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Observation vs intervention
Conditioning from observation: E[Y jA = a ] =

P
x E[Y ja ; x ]p(x ja)Hidden context observed

X

A Y

8/9

or

or

From our observations of historical hospital data:

P(Y = curedjA = pills) = 0:85
P(Y = curedjA = surgery) = 0:72

Richardson, Robins (2013), Single World Intervention Graphs (SWIGs): A Unification of the
Counterfactual and Graphical Approaches to Causality
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Observation vs intervention
Average causal effect (intervention): E[Y (a)] =

P
x E[Y ja ; x ]p(x )Hidden context observed, do(a), SWIG

X

A

a
Y a

9/9

or

or

From our intervention (making all patients take a treatment):

P(Y (pills) = cured) = 0:64
P(Y (surgery) = cured) = 0:75

Richardson, Robins (2013), Single World Intervention Graphs (SWIGs): A Unification of the
Counterfactual and Graphical Approaches to Causality 2/45



Some core assumptionsHidden context observed

X

A Y

8/9

or

or

Assume:
Stable Unit Treatment Value Assumption (aka “no interference”),
Conditional exchangeability Y (a) ?? AjX :

Overlap.
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One model: linear functions of features

All learned functions will take the form:


(x ) = 
>'�(x )

NN approach: Finite dictionaries of learned neural net features '�(x )
(linear final layer 
)

Xu, G., A Neural mean embedding approach for back-door and front-door adjustment. (ICLR 23)
Xu, Chen, Srinivasan, de Freitas, Doucet, G. Learning Deep Features in Instrumental Variable
Regression. (ICLR 21)
Xu, Kanagawa, G. “Deep Proxy Causal Learning and its Application to Confounded Bandit Policy
Evaluation”. (NeurIPS 21)
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Model fitting: neural ridge regression
Learn 
0(x ) := E[Y jX = x ] from features '�(xi ) with outcomes yi :


̂ = argmin

2H

 nX
i=1

�
yi � 
>'�(xi )

�2
+ �k
k2H

!
(1)

Solution for linear final layer 
:


̂ = C (�)
YX (C (�)

XX + �)�1

C (�)
YX =

1
n

nX
i=1

[yi '�(xi )
>]

C (�)
XX =

1
n

nX
i=1

['�(xi ) '�(xi )
>]

0 20 40 60 80 100
nEpochs

101

M
SE

joint
linear + cholesky

MNIST, 4 layer FF, sigmoid, fully connected

How to solve for �:
Substitute 
̂ into (1), backprop through Cholesky for �.
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Instrumental variable regression
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Illustration: ticket prices for air travel
Ticket price A, seats sold Y .

What is the effect on seats sold Y (a) of intervening on price a?

Simplification of example from Hartford, Lewis, Leyton-Brown, Taddy (2017): Deep IV: A Flexible
Approach for Counterfactual Prediction.
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Illustration: ticket prices for air travel
Unobserved variable X =desire for travel, affects both price (via
airline algorithms) and seats sold.

Desire for travel:
X � N (�; 0:1)
� � U

n
�1

2 ; 0;
1
2

o

Price:
A = X + Z ;

Seats sold:
Y = 10�A + 2X

Z is an instrument (cost of fuel). Condition on Z,

E[Y jZ ] = 10� E[AjZ ] + 2E[X jZ ]| {z }
=0

Regressing from E[AjZ ] to E[Y jZ ] recovers causal relation!
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Plain linear regression: what goes wrong?
Output y 2 R; noise X 2 R, input A with NN features '�(a).
Crucially, X 6?? A and

Cax := E['�(A)X ] 6= 0

Average treatment effect:

y = 
0
>'�(a) + X E(X ) = 0

ATE := E(Y (a)) =

Z
(
0

>'�(a) + X )dP(X ) = 
0
>'�(a):

Least-squares loss for 
:

L(
; �) = E




Y � 
>'�(A)�X



2

Minimizing for 
,


0 = C�1
aa (Cay �Cax ) Caa = E['�(A)'�(A)>]

Cay = E['�(A)Y ]

...but we don’t have Cax :
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Instrumental variable regression
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Instrumental variable regression with NN features
Definitions:

X : unobserved
confounder.

