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Observation vs intervention

Conditioning from observation: E[Y|A = a] =}, E[Y|a, z]p(z|a)

From our observations of historical hospital data:
m P(Y = cured|A = pills) = 0.85
m P(Y = cured|A = surgery) = 0.72
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Observation vs intervention

Average causal effect (intervention): E[Y (%)) = 33 E[Y|a, z]p(z)

From our intervention (making all patients take a treatment):
n P(Y(®lls) — cured) = 0.64
m P(Y(ureery) — cured) = 0.75

Richardson, Robins (2013), Single World Intervention Graphs (SWIGs): A Unification of the

Counterfactual and Graphical Approaches to Causality 2/45



Some core assumptions

Assume:

m Stable Unit Treatment Value Assumption (aka “no interference”),
» Conditional exchangeability Y(%) I A|X.
m Overlap.
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One model: linear functions of features

All learned functions will take the form:

v(z) =7 po()

NN approach: Finite dictionaries of learned neural net features ¢y(z)
(linear final layer 7y)

Xu, G., A Neural mean embedding approach for back-door and front-door adjustment. (ICLR 23)

Xu, Chen, Srinivasan, de Freitas, Doucet, G. Learning Deep Features in Instrumental Variable
Regression. (ICLR 21)

Xu, Kanagawa, G. “Deep Proxy Causal Learning and its Application to Confounded Bandit Policy
Evaluation”. (NeurIPS 21)
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Model fitting: neural ridge regression

Learn 7o(z) := E[Y|X = z] from features gy(z;) with outcomes y;:

. (N AT )2 2
7 = argmin <Zl (v = 7 0o(=)) +/\||'7||H> (1)
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Model fitting: neural ridge regression
Learn 7o(z) := E[Y|X = z] from features gy(z;) with outcomes y;:
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How to solve for 6:
Substitute 4 into (1), backprop through Cholesky for 6. 5/45



Model fitting: neural ridge regression

Learn 7o(z) := E[Y|X = z] from features gy(z;) with outcomes y;:

n
N : T 2 2
= - )+ A 1
¥ = argmig <Zl (v =77 0o()) + II’YIIH> (1)
Solution for linear final layer 7: 4 cholesky

o 0 8 _
= cBelg v

1 n
c) = - > [yi po(z) ']
1=1
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MNIST, 4 layer FF, sigmoid, fully connected
How to solve for 6:

Substitute 4 into (1), backprop through Cholesky for 6. 5/45




Instrumental variable regression
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Illustration: ticket prices for air travel

Ticket price A, seats sold Y.

0—0

What is the effect on seats sold Y (%) of intervening on price a?

Simplification of example from Hartford, Lewis, Leyton-Brown, Taddy (2017): Deep IV: A Flexible7/45
Approach for Counterfactual Prediction.
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Illustration: ticket prices for air travel

Unobserved variable X =desire for travel, affects both price (via
airline algorithms) and seats sold.

m Desire for travel:
X ~N(u,0.1)
14 1Y 5

-1 -0.5 0 0.5 1
Demand X

[
%% -— M1 SS
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[llustration: ticket prices for air travel

Unobserved variable X =desire for travel, affects both price (via
airline algorithms) and seats sold.

'{:;‘,‘ ®IST m Desire for travel:

. X ~N(p,0.1)
:‘Xll /’LNU{_%7O7

1

2

m Price:
A=X+ 7,

: Z ~ N(5,0.04)
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[llustration: ticket prices for air travel

Unobserved variable X =desire for travel, affects both price (via
airline algorithms) and seats sold.

m Desire for travel:
X ~N(u,0.1)
sl hort)

m Price:
A=X+ 2,
Z ~ N (5,0.04)

> m Seats sold:

Y=10—-A+2X

Average treatment effect:

ATE(a) = E[Y(®)] = /(10 —a+4+2X)dp(X)=10-a
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[llustration: ticket prices for air travel

Unobserved variable X =desire for travel, affects both price (via
airline algorithms) and seats sold.

'{7(: OIST m Desire for travel:

X ~N(p,0.1)
.X‘ MNU{—%,O,%}

m Price:
A=X+ 2,
( ) Z ~ N(5,0.04)
m Seats sold:

KJJJ“ Y=10-A+2X

Z is an instrument (cost of fuel). Condition on Z,
E[Y|Z] =10 — E[A|Z] + 2E[X | Z]
——
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Illustration: ticket prices for air travel

Unobserved variable X =desire for travel, affects both price (via
airline algorithms) and seats sold.

