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First motivating question

• How do you detect dependence. . .

• . . .in a discrete domain? [Read and Cressie, 1988]

. . . no doubt there is great pressure on

provincial and municipal governments in

relation to the issue of child care, but the

reality is that there have been no cuts to

child care funding from the federal gov-

ernment to the provinces. In fact, we

have increased federal investments for

early childhood development. . .

?⇔

. . . il est évident que les ordres de

gouvernements provinciaux et munici-

paux subissent de fortes pressions en

ce qui concerne les services de garde,

mais le gouvernement n’a pas réduit le

financement qu’il verse aux provinces

pour les services de garde. Au con-

traire, nous avons augmenté le finance-

ment fédéral pour le développement des

jeunes enfants. . .



First motivating question

• How do you detect dependence. . .

• . . .in a continuous domain?
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First motivating question

• How do you detect dependence. . .

• . . .in a continuous domain?

• Problem: fails even in “low” dimensions! [NIPS07a, ALT08]

– X and Y in R4, statistic=Power divergence, samples= 1024, cases

where dependence detected=0/500

• Too few points per bin



First motivating question

• How do you detect dependence. . .

• . . .in a continuous domain?

• Problem: fails even in “low” dimensions! [NIPS07a, ALT08]

– X and Y in R4, statistic=Power divergence, samples= 1024, cases

where dependence detected=0/500

• Too few points per bin

Can we represent and compare distributions

in high dimensions?



Second question: cross-language document retrieval

Cross-language document retrieval

• Many translations from “other” to

English

• Few translations between unlike lan-

guages: Portuguese to Swedish

The problem: retrieve document in target language given
document in source language, without examples of direct
translation



Talk Outline

• Kernel metric on the space of probability measures:
Maximum Mean Discrepancy MMD(P,Q)

– Distance between means of (nonlinear) features

– Function revealing differences in distributions

– Dependence detection: Pxy vs PxPy using MMD(Pxy,PxPy)



Talk Outline

• Kernel metric on the space of probability measures:
Maximum Mean Discrepancy MMD(P,Q)

– Distance between means of (nonlinear) features

– Function revealing differences in distributions

– Dependence detection: Pxy vs PxPy using MMD(Pxy,PxPy)

• Kernel belief propagation:

– Model learned from training data

– No good parametric model

– Other nonparametric methods fail in high dimensions, expensive



Kernel distance between distributions



Feature mean difference

• Simple example: 2 Gaussians with different means

• Answer: t-test
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Feature mean difference

• Two Gaussians with same means, different variance

• Idea: look at difference in means of features of the RVs

• In Gaussian case: second order features of form ϕx = x2
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Feature mean difference

• Two Gaussians with same means, different variance

• Idea: look at difference in means of features of the RVs

• In Gaussian case: second order features of form ϕx = x2
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Feature mean difference

• Gaussian and Laplace distributions

• Same mean and same variance

• Difference in means using higher order features
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Function Showing Difference in Distributions

• Are P and Q different?
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Function Showing Difference in Distributions

• Maximum mean discrepancy: smooth function for P vs Q

MMD(P,Q;F ) := sup
f∈F

[EPf(x)−EQf(y)] .
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Function Showing Difference in Distributions

• What if the function is not smooth?

MMD(P,Q;F ) := sup
f∈F

[EPf(x)−EQf(y)] .
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Function Showing Difference in Distributions

• Maximum mean discrepancy: smooth function for P vs Q

MMD(P,Q;F ) := sup
f∈F

[EPf(x)−EQf(y)] .

• Gauss P vs Laplace Q
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Function Showing Difference in Distributions

• Maximum mean discrepancy: smooth function for P vs Q

MMD(P,Q;F ) := sup
f∈F

[EPf(x)−EQf(y)] .

• Classical results: MMD(P,Q;F ) = 0 iff P = Q, when

– F =bounded continuous [Dudley, 2002]

– F = bounded variation 1 (Kolmogorov metric) [Müller, 1997]

– F = bounded Lipschitz (Earth mover’s distances) [Dudley, 2002]



Function Showing Difference in Distributions

• Maximum mean discrepancy: smooth function for P vs Q

MMD(P,Q;F ) := sup
f∈F

[EPf(x)−EQf(y)] .