A: treatment

Y : outcome

Z : instrument

Assumptions

E[X ] = 0; E[X jZ ] = 0

Z 6?? A

(Y ?? Z jA)G
�A

Y = 
>'�(A) + X

X

A YZ

Average treatment effect:

ATE(a) =
Z
E(Y jX ; a)dp(X ) = 
>'�(a)

IV regression: Condition both sides on Z ,

E[Y jZ ] = 
>E['�(A)jZ ] + E[X jZ ]| {z }
=0

Newey, Powell (2003): Instrumental variable estimation of nonparametric models.
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Two-stage least squares for IV regression

Kernel features (NeurIPS 2019): NN features (ICLR 2021):

Code for NN and kernel IV methods:
https://github.com/liyuan9988/DeepFeatureIV/ 12/45
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IV using neural net features
Stage 2 regression (IV): learn NN features '�(A) and linear layer 
 to
obtain Y with RR loss:

EYZ

h
(Y � 
>E['�(A)jZ ])2

i
+ �2k
k

2

Stage 1 regression: learn NN features '�(Z ) and linear layer F :

E['�(A)jZ ] � F'�(Z )

with RR loss
Ek'�(A)� F'�(Z )k2 + �1kFk2HS

Challenge: how to learn �?
From Stage 2 regression?
...which requires E['�(A)jZ ] from Stage 1 regression
...which requires '�(A)... which requires �...

Use the linear final layers! (i.e. 
 and F )

Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021) Learning Deep Features in Instrumental Variable
Regresion 14/45
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Stage 2: IV regression
Stage 2 regression (IV): learn NN features '�(A) and linear layer 
 to
obtain Y with RR loss:

L2(
; �) = EYZ

h
(Y � 
>E['�(A)jZ ])2

i
+ �2k
k

2


̂� in closed form wrt '�:


̂� := fCYAjZ (fCAAjZ + �2I )�1 fCYAjZ = E

h
Y [F̂ �;�'�(Z )]>

i
fCAAjZ = E

h
[F̂ �;�'�(Z )] [F̂ �;�'�(Z )]>

i

From linear final layers in Stages 1,2:
Learn '�(A) by plugging 
̂� into S2, bp through Cholesky for �
....but � changes with �

...so alternate first and second stages until convergence.

Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021) 16/45
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Neural IV in reinforcement learning

Policy evaluation: want Q-value:

Q�(s ; a) = E

"
1X
t=0


tRt

�����S0 = s ;A0 = a

#
for policy �(AjS = s).
Osband et al (2019). Behaviour suite for reinforcement learning.https://github.com/deepmind/bsuite
Tassa et al. (2020). dm_control:Software and tasks for continuous control.
https://github.com/deepmind/dm_control

17/45
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Application of IV: reinforcement learning
Q value is a minimizer of Bellman loss

LBellman = ESAR

h�
R + 
[E

�
Q�(S 0;A0)

��S ;A
�
�Q�(S ;A)

�2i
:

Corresponds to “IV-like” problem

LBellman = EYZ

h
(Y � E[f (X )jZ ])2

i
with

Y = R;

X = (S 0;A0;S ;A)

Z = (S ;A);

f0(X )= Q�(s ; a)� 
Q�(s 0; a 0)

RL experiments and data:
https://github.com/liyuan9988/IVOPEwithACME

Bradtke and Barto (1996). Linear least-squares algorithms for temporal difference learning.
Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021)
Chen, Xu, Gulcehre, Le Paine, G, De Freitas, Doucet (2022). On Instrumental Variable Regression for
Deep Offline Policy Evaluation.

