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A motivation: comparing two samples

Given: Samples from unknown distributions P and Q .
Goal: do P and Q differ?
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Training implicit generative models
Have: One collection of samples X from unknown distribution P .
Goal: generate samples Q that look like P

LSUN bedroom samples P Generated Q , MMD GAN

Using a critic D(P ;Q) to train a GAN
(Binkowski, Sutherland, Arbel, G., ICLR 2018)̄,
(Arbel, Sutherland, Binkowski, G., NeurIPS 2018)̄
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Outline
Measures of distance between distributions

• The MMD: an integral probability metric
• f-divergences vs integral probability metrics

Gradient penalties for GAN critics
• The optimisation viewpoint
• The regularisation viewpoint

Theory
• Relation of MMD critic and Wasserstein
• Gradient bias

Evaluating GAN performance, experiments
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The Maximum Mean Discrepancy:
An Integral Probability Metric
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Integral probability metrics

Are P and Q different?
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Integral probability metrics
Integral probability metric:
Find a "well behaved function" f (x ) to maximize

EP f (X )�EQ f (Y )
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The MMD: an integral probability metric
Maximum mean discrepancy: smooth function for P vs Q

MMD(P ;Q ;F ) := sup
kf k�1

[EP f (X )�EQ f (Y )]

(F = unit ball in RKHS F)
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The MMD: an integral probability metric
Maximum mean discrepancy: smooth function for P vs Q

MMD(P ;Q ;F ) := sup
kf k�1

[EP f (X )�EQ f (Y )]

(F = unit ball in RKHS F)

Functions are linear combinations of features:

kf k2F :=
P1

i=1 fi 2 � 1
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Infinitely many features using kernels

Kernels: dot products
of features

Feature map '(x ) 2 F ,

'(x ) = [: : : 'i (x ) : : :] 2 `2

For positive definite k ,

k(x ; x 0) = h'(x ); '(x 0)iF

Infinitely many features
'(x ), dot product in
closed form!
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Infinitely many features using kernels

Kernels: dot products
of features

Feature map '(x ) 2 F ,

'(x ) = [: : : 'i (x ) : : :] 2 `2

For positive definite k ,

k(x ; x 0) = h'(x ); '(x 0)iF

Infinitely many features
'(x ), dot product in
closed form!

Exponentiated quadratic kernel

k(x ; x 0) = exp
�
�
 kx � x 0k2

�

Features: Gaussian Processes for Machine learning, Ras-
mussen and Williams, Ch. 4. 11/62



The MMD: an integral probability metric
Maximum mean discrepancy: smooth function for P vs Q

MMD(P ;Q ;F ) := sup
kf k�1

[EP f (X )�EQ f (Y )]

(F = unit ball in RKHS F)

For characteristic RKHS F , MMD(P ;Q ;F ) = 0 iff P = Q

Other choices for witness function class:

Bounded continuous [Dudley, 2002]

Bounded varation 1 (Kolmogorov metric) [Müller, 1997]

Lipschitz (Wasserstein distances) [Dudley, 2002]

Energy distance is a special case [Sejdinovic, Sriperumbudur, G. Fukumizu, 2013]
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The MMD: an integral probability metric
Maximum mean discrepancy: smooth function for P vs Q

MMD(P ;Q ;F ) := sup
kf k�1

[EP f (X )�EQ f (Y )]

(F = unit ball in RKHS F)

Expectations of functions are linear combinations
of expected features

EP (f (X )) = hf ;EP'(X )iF = hf ; �P iF

(always true if kernel is bounded)
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Integral prob. metric vs feature mean difference

The MMD:

MMD(P ;Q ;F )

= sup
kf k�1

[EP f (X )�EQ f (Y )]
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Integral prob. metric vs feature mean difference

The MMD:

MMD(P ;Q ;F )

= sup
kf k�1

[EP f (X )�EQ f (Y )]

= sup
kf k�1

hf ; �P � �QiF

use

EP f (X ) = h�P ; f iF
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Integral prob. metric vs feature mean difference

The MMD:
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kf k�1
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= sup
kf k�1
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Integral prob. metric vs feature mean difference

The MMD:

MMD(P ;Q ;F )

= sup
kf k�1

[EP f (X )�EQ f (Y )]

= sup
kf k�1

hf ; �P � �QiF

= k�P � �Qk

IPM view equivalent to feature mean
difference (kernel case only)
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Construction of MMD witness
Construction of empirical witness function (proof: next slide!)

