2)®(2)]|

subject to B(x) > 0 and Ep_ [6(x)] = 1.
o If Pi. < Py, characteristic kernel, solution is Pic(2) = Bimp ()Pt ()

e Fmpirical:

Nte

1 & 1
min ||— Y B;®(2f") — — ) P(zl°
; HW; A - -3 0)

2 1 GTKG - 2

= — k' B+ const.
Nty Tty

2




Transter learning by KMM

Kernel mean matching (KMM)

e Reweight training points so feature means match

miniﬁmize |11(Pte) — Ep,, [8(2)®(2)]|

subject to B(x) > 0 and Ep_ [6(x)] = 1.

o If Pi. < Py, characteristic kernel, solution is Pic(2) = Bimp ()Pt ()

e Fmpirical:

Nte
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Transter learning by KMM

Kernel mean matching (KMM)

e Reweight training points so feature means match

miniﬁmize |11(Pte) — Ep,, [8(2)®(2)]|

subject to B(x) > 0 and Ep_ [6(x)] = 1.

o If Pi. < Py, characteristic kernel, solution is Pic(2) = Bimp ()Pt ()

e Fmpirical:

Nte

1 & 1 2 1 2
min ||— D) — — ) (2| = "K3 - k' B + const.
; HM;@ () = e )| = BTG~ kTS
Ntr
subject to 3; € [0, B] and Zﬁi—ntr < \/Nyr€.
i=1

J/

[ : Ziﬁimp(xgr)—;n—u] —  N(0,0?)

Ngr




Transter learning by KMM

e What if given f,,: finite sample effects?

o Assume k(z,z) < R? for all z € X.



Transter learning by KMM

What if given [i,,: finite sample effects?
Assume k(z,z) < R? for all x € X.

With probability at least 1 — 0,

Nty Nte

1 1
N B (@)@ - Y (al
| 2 A (a2t = =30t

1=

< (1 ++/2log 2/5) R\/B?/ng + 1/ne.

Still (potentially) high variance for large B.

Convergence of KMM procedure: [cortes et a1, 2008]



Transter learning by KMM

Compare KMM and importance sampling

_08 | | | | | | |
-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

|
1.2

1.4



Transfer learning by KMM

Compare KMM and importance sampling
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Transfer learning by KMM

e Compare KMM and importance sampling

+ +
1F + +
o o
0.81 * + *
< - -
O + i
o 0.6} . .
© & &
o T i
N 04+ : : "
I o
2 T
0.2t g —4-
ol = = o
test/train KMM IC test fit

IC method due to [Shimodaira, 2000]



Reweighting by classification

e Use train/test classification error to reweight [qin, 1998, Cheng and Chu, 2004,

Bickel et al., 12009]

o P (5|2, 2%, Ogir) classifies training (s = 1) vs test (s = 0)
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Learn two classifiers: train vs test and covariate to label



Reweighting by classification

Use train/test classification error to reweight [qin, 1998, Cheng and Chu, 2004,

Bickel et al., 12009]

P (5]a'™, 2, g ) classifies training (s = 1) vs test (s = 0)

Estimate importance ratio:

Pio(xf") _ P(s=1)
Pi.(z")  P(s=0)

(P_l (s = 1|x}", Oepire) — 1)

Learn two classifiers: train vs test and covariate to label

Single joint optimization? (sickel et al., 2009]

IMax
Qshift 791earn

P (ytr"sa xtr’ (gshifta Hlearn) P (S’xtr, xtej Hshift) P(gshift) P(elearn)



Experiments



Breast Cancer data

e Gaussian kernel exp(—|z; — x;]?/(20)) for KMM and SVN, o =5

e Performance vs ('

— Small C — prioritize smoothness

e Selection procedure:
— Random training/test split
— Training set from 10% - 50% of test
— P(si = 1]z;) o< exp(—0.05]z; — T||*)



Breast Cancer data

e Reweighting greatly improves performance

e KMM outperforms IS at small sample sizes

2 60- c=001 |mmSVM
— I Imp.samp.
N

E 40 —1 KMM
17

Q

" 20-. l I

o

G

@ (-

= 140 210 280 350

training samples



Breast Cancer data

o KMM slightly decreases performance
e IS does not help

o S C=1

%> 60- c-001 |mmSVM = B

= mm imp.samp. 0

E —1 KMM 3 4-

3 3

@ a 2-

=2 =

E [21]

