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Observation vs intervention
Conditioning from observation: E[Y jA = a ] =

P
x E[Y ja ; x ]p(x ja)Hidden context observed

X

A Y

8/9

or

or

From our observations of historical hospital data:

P(Y = curedjA = pills) = 0:80
P(Y = curedjA = surgery) = 0:72

Richardson, Robins (2013), Single World Intervention Graphs (SWIGs): A Unification of the
Counterfactual and Graphical Approaches to Causality
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Observation vs intervention
Average causal effect (intervention): E[Y (a)] =

P
x E[Y ja ; x ]p(x )

Hidden context observed, do(a), SWIG

X

A

a
Y a

9/9

or

or

From our intervention (making all patients take a treatment):

P(Y (pills) = cured) = 0:64
P(Y (surgery) = cured) = 0:75

Richardson, Robins (2013), Single World Intervention Graphs (SWIGs): A Unification of the
Counterfactual and Graphical Approaches to Causality 2/29



Questions we will solve

X

A

a
Y (a)
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Outline

First lecture: causal effect estimation, observed covariates:

Average treatment effect (ATE), conditional average treatment effect
(CATE), average treatment on treated (ATT), mediation effects.

Second lecture: causal effect estimation, hidden covariates:

... instrumental variables, proxy variables

What’s new? What is it good for?

Treatment A, covariates X , etc can be multivariate, complicated...

...by using kernel or adaptive neural net feature representations
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Regression assumption: linear functions of features
All learned functions will take the form:

(x ) = >'�(x )
or
= h; '(x )iH

Option 1: Finite dictionaries of learned neural net features '�(x )
(linear final layer )
Xu, G., A Neural mean embedding approach for back-door and front-door adjustment.
(ICLR 23)
Xu, Chen, Srinivasan, de Freitas, Doucet, G. Learning Deep Features in Instrumental
Variable Regression. (ICLR 21)

Option 2: Infinite dictionaries of fixed kernel features:

h'(xi ); '(x )iH = k(xi ; x )

Kernel is feature dot product.
Singh, Xu, G. Kernel Methods for Causal Functions: Dose, Heterogeneous, and
Incremental Response Curves. (Biometrika 23)
Singh, Sahani, G. Kernel Instrumental Variable Regression. (NeurIPS 19)
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Kernel ridge regression: reminder
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Kernel ridge regression
Approximate 0(x ) := E[Y jX = x ] using ridge regression

̂ = argmin
2H

nX
i=1

(yi � h; '(xi )iH)
2 + �kk2H

Representer theorem:

 =
nX

i=1

�i'(xi ); h'(xi ); '(xj )iH = k(xi ; xj );

Solution is

�̂ = argmin
�2Rd

ky �K�k2 + ��>K�

= (K + �In)�1y :

Prediction at new x : define (kXx )i = k(xi ; x ),

̂(x ) = ĥ; '(x )iH =

* nX
i=1

�i'(xi ); '(x )

+
H

= �̂>kXx
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̂(x ) = ĥ; '(x )iH =

* nX
i=1

�i'(xi ); '(x )

+
H

= �̂>kXx

7/29



Model fitting: ridge regression
Approximate 0(x ) := E[Y jX = x ] from features '(xi ) and yi :

̂ = argmin
2H

 nX
i=1

(yi � h; '(xi )iH)
2 + �kk2H

!
:

Kernel solution at x
(as weighted sum of y)

̂(x ) =
nX

i=1

yi�i (x )

�(x ) = (KXX + �I )�1kXx

(KXX )ij = k(xi ; xj ) = h'(xi ); '(xj )iH

(kXx )i = k(xi ; x ) -6 -4 -2 0 2 4 6 8

x

-0.4

-0.2

0

0.2

0.4

0.6

0.8

f(
x
)
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Observed covariates: (conditional) ATE

Kernel features (Biometrika
2023):

NN features (ICLR 2023):

Code for NN and kernel causal estimation with observed covariates:
https://github.com/liyuan9988/DeepFrontBackDoor/
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Average treatment effect
Potential outcome (intervention):

E[Y (a)] =

Z
E[Y ja ; x ]dp(x )

(the average structural function; in epidemiology, for continuous a ,
the dose-response curve).
Assume: (1) Stable Unit Treatment Value Assumption (aka “no interference”), (2)
Conditional exchangeability Y (a) ?? AjX : (3) Overlap.