18/45
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Results on mountain car problem

Good performance compared with FQE.
Warning: IV assumption can fail when regression underfits. See
papers for details.
Xu, Chen, Srinivasan, De Freitas, Doucet, G. (2021)
Chen, Xu, Gulcehre, Le Paine, G, De Freitas, Doucet (2022). On Instrumental Variable Regression for
Deep Offline Policy Evaluation.
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Proxy causal learning
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We record symptom W , not disease X

P(W = feverjX = mild) = 0:2

P(W = feverjX = severe) = 0:8
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We record symptom W , not disease X

P(W = feverjX = mild) = 0:2
P(W = feverjX = severe) = 0:8

Could we just write: P(Y (a))
?
=
P

w2f0;1g E[Y ja ;w ]p(w)
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We record symptom W , not disease X

Wrong recommendation made:P
w2f0;1g E[curedjpills;w ]p(w) = 0:8 ( 6= 0:64)P
w2f0;1g E[curedjsurgery;w ]p(w) = 0:73 ( 6= 0:75)

Correct answer impossible without observing X
Pearl (2010), On Measurement Bias in Causal Inference

21/45



Outline

Causal effect estimation, with hidden covariates X :

Use proxy variables (negative controls)

Applications: effect of actions under

privacy constraints (email, ads, DMA)
data gathering constraints (edge computing)
fundamental limitations (preferences, state of mind)

What’s new and why?

Treatment A, proxy variables, etc can be multivariate, complicated...
...by using adaptive neural net feature representations
Don’t meet your heroes model your hidden variables!

22/45



Outline

Causal effect estimation, with hidden covariates X :

Use proxy variables (negative controls)

Applications: effect of actions under

privacy constraints (email, ads, DMA)
data gathering constraints (edge computing)
fundamental limitations (preferences, state of mind)

What’s new and why?

Treatment A, proxy variables, etc can be multivariate, complicated...
...by using adaptive neural net feature representations
Don’t meet your heroes model your hidden variables!

22/45



What are proxies, and when are they useful?
Unobserved X with (possibly) complex nonlinear effects on A;Y

In this example:

X : email inbox

A: prioritize important

Y : outcome
(efficiency)

W : anonymized inbox
before action A

Z : anonymized inbox
after action A

Proxy for disease example (no side nodes)

X

A Y

24/27

Proxy for email example (2)

X WZ

A Y

24/29

=) Can recover E(Y (a)) from observational data
=) More usefully: evaluate novel, on-device policy:

E(Y (�(AjX )))
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What are proxies, and when are they useful (2)?

Unobserved X with (possibly) complex nonlinear effects on A;Y

In this example:

X : true physical status

A: exercise regimes

Y : fitness goal

W : health readings
before A

Z : health readings
after A

24/45



Proxy variables: general setting
Unobserved X with (possibly) complex nonlinear effects on A;Y
The definitions are:

X : unobserved confounder.

A: treatment

Y : outcome

Z : treatment proxy

W outcome proxy

X WZ

A Y

Structural assumptions:

W ?? (Z ;A)jX

Y ?? Z j(A;X )

Miao, Geng, Tchetgen Tchetgen (2018): Identifying causal effects with proxy variables of an unmeasured
confounder. 25/45
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Why proxy variables? A simple proof
The definitions are:

X : unobserved confounder.

A: treatment

Y : outcome
X

A Y

If X were observed,

P(Y (a))| {z }
dy�1

:=
dxX
i=1

P(Y jxi ; a)P(xi )

= P(Y jX ; a)| {z }
dy�dx

P(X )| {z }
dx�1

Goal: “get rid of the blue” X

26/45
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...add the outcome proxy W
The definitions are:

X : unobserved confounder.