• Classical results: MMD(P,Q;F ) = 0 iff P = Q, when

– F =bounded continuous [Dudley, 2002]

– F = bounded variation 1 (Kolmogorov metric) [Müller, 1997]

– F = bounded Lipschitz (Earth mover’s distances) [Dudley, 2002]

• MMD(P,Q;F ) = 0 iff P = Q when F =the unit ball in a characteristic

RKHS F [ISMB06, NIPS06a, NIPS07b, NIPS08a, JMLR10]



Functions in the RKHS

• F RKHS from X to R with positive definite kernel k(xi, xj)

• F = span{k(x, ·)|x ∈ X}
– Example: f(x) =

∑m
i=1 αik(xi, x) for arbitrary m ∈ N, αi ∈ R,

xi ∈ X .
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The RKHS as feature map

• Feature map of x ∈ R2, written ϕx

ϕ(p)
x =

[
x21 x22 x1x2

√
2
]

ϕ(g)
x = exp

(
−λ ‖x− ·‖2

)
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The RKHS as feature map

• Feature map of x ∈ R2, written ϕx

ϕ(p)
x =

[
x21 x22 x1x2

√
2
]

ϕ(g)
x = exp

(
−λ ‖x− ·‖2

)

• Inner product between feature maps:
〈
ϕ(p)
x , ϕ(p)

y

〉
F
= 〈x, y〉2

〈
ϕ(g)
x , ϕ(g)

y

〉
F
= exp

(
−λ ‖x− y‖2

)

• In general,

〈ϕx1 , ϕx2〉F = k(x1, x2)

for positive definite k(x, y)

Kernels are inner products of feature maps



The RKHS as feature map

• Example:

f(x) =
m∑

i=1

αik(xi, x) =
m∑

i=1

αi 〈ϕxi
, ϕx〉F = 〈f, ϕx〉F f =

m∑

i=1

αiϕxi
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Function view vs feature mean view

• The (kernel) MMD: [ISMB06, NIPS06a]

MMD2(P,Q;F )

=

(
sup
f∈F

[EPf(x)−EQf(y)]

)2
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Function view vs feature mean view

• The (kernel) MMD: [ISMB06, NIPS06a]

MMD2(P,Q;F )

=

(
sup
f∈F

[EPf(x)−EQf(y)]

)2

use

EP(f(x)) = EP [〈ϕx, f〉F ]
=: 〈µP, f〉F
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Function view vs feature mean view

• The (kernel) MMD: [ISMB06, NIPS06a]

MMD2(P,Q;F )

=

(
sup
f∈F

[EPf(x)−EQf(y)]

)2

=

(
sup
f∈F

〈f, µP − µQ〉F

)2

= ‖µP − µQ‖2F

use

‖θ‖F = sup
f∈F

〈f, θ〉F

Function view and feature view equivalent



Function view vs feature mean view

• The (kernel) MMD: [ISMB06, NIPS06a]

MMD2(P,Q;F )

=

(
sup
f∈F

[EPf(x)−EQf(y)]

)2

=

(
sup
f∈F

〈f, µP − µQ〉F

)2

= ‖µP − µQ‖2F

use

‖θ‖F = sup
f∈F

〈f, θ〉F

• An unbiased empirical estimate: for {xi}mi=1 ∼ P and {yi}mi=1 ∼ Q,

M̂MD
2
= 1

m(m−1)

∑m
i=1

∑m
j 6=i [k(xi, xj)− k(xi, yj)− k(yi, xj) + k(yi, yj)]



MMD for independence

• Dependence measure: [ALT05, NIPS07a, ALT07, ALT08, JMLR10]

(
supf [EPXY

f −EPXPY
f ]
)2

= sup
‖f‖≤1

〈f, µPXY
− µPXPY

〉2F×G

= ‖µPXY
− µPXPY

‖2F×G := MMD(PXY ,PXPY )

X

Y
Dependence witness and sample
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MMD for independence

• Dependence measure: [ALT05, NIPS07a, ALT07, ALT08, JMLR10]

(
supf [EPXY

f −EPXPY
f ]
)2

= sup
‖f‖≤1

〈f, µPXY
− µPXPY

〉2F×G

= ‖µPXY
− µPXPY

‖2F×G := MMD(PXY ,PXPY )

k( , )!" #" !"l( , )#"

k( , )× l( , )!" #" !" #"

κ( , ) =!" #"!" #"



Experiment: dependence testing for translation

• Translation example: [NIPS07b]

Canadian Hansard

(agriculture)

• 5-line extracts,

k-spectrum kernel, k = 10,

repetitions=300,

sample size 10

• Empirical

MMD(PXY ,PXPY ):

1

m2
trace(KHLH)

⇓

K

⇒MMD⇐

⇓

L

• k-spectrum kernel: average Type II error 0 (α = 0.05)

• Bag of words kernel: average Type II error 0.18



Kernel Belief Propagation



Nonparametric belief propagation

• Why use a non-parametric (kernel) algorithm?

