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Motivating example: testing output of approximate MCMC

Approximate MCMC: tradeoff between bias and computation
(e.g. Austerity in MCMC Land [2])

61 ~ N(0,10); 0 ~
N(0,1)

Xi ~ 3N (61,4) +
IN(61 + 02,4).

How to check if MCMC samples match target distribution?



Maximum mean discrepancy: metric between and

MMD(p, q, F) = SuprHF<1[]qu — Epf]

e f is an Reproducing Kernel Hilbert Space.
e " is the function that attains the supremum.

Can we compute MMD when g are MCMC samples, p is model?
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MMD(p, q, F) = SuprHF<1[]qu — Epf]

e f is an Reproducing Kernel Hilbert Space.
e " is the function that attains the supremum.

Can we compute MMD when g are MCMC samples, p is model?

Problem: don't have E,f in closed form 3



Main idea (by Stein)

To get rid of E,f in

sup [Eqf —Epf]
IFllF<1

we will use the cornerstone of modern ML
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Main idea (by Stein)

To get rid of E,f in

sup [Eqf —Epf]
IFllF<1

we will use the cornerstone of modern ML
Integration by parts

Define the Stein operator

Tof =f +log' p-f

Then
E,T,f =0
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Maximum Stein Discrepancy

Stein operator
T,f=f +log'p-f
Maximum Stein Discrepancy (MSD)

MSD(p,q,F) = sup EqT,g —E, 78 = sup EqT,g
legll=<1 lellz<1

0

— p(x)
— q(x)
— g'(x)




Maximum Stein Discrepancy has simple closed-form expression

Closed-form expression for MSD: given Z,Z’ ~ q, then

MSD(p, g, G) = Eqhy(Z, 7'
where
hp(x, y) := O« log p(x)0x log p(y )k(x, y)
+ 0y log p(y)Oxk(x, y)
+ Ox log p(x)0y k(x,y)
+ 0x0yk(x,y).
and k is RKHS kernel for F

Only depends on kernel and 0 log p(x).
Do not need to normalize p, or sample from it.



Maximum Stein Discrepancy zero <

Theorem
If the kernel k is Co-universal, Eqhy(Z,Z) < oo and

Eq <Iog’ pgg) < oo then

MSD(p, q, G) = 0 if and only if p = q.

Kernel is Co-universal if f — [, f(x)k(x,-)du(x) if is injective for all
probability measures p and all f € LP(X, 11), where p € [1, 00].

The assumption E, (Iog q(Z;) < oo states that difference between scores

log’ p and log’ g is square integrable.



Empirical estimate of MSD: V-statistic

Empirical estimate of Eqh,(Z,Z") is a V-statistic:

{Z1,...Z;...Z,} time series

1 n
Vi(hp) = 2 Z hp(Zi, Zj), with marginal distrib. q
ij=1



Empirical estimate of MSD: V-statistic

Empirical estimate of Eqh,(Z,Z") is a V-statistic:

{Z1,...Z;...Z,} time series

1 n
Vi(hp) = 2 Z hp(Zi, Zj), with marginal distrib. q
ij=1

What are “typical” values of Eqh,(Z,Z') when p=q 7

—\/ N
=== quantile V_n




Distribution of statistic under null (- = ¢)

To estimate quantiles of V,,(h,) under the null (when p = q), we
use wild bootstrap

1 n
Bulhy) = —5 > Wil;hy(X;, X;).
ij=1

where W; are correlated zero mean RVs. W

1-p, b

2O
Cov(Wj, Wj) = (1 = 2py) "/ omd

Pn

pn is the probability of the change and should be set to o(n).



Wild bootstrapping; small correlation

Xt - 0'1Xt71 + v 1-— 0.126t, €t ~ N(O, 1)
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Wild bootstrapping, medium correlation

Xt - 0'4Xt71 + v 1-— 0.426t, €t ~ N(O, 1)
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Wild bootstrapping; huge correlation

Xt - 0'7Xt71 + v 1-— 0.726t, €t ~ ,\I(O7 1)

e \/ n
--- quantile B_n
--- quantile V_n
0 B_n
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Experiment 1: Austerity in MCMC Land

Approximate MCMC: tradeoff between bias and computation
(e.g. Austerity in MCMC Land [2])

’ (91 NN(O, 10);92 ~
' N(0,1)
’ Xi ~ %N(91,4) +

IN(61 + 62, 4).
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Experiment 1: Austerity in MCMC Land

Approximate MCMC: tradeoff between bias and computation
(e.g. Austerity in MCMC Land [2])
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Experiment 2: Statistical model criticism
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We test the hypothesis that a Gaussian process model, learned
from training data *, is a good fit for the test data [3].
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Experiment 2: Statistical model criticism
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We test the hypothesis that a Gaussian process model, learned
from training data *, is a good fit for the test data [3].
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Questions?
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Stein’s trick in the RKHS

Consider the class

G={f+log'p-f|f € F}
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Stein’s trick in the RKHS

Consider the class
G={f+log'p-f|f € F}
Given g € G, then (integration by parts)
Epg(X) = Ep [f'(X) + log’ p(X)F(X)]

/ F(x) p(x) + F(x)p/(x)dx

See [1, 4].
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