A: treatment

Y : outcome

W: outcome proxy

X W

A Y

For each a , if we could solve:

P(Y jX ; a)| {z }
dy�dx

= Hw ;a| {z }
dy�dw

P(W jX )| {z }
dw�dx

.....then

P(Y (a)) = P(Y jX ; a)P(X )

= Hw ;aP(W jX )P(X )

= Hw ;aP(W )

27/45
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...now project onto p(X jZ ; a)

From last slide,

P(Y jX ; a)

p(X jZ ; a)| {z }
dx�dz

= Hw ;aP(W jX )

p(X jZ ; a)| {z }
dx�dz

Proxy for disease example

X WZ

A Y

23/25

Because W ?? (Z ;A)jX ,

P(W jX )p(X jZ ; a) = P(W jZ ; a)

Because Y ?? Z j(A;X );

P(Y jX ; a)p(X jZ ; a) = P(Y jZ ; a)

Solve for Hw ;a :
P(Y jZ ; a) = Hw ;aP(W jZ ; a)

Everything observed!
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Proxy/Negative Control Methods
in the Real World
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Unobserved confounders: proxy methods

Kernel features (ICML 2021): NN features (NeurIPS 2021):

Code for NN and kernel proxy methods:
https://github.com/liyuan9988/DeepFeatureProxyVariable/ 30/45
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Road map: NN proxy learning

We’ll proceed as follows:

Proxy relation for continuous variables

Loss function for deep proxy learning

Define primary (ridge) regression with this loss

Define secondary (ridge) regression as input to primary

32/45



Proxy relation, general domains
If X were observed, we would write (average treatment effect)

E(Y (a)) =

Z
x
E(Y ja ; x )p(x )dx :

....but we do not observe X :

Main theorem: Assume we solved for link function:

E(Y ja ; z ) = EW ja ;zhy(W ; a)

“Primary” E(Y ja ; z ); “secondary” EW ja ;z linked by hy

All variables observed, X not seen or modeled.

Average treatment effect via p(w):

E(Y (a)) =

Z
w

hy(a ;w)p(w)dw

Challenge: need a loss function for hy

(Fredholm equation of first kind: existence of solution requires identifiability conditions)
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Primary loss function for hy(w ; a)

Goal:
E(Y ja ; z ) = EW ja ;zhy(W ; a)

Primary loss function:

ĥy = argmin
hy

EY ;A;Z

�
Y � EW jA;Zhy(W ;A)

�2
Why?

f �(a ; z ) = E(Y ja ; z ) solves

argmin
f

EY ;A;Z (Y � f (A;Z ))2

...and by the proxy model above,

E(Y ja ; z ) = EW ja ;zhy(W ; a)

Deaner (2021).
Mastouri, Zhu, Gultchin, Korba, Silva, Kusner, G., Muandet (2021).
Xu, Kanagawa, G. (2021).
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NN for link hy(a ;w)

The link function is a function of two arguments

hy(a ;w) = 
> ['�(w)
 '�(a)] = 
>

266666664

'�;1(w)'�;1(a)
'�;1(w)'�;2(a)

...
'�;2(w)'�;1(a)

...

377777775
Assume we have:

output proxy NN features '�(w)

treatment NN features '�(a)

linear final layer 

(argument of feature map indicates feature space)

Questions:

Why feature map '�(w)
 '�(a)?

Why final linear layer 
?

Both are necessary (next slide)!

X W

A Y
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NN ridge regression for hy(w ; a)

Goal:
E(Y ja ; z ) = EW ja ;zhy(W ; a)

Primary regression:

ĥy = argmin
hy

EY ;A;Z

�
Y � EW jA;Zhy(W ;A)

�2
+ �2k
k

2

Recall link function

EW ja ;z hy(W ; a) = EW ja ;z

h

> ('�(W )
 '�(a))

i
= 
>

�
EW ja ;z ['�(W )]| {z }
cond: feat: mean


 '�(a)
�

Ridge regression (again!)