Observe X = fx1; : : : ; xng � P

Observe Y = fy1; : : : ; yng � Q
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Construction of empirical witness function (proof: next slide!)

v
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Construction of MMD witness
Construction of empirical witness function (proof: next slide!)

v
witness(v)| {z }
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Derivation of empirical witness function
Recall the witness function expression

f � / �P � �Q
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1
n

nX
i=1

'(xi )
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Derivation of empirical witness function
Recall the witness function expression

f � / �P � �Q

The empirical feature mean for P

b�P :=
1
n

nX
i=1

'(xi )

The empirical witness function at v

f �(v) = hf �; '(v)iF
/ hb�P � b�Q ; '(v)iF

=
1
n

nX
i=1

k(xi ; v)�
1
n

nX
i=1

k(yi ; v)

Don’t need explicit feature coefficients f � :=
h

f �1 f �2 : : :
i
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Interlude: divergence measures
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Divergences
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Divergences
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Divergences

Sriperumbudur, Fukumizu, G, Schoelkopf, Lanckriet (2012)
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Training Generative Adversarial
Networks: Critics and Gradient

Penalties
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Visual notation: GAN setting
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Visual notation: GAN setting
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What I won’t cover: the generator
Under review as a conference paper at ICLR 2016

Figure 1: DCGAN generator used for LSUN scene modeling. A 100 dimensional uniform distribu-
tion Z is projected to a small spatial extent convolutional representation with many feature maps.
A series of four fractionally-strided convolutions (in some recent papers, these are wrongly called
deconvolutions) then convert this high level representation into a 64 ⇥ 64 pixel image. Notably, no
fully connected or pooling layers are used.

suggested value of 0.9 resulted in training oscillation and instability while reducing it to 0.5 helped
stabilize training.

4.1 LSUN

As visual quality of samples from generative image models has improved, concerns of over-fitting
and memorization of training samples have risen. To demonstrate how our model scales with more
data and higher resolution generation, we train a model on the LSUN bedrooms dataset containing
a little over 3 million training examples. Recent analysis has shown that there is a direct link be-
tween how fast models learn and their generalization performance (Hardt et al., 2015). We show
samples from one epoch of training (Fig.2), mimicking online learning, in addition to samples after
convergence (Fig.3), as an opportunity to demonstrate that our model is not producing high quality
samples via simply overfitting/memorizing training examples. No data augmentation was applied to
the images.

4.1.1 DEDUPLICATION

To further decrease the likelihood of the generator memorizing input examples (Fig.2) we perform a
simple image de-duplication process. We fit a 3072-128-3072 de-noising dropout regularized RELU
autoencoder on 32x32 downsampled center-crops of training examples. The resulting code layer
activations are then binarized via thresholding the ReLU activation which has been shown to be an
effective information preserving technique (Srivastava et al., 2014) and provides a convenient form
of semantic-hashing, allowing for linear time de-duplication . Visual inspection of hash collisions
showed high precision with an estimated false positive rate of less than 1 in 100. Additionally, the
technique detected and removed approximately 275,000 near duplicates, suggesting a high recall.

4.2 FACES

We scraped images containing human faces from random web image queries of peoples names. The
people names were acquired from dbpedia, with a criterion that they were born in the modern era.
This dataset has 3M images from 10K people. We run an OpenCV face detector on these images,
keeping the detections that are sufficiently high resolution, which gives us approximately 350,000
face boxes. We use these face boxes for training. No data augmentation was applied to the images.