– Model learned from training data

– Complex high-dimensional/structured data (discretization fails)

– Non-Gaussian/multimodal (Gaussian BP fails)

– Numerical integration too expensive (Parzen window approximations

fail)
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• Exact inference on trees [Song, Gretton, and Guestrin, 2010]

– Cross-language document retrieval

– Camera orientation recovery from images

• Loopy BP on pairwise MRFs [Song, Gretton, Bickson, Low, and Guestrin, 2011]

– Depth recovery from 2D images

– Predicting paper categories from citation networks

– Protein structure prediction



Nonparametric belief propagation

• Why use a non-parametric (kernel) algorithm?

– Model learned from training data

– Complex high-dimensional/structured data (discretization fails)

– Non-Gaussian/multimodal (Gaussian BP fails)

– Numerical integration too expensive (Parzen window approximations

fail)

• Exact inference on trees [Song, Gretton, and Guestrin, 2010]

– Cross-language document retrieval

– Camera orientation recovery from images

• Loopy BP on pairwise MRFs [Song, Gretton, Bickson, Low, and Guestrin, 2011]

– Depth recovery from 2D images

– Predicting paper categories from citation networks

– Protein structure prediction
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Message passing on directed graphical models

P(X1, x2, x4, x5) =

∫

x3

P(X1)P(x2|X1)P(X3|X1)P(x4|X3)P(x5|X3)

= P(X1)m21(X1)m31(X1)



What’s needed for learning and inference

• Learn the the messages from child nodes

– Need to express conditional probabilities

• Combine evidence from multiple children

– Need to marginalize



Messages from observed leaves

• Pairwise interaction learned from training data

• Goal: given leaf evidence xt and parent XS , want mts := P(xt|Xs)



Messages from observed leaves

• Goal: given leaf evidence xt and parent XS , want mts := P(xt|Xs)

• Training data

(xs,1, xt,1), . . . , (xs,m, xt,m)

• Empirical leaf messages mts(XS)

mts(Xs) = P(xt|Xs)

=
m∑

i=1

βts,ik(xs,i, Xs)

βts = ((Kt + λI)(Ks + λI))−1kt



Marginalize over internal nodes

• Marginalize over Xt:

mts(Xs) =

m∑

i=1

βts,ik(xs,i, Xs)

βts = (Ks + λI)−1
⊙

u∈Γt\s

K
(u)
t βut

• Advantages:

– Cost increase not exponential in depth

unlike Gaussian Mixture Models (GMM) [Sudderth et al., 2003]

– Nonparametric model learned from data

unlike Gaussian BP, parametric approaches



Cross-language document retrieval

• Experiment from [Song, Gretton, and Guestrin, 2010]

• Source document one of Danish, German, English,. . .

• Target document Swedish

• Data: 300 documents from European Parliament transcripts [Koehn, 2005]



Cross-language document retrieval
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Details: TF-IDF document features, stopword removal and stemming, Gaussian RBF kernel,

bandwidth at median distance between feature vectors.
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Cross-language document retrieval
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Recall score: whether target document is in set of retrieved documents

• Bilingual topic model with 50 topics for each edge [Mimno et al., 2009]

• Compare topic distribution of query in target domain with topic

distributions of all target documents



Cross-language document retrieval
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Normalized document length [Gale and Church, 1991]

• Chain length irrelevant



Cross-language document retrieval
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Loopy belief propagation

• Pairwise MRF

P(X) =
1

Z

∏

(s,t)∈E

Ψst(Xs, Xt)
∏

s∈V

Ψs(Xs),

• Ψs(Xs) node potentials, Ψst(Xs, Xt) edge

potentials, and Z normalization.