5.4

5.21

EY|Z]

4.8 1

4.6 1

4.6

4.8

5.0

E[A|Z]

5.2

m Desire for travel:
X ~N(u,0.1)
1 1
M~ u {_57 07 §}
m Price:
A=X+ 2,
Z ~ N(5,0.04)
m Seats sold:
Y=10—-A+2X

Z is an instrument (cost of fuel). Condition on Z,

E[Y|Z] = 10 — E[A|Z] + 2E[X|Z]

——
=0

Regressing from E[A|Z] to E[Y'|Z] recovers causal relation! 8/45



Plain linear regression: what goes wrong?

Output y € R, noise X € R, input A with NN features py(a).
Crucially, X £ A and

Coo := E[pg(A)X] # 0
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Plain linear regression: what goes wrong?
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Coz = E[ps(A)X] #0
Average treatment effect:
y=7"ps(a) +X  E(X)=0
ATE = E(Y(¥) = /(fyon(a) + X)dP(X) = 710" ps(a).
Least-squares loss for +:

L(7,6)=E H Y — 7 gs(A) - XH2

9/45



Plain linear regression: what goes wrong?

Output y € R, noise X € R, input A with NN features py(a).
Crucially, X £ A and

Coz = E[ps(A)X] #0

Average treatment effect:

y=7"ps(a) +X  E(X)=0

ATE = E(Y(®) = [ (0" pa(a) + X)dP(X) =70 ps(a).
Least-squares loss for +:

£(7,6) =E|| Y =7 ps(4) - x|
Minimizing for v,
% = Cad(Cay = Cas)  Caa = Elps(A)ps(A)']
Coy = E[ps(A) Y]

...but we don’t have C,;. 0/45



Instrumental variable regression

The Sveriges Riksbank Prize in
Economic Sciences in Memory of
Alfred Nobel 2021

© Nobel Prize Outreach. Photo:  © Nobel Prize Outreach. Photo:  © Nobel Prize Outreach. Photo:
Paul Kennedy Risdon Photography Paul Kennedy

David Card Joshua D. Angrist Guido W. Imbens
Prize share: 1/2 Prize share: 1/4 Prize share: 1/4

The Sveriges Riksbank Prize in Economic Sciences
in Memory of Alfred Nobel 2021 was divided, one
half awarded to David Card "for his empirical
contributions to labour economics", the other half
jointly to Joshua D. Angrist and Guido W. Imbens
"for their methodological contributions to the
analysis of causal relationships"
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Instrumental variable regression with NN features

Definitions:

m X: unobserved
confounder.

m A: treatment
B Y: outcome
m Z: instrument
Assumptions
E[X]=0, E[X|Z]=0
Z XA
(Y L Z|A)g,
Y =7q"p(4) + X

®
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Instrumental variable regression with NN features

Definitions:

m X: unobserved
confounder.

m A: treatment
B Y: outcome
m Z: instrument
Assumptions
E[X]=0, E[X|Z]=0
Z XA
(Y L Z|A)g,
Y =7q"p(4) + X

o8&

Average treatment effect:

ATE(a

)= [B(YIX, a)dp(X) = 7" pu(a)
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Instrumental variable regression with NN features

Definitions:
m X: unobserved ";(:‘.
1
confounder. sooe

m A: treatment / \
m Y: outcome

; yA f;l\ Y
B Z: instrument v

Assumptions

Average treatment effect:
E[X]=0, E[X|Z]=0

ZyA ATE(a) = [ E(Y]X, @)dp(X) =77 ps(a)
(Y L Z|A)s;
Y =7q"p(4) + X
IV regression: Condition both sides on Z,
E[Y|Z] = v E[ps(A)|Z] + E[X|Z]
N—_——

=0
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Two-stage least squares for IV regression

Kernel features (NeurIPS 2019):

arXiv.org > cs > arXiv:1906.00232

Help | Ad
Computer Science > Machine Learning
[Submitted on 1 Jun 2019 (v1), lat reised 15 ul 2020 (¢is version, v6)

Kernel Instrumental Variable Regression
Rahul Singh, Maneesh Sahani, Arthur Gretton

Code for NN and kernel IV methods:

NN features (ICLR 2021):

arivsc>

1v:2010.07154

Computer Science > Mac|

Learning

[subrmitted on 14 Oct 2020 (v1, last revised 1 Nov 2020 (tis version, v3)