Example: US job corps, training
for disadvantaged youths:

A: treatment (training hours)

Y : outcome (percentage
employment)

X : covariates (age, education,
marital status, ...)

X

A

a
Y (a)
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Multiple inputs via products of kernels
We may predict expected outcome
from two inputs

0(a ; x ) := E[Y ja ; x ]

Assume we have:

covariate features '(x ) with
kernel k(x ; x 0)

treatment features '(a) with
kernel k(a ; a 0)

(argument of kernel/feature map indicates
feature space)

X

A

a
Y (a)

We use outer product of features ( =) product of kernels):

�(x ; a) = '(a)
 '(x ) K([a ; x ]; [a 0; x 0]) = k(a ; a 0)k(x ; x 0)

Ridge regression solution:

̂(x ; a) =
nX

i=1

yi�i (a ; x ); �(a ; x ) = [KAA �KXX + �I ]�1 KAa �KXx
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ATE (dose-response curve)

Well-specified setting:

E[Y ja ; x ] =: 0(a ; x ) = h0; '(a)
 '(x )i

ATE as feature space dot product:

ATE(a) = E[0(a ;X )]

= E [h0; '(a)
 '(X )i]

=


0; '(a)
 �X|{z}

E['(X )]

�

X

A

a
Y (a)
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= E [h0; '(a)
 '(X )i]

=


0; '(a)
 �X|{z}

E['(X )]

�

X

A

a
Y (a)

Feature map of probability P(X ),

�X = [: : :E ['i (X )] : : :]
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ATE: example
US job corps: training for dis-
advantaged youths:

X : covariate/context (age,
education, marital status, ...)

A: treatment (training hours)

Y : outcome (percent
employment)

X

A

a
Y (a)

Empirical ATE:

[ATE(a) = bE �
̂0; '(X )
 '(a)
��

=
1
n

nX
i=1

Y >(KAA �KXX + n�I )�1(KAa �KXxi )

Schochet, Burghardt, and McConnell (2008). Does Job Corps work? Impact findings from the national
Job Corps study.
Singh, Xu, G (2022a).
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ATE: results

0 500 1000 1500 2000
Class-hours

35

40

45

Pe
rc

en
t e

m
pl

oy
m

en
t

RKHS
DML2

First 12.5 weeks of classes confer employment gain: from 35% to 47%.
[RKHS] is our [ATE(a).
[DML2] Colangelo, Lee (2020), Double debiased machine learning
nonparametric inference with continuous treatments.

Singh, Xu, G (2022a)
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Conditional average treatment effect

Well-specified setting:

E[Y ja ; x ; v ] =: 0(a ; x ; v)

= h0; '(a)
 '(x )
 '(v)i :

Conditional ATE

CATE(a ; v)

= E
h
Y (a)jV = v

i

= E [h0; '(a)
 '(X )
 '(V )i jV = v ]

X

A

a
Y (a)

V

Learn conditional mean embedding: �X jV=v := EX ['(X )jV = v ]
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Conditional average treatment effect

Well-specified setting:

E[Y ja ; x ; v ] =: 0(a ; x ; v)

= h0; '(a)
 '(x )
 '(v)i :

Conditional ATE

CATE(a ; v)

= E
h
Y (a)jV = v

i
= E [h0; '(a)
 '(X )
 '(V )i jV = v ]

= :::?

X

A

a
Y (a)

V

How to take conditional expectation?
Density estimation for p(X jV = v)? Sample from p(X jV = v)?