EW ja ;z'�(W ) = F̂ �;�'�(a ; z )

Deaner (2021).
Mastouri, Zhu, Gultchin, Korba, Silva, Kusner, G., Muandet (2021).
Xu, Kanagawa, G. (2021).
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�2
+ �2k
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How to get conditional expectation EW ja ;zhy(W ; a)?
Density estimation for p(W ja ; z )? Sample from p(W ja ; z )?
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 '�(a))

i

= 
>
�
EW ja ;z ['�(W )]| {z }
cond: feat: mean


 '�(a)
�

Ridge regression (again!)

EW ja ;z'�(W ) = F̂ �;�'�(a ; z )

Deaner (2021).
Mastouri, Zhu, Gultchin, Korba, Silva, Kusner, G., Muandet (2021).
Xu, Kanagawa, G. (2021).
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NN ridge regression for EW ja ;z'�(W )

Secondary regression: learn NN features '�(Z ) and linear layer F :

EW ja ;z'�(W ) = F̂ �;�'�(a ; z )

with RR loss

EW ;A;Z k'�(W )� F'�(A;Z )k2 + �1kFk2

F̂ �;� in closed form wrt '�; '� .

Plug F̂ �;� into S1 loss, backprop through Cholesky for �
(...not �...why not?)

Xu, Kanagawa, G. (2021).
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Final algorithm
Solve for �; �; �:

Repeat until convergence:

Secondary: Solve for F̂ �;� , then gradient steps on � (backprop
through Cholesky)

Primary: Solve for 
̂ in terms of F̂ �;�'�(A;Z ) and '�(A)

Primary: Gradient steps on �; � (backprop through Cholesky)

� ^F �;� remains optimal wrt current '�.

Iterate between updates of �; � and �

Key point: features '�(W ) learned specially for:

E(Y ja ; z ) = EW ja ;zhy(W ; a)

Contrast with autoencoders/sampling: must reconstruct/sample all of W .

Xu, Kanagawa, G. (2021). 38/45
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Experiments
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Synthetic experiment, adaptive neural net features
dSprite example:
X = fscale; rotation; posX; posYg

Treatment A is the image generated (with
Gaussian noise)

Outcome Y is quadratic function of A with
multiplicative confounding by posY.

Z = fscale; rotation; posXg;
W = noisy image sharing posY

Comparison with CEVAE (Louzios et al.
2017)

1000 5000
Data Size

20

30

50

Ou
t-o

f-S
am

pl
e 

M
SE

dSprite

Algorithm
KPV
PMMR
CEVAE
DFPV

Louizos, Shalit, Mooij, Sontag, Zemel, Welling, Causal Effect Inference with Deep Latent-Variable
Models (2017)
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Confounded offline policy evaluation

Synthetic dataset, demand prediction
for flight purchase.

Treatment A is ticket price.

Policy A � �(Z ) depends on fuel
price.
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Conclusion
Causal effect estimation with unobserved X , (possibly) complex
nonlinear effects on A;Y
We need to observe:

Treatment proxy Z (interacts
with A, but not directly with Y )

Outcome proxy W (no direct
interaction with A, can affect Y )

Proxy for email example (2)

X WZ

A Y

24/29

Key messages:

Don’t meet your heroes model/sample latents X
Don’t model all of W , only relevant features for Y
“Ridge regression is all you need”

Code available:
https://github.com/liyuan9988/DeepFeatureProxyVariable/
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Questions?
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A failure of identifiability assumptions
Failure 2: “exploitable invariance” of p(X jz )

X � N (0; 1);

Z = jX j+N (0; 1);

where p(x jz ) / p(z jx )p(x ) symmetric in x . Consider square
integrable antisymmetric function g(x ) = �g(�x ): ThenZ 1

�1
g(x )p(x jz )dx

=

Z 0

�1
g(x )p(x jz )dx +

Z 1

0
g(x )p(x jz )dx

= 0:

If distribution of X jZ retains the same “symmetry class” over a set of
Z with nonzero measure, then the assumption is violated by g(x )
with zero mean on this class.
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