> 140 210 280 350 g 0-

® E 70 140 210 280 350

tralmng samples i
training samples



Toy example revisited

Kernel ridge regression result

0.6

04F

0.2 Kernel ridge regression
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Large scale experiments

Regression and classification

Sampling scheme: training data missing at random

— Sampling by Gaussian distribution on first principal component
Cross validate on unweighted training set for C' and o

Same o for classifier /regressor and KMM



Test error

Large scale experiments
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Large scale experiments

Improvement
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Test error

Large scale experiments
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Test error

Large scale experiments

KMM worse
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Further work: model selection

e Model selection for covariate shift

e Results from [susivama ot al., 2008

e Data have 18-21 dimensions

1.1

—
o
o

—

0.95¢}

o
©

0.85¢

ratio to unweighted

o
\l
o

o
N

01 02 03 04 05 06 0.7 08 09

KMM kernel size



Further work: model selection

e Model selection for covariate shift

e Some strategies [Bickel et al., 2009]
— Systematic drift: can be learned ickel et a1, 2009

— Cross validation to obtain error for current 5 estimate [sugiyama ot al.,

2008, Kanamori et al., 2009]
— Classifier of training vs test: again, cross-validate [Bickel et al., 2009
— Supremum of MMD over set of kernels? (this NIPS) (sriperumbudur et al,
2010]

e Does knowing something about the learning problem help?



Further work: model selection

e Model selection for covariate shift

e Some strategies [Bickel et al., 2009]
— Systematic drift: can be learned ickel et a1, 2009

— Cross validation to obtain error for current 5 estimate [sugiyama ot al.,

2008, Kanamori et al., 2009]

— Classifier of training vs test: again, cross-validate [Bickel et al., 2009

— Supremum of MMD over set of kernels? (this NIPS) (sriperumbudur et al,
2010]

e Does knowing something about the learning problem help?

e Model selection for weighted learning: bias for unweighted? [xanamori et a1,

2009]



Summary

e Kernel mean matching: perform covariate shift. . .
— ...without density estimation
— ...using only particular covariate features

— ...on structured domains

e Large performance advantage for “simple” learning

algorithms
e Mixed results for powertul learning algorithms

e Model selection remains an issue
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Characteristic Kernels (1)

Characteristic: MMD a metric (MMD = 0 iff P = Q) ipsors, corros
Translation invariant kernels: k(x,y) = k(z — y)

Bochner’s theorem:
k(z) = / e WA (w)
]Rd

— A finite non-negative Borel measure

Fourier representation of MMD:

MMD(P,Q; F) = ||[(6p — 6a) A]

f
— @p characteristic function of P

— f" is Fourier transform, fV is inverse Fourier transform

— g = [ k(-,x) dP(x)



Characteristic Kernels (2)

e Example: P differs from Q at (roughly) one frequency
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Characteristic Kernels (2)

e Example: P differs from Q at (roughly) one frequency
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Characteristic Kernels (2)

e Example: P differs from Q at (roughly) one frequency
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Characteristic Kernels (3)

e Example: P differs from Q at (roughly) one frequency

Gaussian kernel
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Characteristic Kernels (4)

e Example: P differs from Q at (roughly) one frequency

Sinc kernel
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Characteristic Kernels (4)

e Example: P differs from Q at (roughly) one frequency
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Characteristic Kernels (5)

e Example: P differs from Q at (roughly) one frequency

B-Spline kernel
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Characteristic Kernels (5)

e Example: P differs from Q at (roughly) one frequency
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Characteristic Kernels (5)

e Example: P differs from Q at (roughly) one frequency
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e Main theorem: k characteristic it and only if
Supp(A) — Rd [COLTOS]
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Summary: Characteristic Kernels

e Characteristic kernel: (MMD =0 iff P = Q) pupsom, cormos

e Main theorem: k characteristic it and only it
Supp(./\) — Rd [COLTO8]

— Corollary: continuous, compactly supported k characteristic

e Alternative property: continuous, strictly P.D., includes
NON-translation invariant covros

e Similar reasoning wherever extensions of Bochner’s
theorem exist: miesosa
— Locally compact Abelian groups (periodic domains)

— Compact, non-Abelian groups (orthogonal matrices)

— The semigroup R, (histograms)
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