Learn conditional mean embedding: �X jV=v := EX ['(X )jV = v ]
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Conditional average treatment effect

Well-specified setting:

E[Y ja ; x ; v ] =: 0(a ; x ; v)

= h0; '(a)
 '(x )
 '(v)i :

Conditional ATE

CATE(a ; v)

= E
h
Y (a)jV = v

i
= E [h0; '(a)
 '(X )
 '(V )i jV = v ]

=


0; '(a)
 E['(X )jV = v ]| {z }

�X jV=v


 '(v)
�

X

A

a
Y (a)

V

Learn conditional mean embedding: �X jV=v := EX ['(X )jV = v ]
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Regressing from feature space to feature space
Our goal: an operator F0 : HV !HX such that

F0'(v) = �X jV=v

Assume

F0 2 span f'(x )
 '(v)g () F0 2 HS(HV ;HX )

Implied smoothness assumption:

E[h(X )jV = v ] 2 HV 8h 2 HX

Kernel ridge regression from '(v) to infinite features '(x ):

bF = argmin
F2HS

nX
`=1

k'(x`)� F'(v`)k2HX
+ �2kFk2HS

Song, Huang, Smola, Fukumizu (2009). Hilbert space embeddings of conditional distributions with
applications to dynamical systems.
Grunewalder, Lever, Baldassarre, Patterson, G, Pontil (2012). Conditional mean embeddings as
regressors.
Grunewalder, G, Shawe-Taylor (2013) Smooth operators.
Li, Meunier, Mollenhauer, G (2022), Optimal Rates for Regularized Conditional Mean Embedding
Learning 17/29
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F0 2 span f'(x )
 '(v)g () F0 2 HS(HV ;HX )

Implied smoothness assumption:

E[h(X )jV = v ] 2 HV 8h 2 HX

Kernel ridge regression from '(v) to infinite features '(x ):

bF = argmin
F2HS

nX
`=1

k'(x`)� F'(v`)k2HX
+ �2kFk2HS

Ridge regression solution:

�X jV=v := E['(X )jV = v ] � bF'(v) =
nX

`=1

'(x`)�`(v)

�(v) = [KVV + �2I ]�1 kVv
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Consistency of conditional mean embedding
Assume problem well specified [B, Assumption 6]

E0 = G1 �T
c1�1
2

1 ; c1 2 (1; 2]; kG1k
2
HS � �1;

T1 is covariance of features '(v):

Eigenspectrum decays as �1;j � j�b1 , b1 � 1.

Larger c1 =) smoother E0 =) easier problem.

Consistency [A, Theorem 2, Theorem 3] bE � E0


HS

= OP

�
n�

1
2

c1�1
c1+1=b1

�
;

best rate is OP (n�1=4) (minimax)

[A] Li, Meunier, Mollenhauer, G (2022), Optimal Rates for Regularized Conditional Mean Embedding
Learning
[B] Singh, Xu, G (2022a)

Earlier consistency proofs for finite dimensional '(x ):
Grunewalder, Lever, Baldassarre, Patterson, G, Pontil (2012).
Caponnetto, De Vito (2007). 18/29
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Consistency of CATE
Empirical CATE:

�̂CATE(a ; v)

= Y >(KAA �KXX �KVV + n�I )�1(KAa �KXX (KVV + n�1I )�1KVv| {z }
from �̂X jV=v

�KVv )

Consistency: [A, Theorem 2]

k�̂CATE � �CATE0 k1 = OP

�
n�

1
2

c�1
c+1==b + n�

1
2

c1�1
c1+1=b1

�
:

Follows from consistency of bE and ̂; under the assumptions:

E0 = G1 �T
c1�1
2

1 ; kG1k
2
HS � �1,

0 2 H
c :

[A] Singh, Xu, G (2022a)
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Conditional ATE: example

US job corps: train-
ing for disadvantaged
youths:

X : confounder/context
(education, marital
status, ...)

A: treatment (training
hours)

Y : outcome (percent
employed)

V : age

X

A

a
Y (a)

V

Singh, Xu, G (2022a)
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Conditional ATE: results

500 1000 1500
Class-hours

16

18

20

22

24

Ag
e

36.0

36.0

40.0

40.0 40.044.0

44.048.0

52.0
56.0

Average percentage employment Y (a) for class hours a , conditioned
on age v . Given around 12-14 weeks of classes:

16 y/o: employment increases from 28% to at most 36%.
22 y/o: percent employment increases from 40% to 56%.