• Loopy BP [Yedidia et al., 2001]:

Iterate

mts(Xs) =

∫

Xt

Ψst(Xs, Xt)Ψt(Xt)
∏

u∈Γt\s
mut(Xt) dXt



Locally consistent BP

• Locally consistent BP [Wainwright et al., 2003]

Ψs(Xs) = P(Xs), Ψ(Xs, Xt) = P(Xs, Xt)P(Xt)
−1

P(Xt)
−1,

P(Xs) and P(Xs, Xt) empirical distributions
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−1

P(Xt)
−1,

P(Xs) and P(Xs, Xt) empirical distributions

• Fixed point, P(Xs) and P(Xs, Xt), at empirical marginals,

P(Xs) = P(Xs)
∏

u∈Γs

mus(Xs),

P(Xs, Xt) = P(Xs, Xt)

(∏
u∈Γs\t

mus(Xs)

)(∏
u∈Γt\s

mut(Xt)

)
.

• BP update: can be kernelized [Song, Gretton, Bickson, Low, and Guestrin, 2011]

mts(Xs) =

∫

Xt

P(Xt|Xs)
∏

u∈Γt\s

mut(Xt) dXt

= EXt|Xs

[∏
u∈Γt\s

mut(Xt) dXt

]
.



Application: depth from 2D images

• 3D depth reconstruction from 2D image features.

[Song, Gretton, Bickson, Low, and Guestrin, 2011]

• 274 images taken on the Stanford campus [Saxena et al., 2007]

• Patches: 107 by 86, depth map using 3D laser scanners

• Patch represented by 273 dimensional feature vector:

– local features (color and texture)

– relative features (from adjacent patches)



Application: depth from 2D images

• Templatized model

– Depth yi ∈ R hidden var. for each image patch, in 2D grid

– Depth linked to image features xi ∈ R273

– Potentials Ψ(yi, xi) between features and depth unknown, as are

Ψ(yi, yk)

• Kernels: Gaussian RBF on depth, linear on features

• Low rank QR approximation to make inference tractable



Application: depth from 2D images

• Templatized model

– Depth yi ∈ R hidden var. for each image patch, in 2D grid

– Depth linked to image features xi ∈ R273

– Potentials Ψ(yi, xi) between features and depth unknown, as are

Ψ(yi, yk)

• Kernels: Gaussian RBF on depth, linear on features

• Low rank QR approximation to make inference tractable

• Competing methods:

– Discrete BP

– Gaussian mixture BP [Sudderth et al., 2003]

– Particle BP [Ihler and McAllester, 2009]

– Conditional density learned using [Sugiyama et al., 2010]



Application: depth from 2D images

Results

• BP run for 10 iterations

• Leave-one-out error reported
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Conclusions

• With RKHS distribution embeddings, compare distributions in high

dimensions and on structured objects

– Easier than density estimation

– Works on complex high-dimensional/structured data

– Special case: independence testing

• Kernel nonparametric message passing:

– Exact inference on trees

– Loopy BP on pairwise MRFs

– Numerical integration of mixture models too expensive

– Don’t need models, just need observations!



Questions?





Empirical estimate of MMD

• An unbiased empirical estimate: for {xi}mi=1 ∼ P and {yi}mi=1 ∼ Q,

M̂MD
2
= 1

m(m−1)

∑m
i=1

∑m
j 6=i [k(xi, xj)− k(xi, yj)− k(yi, xj) + k(yi, yj)]
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Empirical estimate of MMD

• An unbiased empirical estimate: for {xi}mi=1 ∼ P and {yi}mi=1 ∼ Q,

M̂MD
2
= 1

m(m−1)

∑m
i=1

∑m
j 6=i [k(xi, xj)− k(xi, yj)− k(yi, xj) + k(yi, yj)]

• Proof:

‖µP − µQ‖2F = 〈µP − µQ, µP − µQ〉F
= 〈µP, µP〉+ 〈µQ, µQ〉 − 2 〈µP, µQ〉
= 〈EPϕx,EPϕx〉+ . . .

= EP 〈ϕx, ϕx′〉+ . . .

= EPk(x, x
′) +EQk(y, y

′)− 2EP,Qk(x, y)

Then Êk(x, x′) = 1
m(m−1)

∑m
i=1

∑m
j 6=i k(xi, xj)



µP is feature map of probability

Embedding of P to feature space

• µP := EPϕx ∈ F

〈µP, f〉 = 〈EPϕx, f〉 = EXf(X).

• What does prob. feature map

look like?

µP(x) = 〈µP, ϕx〉
= EXk(X,x).

Expectation of kernel!

• Empirical estimate:

µ̂P(x) =
1

m

m∑

i=1

k(xi, x) xi ∼ PX



µP is feature map of probability

Embedding of P to feature space

• µP := EPϕx ∈ F

〈µP, f〉 = 〈EPϕx, f〉 = EXf(X).