Learning Deep Features in Instrumental Variable Regression

Liyuan Xu, Yutian Chen, Siddarth Srinivasan, Nando de Freitas, Arnaud Doucet, Arthur Gretton

https://github.com/1iyuan9988/DeepFeatureIV/

12/45


https://github.com/liyuan9988/DeepFeatureIV/

Two-stage least squares for IV regression

Kernel features (NeurIPS 2019):

arXiv.org > cs > arXiv:1906.00232

Help | Ad
Computer Science > Machine Learning
[Submitted on 1 Jun 2019 (v1), lat reised 15 ul 2020 (¢is version, v6)

Kernel Instrumental Variable Regression
Rahul Singh, Maneesh Sahani, Arthur Gretton

Code for NN and kernel IV methods

NN features (ICLR 2021):

ar (1V > cs > arXiv:2010.07154

Computer Science > M:

ine Learning
[submitted on 14 Oct 2020 (v1), last revised 1 Nov 2020 (this version, v3)]
Learning Deep Features in Instr

Variable Reg i
Liyuan Xu, Yutian Chen, Siddarth Srinivasan, Nando de Freitas, Arnaud Doucet, Arthur Gretton

https://github.com/1iyuan9988/DeepFeaturelIV/
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https://github.com/liyuan9988/DeepFeatureIV/

IV using neural net features

Stage 2 regression (IV): learn NN features @g(A) and linear layer v to
obtain Y with RR loss:

Evz |(Y =7 Elpe(4)|2])*] + Xl

Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021) Learning Deep Features in Instrumental Variable
Regresion 14/45



IV using neural net features

Stage 2 regression (IV): learn NN features @g(A) and linear layer v to
obtain Y with RR loss:

Evz [(Y - 7 Elps(4)|2])%] + AallvII”
learn NN features ¢/(Z) and linear layer
Elps(A)|Z] = Fo(Z)
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Ellps(A) = Foc(2))1 + Ml 7 lls
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obtain Y with RR loss:

Evz [(Y - 7 Elps(4)|2])%] + AallvII”
learn NN features ¢/(Z) and linear layer
Elps(A)|Z] = Fo(Z)
with RR loss

Ellpe(4) — Foc (21 + Ml 7l Es
Challenge: how to learn 67

Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021) Learning Deep Features in Instrumental Variable
Regresion 14/45
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IV using neural net features

Stage 2 regression (IV): learn NN features @g(A) and linear layer v to
obtain Y with RR loss:
Evz [(Y - 7 Elps(4)|2])%] + AallvII”
learn NN features ¢/(Z) and linear layer
Elps(A)| 2] = Foc(2)
with RR loss
Ellps(A) = Foc(2))1 + Ml 7 lls
Challenge: how to learn 67
From Stage 2 regression?

...which requires E[pg(A)|Z] from regression
...which requires ¢4(A)... which requires 6...

Use the linear final layers! (ie. y and 7)

Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021) Learning Deep Features in Instrumental Variable
Regresion 14/45



IV using neural net features

Stage 1 regression: learn NN features ¢ (Z) and linear layer /:
Elpe(A)|Z] ~ o (Z)
with RR loss
E [[lpe(A) — Foc(Z)17] + Ml 7l

Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021) Learning Deep Features in Instrumental Variable
Regresion 15/45



IV using neural net features

learn NN features ¢/(Z) and linear layer
Elps(A)| 2] = Foc(2)
with RR loss
E [llos(A4) = Foc(Z)|2] + Ml #1ls
9,c in closed form wrt ¢g, ¢ :
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IV using neural net features

learn NN features ¢/(Z) and linear layer
Elps(A)| 2] = Foc(2)
with RR loss
E [llos(A4) = Foc(Z)|2] + Ml #1ls
9,c in closed form wrt ¢g, ¢ :
60 = Caz(Czz + MI)™"  Caz = Elpe(A)p! (2)]
Czz = Elp:(2)p/ (2)]
Plug /g into S1 loss, bp through Cholesky for ¢ (...but not 4...)

Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021) Learning Deep Features in Instrumental Variable
Regresion 15/45



Stage 2: IV regression

Stage 2 regression (IV): learn NN features @g(A) and linear layer v to
obtain Y with RR loss:

L2(7,0) = Eyz [(Y =71 Elpa(4)|2))%] + oy

Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021) 16/45
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Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021) 16/45



Stage 2: IV regression

Stage 2 regression (IV): learn NN features @g(A) and linear layer v to
obtain Y with RR loss:

L2(7,0) = Eyz [(Y =71 Elpa(4)|2))%] + oy
=Evzl(Y =77 Foc0:(2))) + Aol

g in closed form wrt y:
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Stage 2 regression (IV): learn NN features @g(A) and linear layer v to
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Stage 2: IV regression

Stage 2 regression (IV): learn NN features @g(A) and linear layer v to
obtain Y with RR loss:

L2(7,0) = Eyz [(Y =71 Elpa(4)|2))%] + oy
=Evzl(Y =77 Foc0:(2))) + Aol

g in closed form wrt y:

Y9 := Cyaiz(Caajz + X2I)™*  Cyaz =E [Y [Foce (Z)]T}
Canz =E|[Fo00(2)] [Fo0:(2))]

From linear final layers in Stages 1,2:

Learn pg(A) by plugging 9, into S2, bp through Cholesky for ¢
...but ( changes with 6

...s0 alternate first and second stages until convergence.

Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021) 16/45



Neural IV in reinforcement learning

(a) Catch (b) Mountain Car (¢) Cartpole

(a) Cartpole Swingup ~ (b) Cheetah Run (¢) Humanoid Run (d) Walker Walk

Policy evaluation: want Q-value:

Q"(s,a) = Z’thSg:sAoza
t=0
for policy 7(A|S = s).
Osband et al (2019). Behaviour suite for reinforcement learning.https://github.com/deepmind/bsuite

Tassa et al. (2020). dm_ control:Software and tasks for continuous control. 17/45
https://github.com/deepmind/dm_control


https://github.com/deepmind/bsuite
https://github.com/deepmind/dm_control

Application of IV: reinforcement learning

Q value is a minimizer of Bellman loss
Lpenman = Esar [(R+7[E[Q7(S', 4[5, A] - Q"(5, 4))°].
Corresponds to “IV-like” problem
Lpeltman = Evz [(Y - E[f(X)|2])?]

with
Y = R,
X = (8,48, 4)
Z =(S,A),

fO(X): Qﬂ'(s: a) - ’YQW(SI: al)
RL experiments and data:
https://github.com/1iyuan9988/IVOPEwithACME

Bradtke and Barto (1996). Linear least-squares algorithms for temporal difference learning.
Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021)

Chen, Xu, Gulcehre, Le Paine, G, De Freitas, Doucet (2022). On Instrumental Variable Regressioqg745
Deep Offline Policy Evaluation.


https://github.com/liyuan9988/IVOPEwithACME

Results on mountain car problem

I mountain_car

| ; Algorithm
T ~—— DeepGMM
E= = = o

N e

LY
| i ' .
| . 3 i DRIV

Absolute Error

00 01 02 03 04 05
Noise Level

Good performance compared with FQE.

Warning: IV assumption can fail when regression underfits. See
papers for details.

Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021)

Chen, Xu, Gulcehre, Le Paine, G, De Freitas, Doucet (2022). On Instrumental Variable Regressiox{é7ﬁ5
Deep Offline Policy Evaluation.



Proxy causal learning
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We record symptom W, not disease X

m P(W = fever|X = mild) =0.2
m P(W = fever|X = severe) = 0.8
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We record symptom W, not disease X

m P(W = fever|X = mild) =0.2
m P(W = fever| X = severe) = 0.8

Could we just write: P(Y (%) < > wego,13 E[Y|a, w]p(w)
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We record symptom W, not disease X

Wrong recommendation made:

B > ueqo,1} Elcured|pills, w]p(w) = 0.8 (# 0.64)

B > ueqo,1} Elcured|surgery, w]p(w) = 0.73  (# 0.75)
Correct answer impossible without observing X

21/45
Pearl (2010), On Measurement Bias in Causal Inference /



Outline

Causal effect estimation, with hidden covariates X:

m Use proxy variables (negative controls)

Applications: effect of actions under

® privacy constraints (email, ads, DMA)
m data gathering constraints (edge computing)

m fundamental limitations (preferences, state of mind)
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Outline

Causal effect estimation, with hidden covariates X:

m Use proxy variables (negative controls)

Applications: effect of actions under

® privacy constraints (email, ads, DMA)
m data gathering constraints (edge computing)

m fundamental limitations (preferences, state of mind)

What'’s new and why?

m Treatment A, proxy variables, etc can be multivariate, complicated...

m ...by using feature representations
m Don't meet—rour-herees model your hidden variables!

22/45



What are proxies, and when are they useful?