Singh, Xu, G (2022a)
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Counterfactual: average treatment on treated
Conditional mean:

E[Y ja ; x ] = 0(a ; x )

= h0; '(a)
 '(x )i

Average treatment on treated:

�ATT (a ; a 0)

= E[y (a 0)jA = a ]

= EP
�

0; '(a 0)
 '(X )

�
jA = a

�
=


0; '(a 0)
 EP ['(X )jA = a ]| {z }

�X jA=a

�

X

A

a
Y (a)

Empirical ATT:

�̂ATT(a ; a 0)

= Y >(KAA �KXX + n�I )�1(KAa 0 �KXX (KAA + n�1I )�1KAa| {z }
from �̂X jA=a

)
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�ATT (a ; a 0)

= E[y (a 0)jA = a ]

= EP
�

0; '(a 0)
 '(X )

�
jA = a

�
=


0; '(a 0)
 EP ['(X )jA = a ]| {z }

�X jA=a

�

X

A

a
Y (a)

Empirical ATT:

�̂ATT(a ; a 0)

= Y >(KAA �KXX + n�I )�1(KAa 0 �KXX (KAA + n�1I )�1KAa| {z }
from �̂X jA=a

)
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Mediation analysis

Direct path from treatment A to effect Y

Indirect path A ! M ! Y

X : context

Is the effect Y mainly due to A? To M ?

X

A

M

Y
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Mediation analysis: example
US job corps: training for dis-
advantaged youths:

X : confounder/context (age,
education, marital status, ...)

A: treatment (training hours)

Y : outcome (arrests)

M : mediator (employment)

X

A

M

Y

0(a ;m ; x ) � E[Y jA = a ;M = m ;X = x ]

A quantity of interest, the mediated effect:

Y fa 0;M (a)g =

Z
0(a 0;M ;X )dP(M jA = a ;X )dP(X )

= h0; '(a 0)
 EPf�M jA=a ;X 
 '(X )gi

Effect of intervention a 0, with M (a) as if intervention were a

Singh, Xu, G (2022b). Kernel Methods for Multistage Causal Inference: Mediation Analysis and
Dynamic Treatment Effects. 24/29
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Mediation analysis: results
Total effect:

�TE
0 (a ; a 0)

:= E[Y fa 0;M (a0)g �Y fa ;M (a)g]
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0.000
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Direct effect:

�DE
0 (a ; a 0)

:= E[Y fa 0;M (a)g �Y fa ;M (a)g]
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a 0 = 1600 hours vs a = 480 means 0.1 reduction in arrests

Indirect effect mediated via employment effectively zero

Singh, Xu, G (2022b)
25/29



Mediation analysis: results
Total effect:

�TE
0 (a ; a 0)

:= E[Y fa 0;M (a0)g �Y fa ;M (a)g]

500 1000 1500 2000
Class-hours (a)

500

1000

1500

2000

Cl
as

s-
ho

ur
s (

a′
) -0.080

-0.040

0.000

0.000

0.000

0.040
0.080

Direct effect:

�DE
0 (a ; a 0)

:= E[Y fa 0;M (a)g �Y fa ;M (a)g]

500 1000 1500 2000
Class-hours (a)

500

1000

1500

2000

Cl
as

s-
ho

ur
s (

a′
) -0.080

-0.040

0.000

0.000
0.000

0.040

0.080

a 0 = 1600 hours vs a = 480 means 0.1 reduction in arrests
Indirect effect mediated via employment effectively zero

Singh, Xu, G (2022b)
25/29



...dynamic treatment effect...
Dynamic treatment effect: sequence A1;A2 of treatments.

X1 X2

A1 A2 Y

potential outcomes Y (a1);Y (a2);Y (a1;a2);

counterfactuals E
h
Y (a 01;a

0
2)jA1 = a1;A2 = a2

i
...

(c.f. the Robins G-formula)
Singh, Xu, G. (2022b) Kernel Methods for Multistage Causal Inference: Mediation Analysis and
Dynamic Treatment Effects
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Conclusions

Kernel and neural net solutions:

...for ATE, CATE, dynamic treatment effects

...with treatment A, covariates X ;V , proxies (W ;Z ) multivariate,
“complicated”

Convergence guarantees for kernels and NN

Next lecture:

Unobserved covariates/confounders (IV and proxy methods)

Code available for all methods

27/29



Research support

Work supported by:

The Gatsby Charitable Foundation

Google Deepmind

28/29



Questions?

29/29