• What does prob. feature map

look like?

µP(x) = 〈µP, ϕx〉
= EXk(X,x).

Expectation of kernel!

• Empirical estimate:

µ̂P(x) =
1

m

m∑

i=1

k(xi, x) xi ∼ PX

−2 0 2
0

0.01

0.02

0.03

X
P

(Y
)

P(X)

 

 

Histogram

Embedding



Bibliography

References

R. M. Dudley. Real analysis and probability. Cambridge University Press, Cambridge, UK, 2002.

W. A. Gale and K. W. Church. A program for aligning sentences in bilingual corpora. In Meeting of the

Association for Computational Linguistics, pages 177–184, 1991.

A. Ihler and D. McAllester. Particle belief propagation. In AISTATS, pages 256–263, 2009.

P. Koehn. Europarl: A parallel corpus for statistical machine translation. In Machine Translation Summit X, pages

79–86, 2005.

D. Mimno, H. Wallach, J. Naradowsky, D. Smith, and A. McCallum. Polylingual topic models. In Proceedings of

the 2009 Conference on Empirical Methods in Natural Language Processing, pages 880–889, Singapore, August

2009. ACL.

A. Müller. Integral probability metrics and their generating classes of functions. Advances in Applied Probability,

29(2):429–443, 1997.

T. Read and N. Cressie. Goodness-Of-Fit Statistics for Discrete Multivariate Analysis. Springer-Verlag, New York,

1988.

Ashutosh Saxena, Sung H. Chung, and Andrew Y. Ng. 3-d depth reconstruction from a single still image.

International Journal on Computer Vision, 76(1):53–69, 2007.

L. Song, A. Gretton, and C. Guestrin. Nonparametric tree graphical models. In 13th Workshop on Artificial

Intelligence and Statistics, volume 9 of JMLR workshop and conference proceedings, pages 765–772, 2010.


	First motivating question
	First motivating question
	First motivating question
	First motivating question
	First motivating question

	First motivating question
	First motivating question
	First motivating question
	First motivating question
	First motivating question

	Second question: cross-language document retrieval
	Talk Outline
	Talk Outline

	Kernel distance between distributions
	Feature mean difference
	Feature mean difference
	Feature mean difference
	Feature mean difference
	Function Showing Difference in Distributions
	Function Showing Difference in Distributions

	Function Showing Difference in Distributions
	Function Showing Difference in Distributions

	Function Showing Difference in Distributions
	Function Showing Difference in Distributions

	Function Showing Difference in Distributions
	Function Showing Difference in Distributions
	Function Showing Difference in Distributions

	Functions in the RKHS
	The RKHS as feature map
	The RKHS as feature map
	The RKHS as feature map

	The RKHS as feature map
	Function view vs feature mean view
	Function view vs feature mean view
	Function view vs feature mean view
	Function view vs feature mean view
	Function view vs feature mean view

	MMD for independence
	MMD for independence

	Experiment: dependence testing for translation
	Kernel Belief Propagation
	Nonparametric belief propagation
	Nonparametric belief propagation
	Nonparametric belief propagation

	Message passing on directed graphical models
	Message passing on directed graphical models
	Message passing on directed graphical models
	Message passing on directed graphical models
	Message passing on directed graphical models
	Message passing on directed graphical models
	Message passing on directed graphical models
	Message passing on directed graphical models
	What's needed for learning and inference
	Messages from observed leaves
	Messages from observed leaves
	Marginalize over internal nodes
	Cross-language document retrieval
	Cross-language document retrieval
	Cross-language document retrieval
	Cross-language document retrieval
	Cross-language document retrieval

	Cross-language document retrieval
	Cross-language document retrieval
	Cross-language document retrieval
	Loopy belief propagation
	Locally consistent BP
	Locally consistent BP
	Locally consistent BP

	Application: depth from 2D images
	Application: depth from 2D images
	Application: depth from 2D images

	Application: depth from 2D images
	Conclusions
	Empirical estimate of MMD
	Empirical estimate of MMD
	Empirical estimate of MMD
	Empirical estimate of MMD
	Empirical estimate of MMD
	Empirical estimate of MMD
	Empirical estimate of MMD

	$mu _{Pr }$ is feature map of probability
	$mu _{Pr }$ is feature map of probability

	Bibliography