Unobserved X with (possibly) complex nonlinear effects on A, Y

In this example:
m X: email inbox
m A: prioritize important

m Y: outcome
(efficiency)

fo fnping Ul

aaaaaaa
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m W: anonymized inbox
before action A
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What are proxies, and when are they useful?

Unobserved X with (possibly) complex nonlinear effects on A, Y

In this example:

‘ i = ya %7, ”
A g =S e L/
m A: prioritize important w= ‘ el

B w
m Y: outcome O‘

(efficiency)
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before action A

E Z: anonymized inbox
after action A
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Unobserved X with (possibly) complex nonlinear effects on A, Y

In this example:

m X: email inbox

B Y: outcome
(efficiency)

m W: anonymized inbox
before action A
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after action A

— Can recover E( Y (%) from observational data
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What are proxies, and when are they useful?

Unobserved X with (possibly) complex nonlinear effects on A, Y

In this example:

g s
. ey . — oy #
m X: email inbox ” - | - e
m A: prioritize important == . 28
o w)
m Y: outcome k O

(efficiency)

m W: anonymized inbox
before action A

o |

®m Z: anonymized inbox
after action A
— Can recover E( Y (%) from observational data
— More usefully: evaluate novel, on-device policy:

E( Y (m(420) 23/45



What are proxies, and when are they useful (2)?
Unobserved X with (possibly) complex nonlinear effects on A, Y

In this example:

m X: true physical status Q)
m A: exercise regimes Feb = Jan
e -~ an
)4 REERRY
m Y: fitness goal ﬁﬁi@ » X} @.—m
m W: health readings .
before A

m Z: health readings D
or

e
after A -, A @ ‘K

24/45



Proxy variables: general setting

Unobserved X with (possibly) complex nonlinear effects on A, Y
The definitions are:

m X: unobserved confounder.

m A: treatment -
m Y: outcome 4—(}_()4----->

B Z: treatment proxy ”“

m W outcome proxy “‘

Miao, Geng, Tchetgen Tchetgen (2018): Identifying causal effects with proxy variables of an unmeasured
confounder. 25/45



Proxy variables: general setting

Unobserved X with (possibly) complex nonlinear effects on A, Y

The definitions are:
m X: unobserved confounder.
m A: treatment -~
m Y: outcome ~— H"""
m Z: treatment proxy \

m W outcome proxy

Ve

Structural assumptions:

Y 1L Z|(4, X)

Miao, Geng, Tchetgen Tchetgen (2018): Identifying causal effects with proxy variables of an unmeasured
confounder. 25/45



Why proxy variables? A simple proof

The definitions are:

m X: unobserved confounder.

1
1

m A: treatment

-~
e
“m?

® Y: outcome

If X were observed,
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Why proxy variables? A simple proof

The definitions are:

m X: unobserved confounder.

1
1

m A: treatment

-~
e
“m?

® Y: outcome

®

If X were observed,

dz
P( y(a)) = ZP(Y|$i’ a)P(zi;) = P(Y|X, a)P(X)
— 1=1
dy><1 ddez d:c><1

Goal: “get rid of the blue” X
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...add the outcome proxy W

The definitions are: ' X u —m-
m X: unobserved confounder.
m A: treatment

® Y: outcome

m W: outcome proxy

For each a, if we could solve:
P(Y|X,a) = Hy,o P(W|X)
———

——
dy X dg dyxdy duwxdg
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...add the outcome proxy W

The definitions are: ' X u —m-

m X: unobserved confounder.
m A: treatment
® Y: outcome

m W: outcome proxy

For each a, if we could solve:

P(Y|X,a) = Hy,o P(W|X)
N——— N ——
dy X dg dy X dy dy X dg

P(Y(®)) = P(Y|X,a)P(X)
= Hw,aP(W|X)P(X)
= Hw,aP( W) 27/45



...now project onto p(X|Z, a)

From last slide,

P(Y|X,a) = Hy, P(W|X)
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Because ,
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...now project onto p(X|Z, a)

From last slide,

P(Y|X,a)p(X|Z,a) = Hy,P(W|X)p(X|Z, a)

dLXdz dedz

Because ,
P(W|X)p(X|Z,a) =
Because Y 1L Z|(A4, X),
P(Y|X,a)p(X|Z,a) = P(Y|Z,a)

Solve for Hy 4:
P(Y|Z,a) = Hy,
Everything observed!
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Proxy/Negative Control Methods
in the Real World
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Unobserved confounders: proxy methods

Kernel features (ICML 2021):

arXiv.org > cs > arXiv:2105.04544

Help | Advan|
Computer Science > Machine Learning

[submitted on 10 May 2021 (v1), ast revised 9 Oct 2021 (his version, vA)]

Proximal Causal Learning with Kernels: Two-Stage
Estimation and Moment Restriction

Afsaneh Mastouri, Yuchen Zhu, Limor Gultchin, Anna Korba, Ricardo Silva, Matt J. Kusner,
Arthur Gretton, Krikamol Muandet

Code for NN and kernel proxy methods:

NN features (NeurIPS 2021):

arXiv.org > ¢s > arXiv:2106.03907

Computer Science > Machine Learning

2]

i d its Application to
Confounded Bandit Policy Evaluation

Liyuan Xu, Heishiro Kanagawa, Arthur Gretton

https://github.com/1iyuan9988/DeepFeatureProxyVariable/ ;45
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Unobserved confounders: proxy methods

Kernel features (ICML 2021):

arXiv.org > cs > arXiv:2105.04544 Search

Computer Science > Machine Learning

([Submitted on 10 May 2021 (v1), last revised 9 Oct 2021 (this version, v4)]

Proximal Causal Learning with Kernels: Two-Stage
Estimation and Moment Restriction

Afsaneh Mastouri, Yuchen Zhu, Limor Gultchin, Anna Korba, Ricardo Silva, Matt J. Kusner,
Arthur Gretton, Krikamol Muandet
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NN features (NeurIPS 2021):

arXiv.org > ¢s > arXiv:2106.03907

Computer Science > Machine Learning

earning and its Application to
Confounded Bandit Policy Evaluation

Liyuan Xu, Heishiro Kanagawa, Arthur Gretton

Code for NN and kernel proxy methods:
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https://github.com/liyuan9988/DeepFeatureProxyVariable/

Road map: NN proxy learning

We'll proceed as follows:
m Proxy relation for continuous variables
m Loss function for deep proxy learning
m Define primary (ridge) regression with this loss

m Define (ridge) regression as input to primary

32/45



Proxy relation, general domains

If X were observed, we would write (average treatment effect)

E(Y(®) = LE(Y|a,x)p(m)dm.

....but we do not observe X.
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Proxy relation, general domains

If X were observed, we would write (average treatment effect)

E(Y(@) :/E(Y|a,x)p(m)dm.
x
....but we do not observe X.

Main theorem: Assume we solved for link function:

E(Y|a7 Z) = E[/V\a,zhy( W: a)

m “Primary” E(Y'|a, z), “secondary” [“y;, . linked by A,
m All variables observed, X not seen or modeled.

(Fredholm equation of first kind: existence of solution requires identifiability conditioar?s/)45
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Proxy relation, general domains

If X were observed, we would write (average treatment effect)

) = [E(Yla,o)p(e)da
x
...but we do not observe X.

Main theorem: Assume we solved for link function:

E(Y|a7 Z) = E[/V\a,zhy( W: a)

m “Primary” E(Y'|a, z), “secondary” [“y;, . linked by A,
m All variables observed, X not seen or modeled.

Average treatment effect via p(w

/h (a,w)p(w)dw

Challenge: need a loss function for A,

(Fredholm equation of first kind: existence of solution requires identifiability conditioar?s/)45



Primary loss function for h,(w, a)

Goal:
E(Y|a,z) = EW‘G’Zhy(W, a)

Primary loss function:
. . 2
hy = argminEy 47 (Y = Ewiazhy(7, 4))
Y

Why?

Deaner (2021).
Mastouri, Zhu, Gultchin, Korba, Silva, Kusner, G., Muandet (2021).

Xu, Kanagawa, G. (2021). 34/45
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E(Y|a: Z) = EDV\a,zhy( W; a)

Primary loss function:
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Primary loss function for h,(w, a)

Goal:
E(Y|a: Z) = EDV\a,zhy( W; a)

Primary loss function:

~

. 2
hy = argn}lllnEy,A,Z (Y — EWM,Zhy(W,A))
Y
Why?
f*(a,z) =E(Y|a, z) solves
argmin Ey 4 7 (Y — f(4, Z))2
f

...and by the proxy model above,
E( Y|a: Z) = EDV\a,zhy( W; a)

Deaner (2021).
Mastouri, Zhu, Gultchin, Korba, Silva, Kusner, G., Muandet (2021).

Xu, Kanagawa, G. (2021). 34/45



NN for link hy(a, w)

The link function is a function of two arguments

[ po,1(w)pe,1(a) ]
po,1(w)pe2(a)

hy(a, w) = 7" [ps(w) ® pe(a)] ="

05.2(w)pe1(a)

Assume we have:

m output proxy NN features pg(w) Rt
. X -4 ———e
m treatment NN features p¢(a) 2
m linear final layer
(argument of feature map indicates feature space)

A
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NN for link hy(a, w)

The link function is a function of two arguments

hy(a,w) =" [pe(w) ® pe(a)]

Assume we have:

m output proxy NN features pg(w) RARE
- X 14 -
m treatment NN features p¢(a) 2
m linear final layer
(argument of feature map indicates feature space)

Questions:

m Why feature map pg(w) ® p¢(a)?
m Why final linear layer 7

Both are necessary (next slide)!
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NN ridge regression for h,(w, a)

Goal:
E(Y|a,z) = EW‘G’Zhy(W, a)

Primary regression:

~

) 2
hy :argn}LlnEy,A,Z (Y—EW‘A,Zhy(W,A)) +)\2||'y||2
Y

Deaner (2021).
Mastouri, Zhu, Gultchin, Korba, Silva, Kusner, G., Muandet (2021).

36/45
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NN ridge regression for h,(w, a)

Goal:
E(Y|a: Z) = E‘/V\a,zhy( W; a)

Primary regression:

~

X 2
hy = arg II}ILIHEY,A,Z (Y — EDV\A,Zhy( W, A)) + )\2||’)’||2
Yy

How to get conditional expectation .y, . hy( 1/, a)?
Density estimation for p( 1V |a, 2)? Sample from p( 1V |a, 2)?

Deaner (2021).
Mastouri, Zhu, Gultchin, Korba, Silva, Kusner, G., Muandet (2021). 36/45
Xu, Kanagawa, G. (2021).



NN ridge regression for h,(w, a)

Goal:
E(Y|a: Z) = E‘/V\a,zhy( W; a)

Primary regression:

~

. 2

hy = arg II}ILIHEY,A,Z (Y — EDV\A,Zhy( W, A)) + )\2||’)’||2
Y

Recall link function

Ry (17, @) = (77 (pe(17) ® 9 (a))]

Deaner (2021).
Mastouri, Zhu, Gultchin, Korba, Silva, Kusner, G., Muandet (2021).
Xu, Kanagawa, G. (2021).

36/45



NN ridge regression for h,(w, a)

Goal:
E(Yla,z)=Ew..hy(W,a)
Primary regression:

~

) 2

hy = argn}lllnEy,A,Z (Y — EW‘A,Zhy(W, A)) + )\2||'y||2
Y

Recall link function

Ea: hy(W,0) = By [17 (0s() @ pe(a))]

Deaner (2021).
Mastouri, Zhu, Gultchin, Korba, Silva, Kusner, G., Muandet (2021).

36/45
Xu, Kanagawa, G. (2021).



NN ridge regression for h,(w, a)

Goal:
E( Y| a, Z) = EW’\a,z hy( W, a)
Primary regression:

~

. 2
h, = arg II}ILIIIEY,A,Z (Y — Ew|a,zhy( W, A)) + Aa|7|I?
Y
Recall link function
EI/V|a,z hy( W: a‘) = EVV|a,z I:’YT (‘PG( W) ® (pf(a‘))]

=" (Be- [pa(17)]) ® 92 (a))

cond. feat. mean

(this is why linear 7y and feature map ps(w) ® @s(a))

Deaner (2021).
Mastouri, Zhu, Gultchin, Korba, Silva, Kusner, G., Muandet (2021).
Xu, Kanagawa, G. (2021).
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NN ridge regression for h,(w, a)

Goal:
E(Yla,z)=Ew..hy(W,a)
Primary regression:
- . 2
h, = arg II}ILIIIEY,A,Z (Y — EW‘A,Zhy( W, A)) + )\2||'y||2
Y
Recall link function

Ea: hy(W,0) = By [17 (0s() @ pe(a))]
=7 (B lpa(1)] ® pe(a))

cond. feat. mean

Ridge regression (again!)
EV[/‘a,z(pe( W) = FG,C‘PQ(G: Z)
Deaner (2021).

Mastouri, Zhu, Gultchin, Korba, Silva, Kusner, G., Muandet (2021).
Xu, Kanagawa, G. (2021).
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NN ridge regression for =, . pa( V)

Secondary regression: learn NN features ¢ (Z) and linear layer /:
Fyyapa(WV) = Forpc(a, 2)
with RR loss
Ew,az |0s(W) = Foc(4, Z)|° + M| 7|

ﬁ'g’c in closed form wrt @, ¢,

Xu, Kanagawa, G. (2021).
37/45



NN ridge regression for wo( V)

learn NN features ¢/(Z) and linear layer

wo( W) = Forpc(a,z)
with RR loss

Ew az |les(W) — Foc (A, Z)|? + M| 7|2

9,0 in closed form wrt g, @,

Plug /4, into S1 loss, backprop through Cholesky for
(...not 4...why not?)

Xu, Kanagawa, G. (2021).
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Final algorithm
Solve for 6, ¢, ¢:

Repeat until convergence:

] Solve for /g, then gradient steps on ¢ (backprop
through Cholesky)

Xu, Kanagawa, G. (2021). 38/45
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Final algorithm
Solve for 6, ¢, ¢:

Repeat until convergence:

] Solve for /g, then gradient steps on ¢ (backprop
through Cholesky)

m Primary: Solve for 4 in terms of /' ¢ (A, Z) and p¢(A)
m Primary: Gradient steps on 6, ¢ (backprop through Cholesky)

¢, remains optimal wrt current 5.

Iterate between updates of 4, ¢ and

Xu, Kanagawa, G. (2021).
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Final algorithm
Solve for 6, ¢, ¢:

Repeat until convergence:

] Solve for /g, then gradient steps on ¢ (backprop
through Cholesky)

m Primary: Solve for 4 in terms of /' ¢ (A, Z) and p¢(A)
m Primary: Gradient steps on 6, ¢ (backprop through Cholesky)

¢, remains optimal wrt current 5.

Iterate between updates of 4, ¢ and

Key point: features ¢s( W) learned specially for:

E(Y]a,z) = hy (W, a)

Contrast with autoencoders/sampling: must reconstruct/sample all of W.

Xu, Kanagawa, G. (2021). 38/45



Experiments
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Synthetic experiment, adaptive neural net features

dSprite example:

B X = {scale,rotation, posX,posY}

Treatment A is the image generated (with
Gaussian noise)

Outcome Y is quadratic function of A with
multiplicative confounding by posY.

Z = {scale,rotation, posX},
W = noisy image sharing posY

Comparison with CEVAE (Louzios et al.

2017)

0

20

40

60
0 25 50

Out-of-Sample MSE

50

30

20

dSprite

= -

t

?w

1000 5000
Data Size

Algorithm
KPV

£ PMMR
CEVAE

£ DFPV

Louizos, Shalit, Mooij, Sontag, Zemel, Welling, Causal Effect Inference with Deep Latent-Variab1e40/45
Models (2017)



Confounded offline policy evaluation

Synthetic dataset, demand prediction
for flight purchase.

10
m Treatment A is ticket price. _
o
m Policy A ~ 7(Z) depends on fuel 5
price. g 1
©
3
Q
<
0.1

=
1500 7500
Data Size

Algorithm
KPV

= PMMR

= DFPV
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Conclusion

Causal effect estimation with unobserved X, (possibly) complex
nonlinear effects on A, Y

We need to observe:

m Treatment proxy Z (interacts /' G :_ ] ,
with A, but not directly with Y) § ". L P

4 N

m Outcome proxy W (no direct
interaction with A, can affect V)

~-

.~
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Conclusion

Causal effect estimation with unobserved X, (possibly) complex
nonlinear effects on A, Y

We need to observe:

m Treatment proxy Z (interacts / : G :_ ] 4
with A, but not directly with Y) § ". L P

‘ N

m Outcome proxy W (no direct ~_

interaction with A, can affect V) \‘

Key messages:

m Don't meet-your-herees model/sample latents X

m Don't model all of W, only relevant features for Y
m “Ridge regression is all you need”

Code available:
https://github.com/1iyuan9988/DeepFeatureProxyVariable/
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Questions?
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A failure of identifiability assumptions
Failure 2: “exploitable invariance” of p(X|z)
X ~ N(0,1),
= [X[+N(0,1),

where p(z|z) o« p(z|z)p(z) symmetric in z. Consider square
integrable antisymmetric function g(z) = —g(—=z). Then

| s@)p(alz)da

_/g p(z|2) dw+/g z)dz

If distribution of X|Z retains the same “symmetry class” over a set of
Z with nonzero measure, then the assumption is violated by g(z)
with zero mean on this class.
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