4

Radford, Metz, Chintala, ICLR 2016
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F-divergence as critic
An unhelpful critic? Jensen-Shannon,
Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017]

DJS (P ;Q) = 1
2DKL

�
p; p+q

2

�
+ 1

2DKL

�
q ; p+q

2

�
DJS (P ;Q) = log 2

Use a variational approximation to the critic, alternate generator and
critic training (we will return to this!) Goodfellow et al. [NeurIPS 2014],

Nowozin et al. [NeurIPS 2016]

Add “instance noise” to the reference and generator observations
Sonderby et al. [arXiv 2016], Arjovsky and Bottou [ICLR 2017]

• ...or (approx. equivalently) a data-dependent gradient penalty for the
variational critic (we will return to this!) Roth et al [NeurIPS 2017],

Nagarajan and Kolter [NeurIPS 2017], Mescheder et al. [ICML 2018]
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Wasserstein distance as critic
A helpful critic witness:
W1(P ;Q) = supkf kL�1 EP f (X )� EQ f (Y ).
kf kL := supx 6=y jf (x )� f (y)j =kx � yk

W1=0.88

Santambrogio, Optimal Transport for Applied Mathematicians (2015, Section 5.4)
G Peyré, M Cuturi, Computational Optimal Transport (2019)
M. Cuturi, J. Solomon, NeurIPS tutorial (2017)
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Wasserstein distance as critic
A helpful critic witness:
W1(P ;Q) = supkf kL�1 EP f (X )� EQ f (Y ).
kf kL := supx 6=y jf (x )� f (y)j =kx � yk

W1=0.65

Santambrogio, Optimal Transport for Applied Mathematicians (2015, Section 5.4)
G Peyré, M Cuturi, Computational Optimal Transport (2019)
M. Cuturi, J. Solomon, NeurIPS tutorial (2017)
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MMD as critic
A helpful critic witness:
MMD(P ;Q) = supkf kF�1 EP f (X )� EQ f (Y ).

MMD=1.8
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MMD as critic
A helpful critic witness:
MMD(P ;Q) = supkf kF�1 EP f (X )� EQ f (Y )

MMD=1.1
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MMD as critic

An unhelpful critic witness:
MMD(P ;Q) with a narrow kernel.

MMD=0.64
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MMD as critic
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f-divergences (�� divergences)
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The �-divergences

Define the �-divergence(f -divergence):

D�(P ;Q) =

Z
�

�
dP
dQ

�
dQ =

Z
�

�
p(x )
q(x )

�
q(x )dx

where � is convex, lower-semicontinuous, �(1) = 0.

Example: �(x ) = � log(x ) gives reverse KL divergence,

DKL(Q ;P) =

Z
log

�
q(x )
p(x )

�
q(x )dx
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How do �-divergences behave?
Simple example: disjoint support, revisited.
Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017]

DKL(Q ;P) =1 DJS (P ;Q) = log 2
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�-divergences in practice

Background: the Fenchel dual

Conjugate (fenchel) dual:

��(v) = sup
u2<

fuv � �(u)g :

• v is slope of �
• u is the argument of � where it has slope v .

@��(v) = u

• ��(v) is the negative of the intercept of the line with slope v ; tangent
to �(u) at u .
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Conjugate (fenchel) dual:

��(v) = sup
u2<

fuv � �(u)g :

• v is slope of �
• u is the argument of � where it has slope v .

@��(v) = u

• ��(v) is the negative of the intercept of the line with slope v ; tangent
to �(u) at u .

For a convex l.s.c. � we have

���(v) = �(v) = sup
u2<

fuv � ��(u)g
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�-divergences in practice
Background: the Fenchel dual

Conjugate (fenchel) dual:

��(v) = sup
u2<

fuv � �(u)g :

• v is slope of �
• u is the argument of � where it has slope v .

@��(v) = u

• ��(v) is the negative of the intercept of the line with slope v ; tangent
to �(u) at u .

Reverse KL:

�(u) = � log(u) ��(v) =

(
�1� log v v < 0

1 v � 0
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A variational lower bound
How to compute �-divergences in practice:

D�(P ;Q) =

Z
q(z )�

�
p(z )
q(z )

�
dz

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010);
Nowozin, Cseke, Tomioka, NeurIPS (2016)
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A variational lower bound
How to compute �-divergences in practice:

D�(P ;Q) =

Z
q(z )�

�
p(z )
q(z )

�
dz

=

Z
q(z )sup

fz

�
p(z )
q(z )

fz � ��(fz )
�

| {z }
�
� p(z)

q(z)

� ��(u) is dual of �(u):

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010);
Nowozin, Cseke, Tomioka, NeurIPS (2016)
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Z
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�
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�
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f 2H
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(restrict the function class)

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010);
Nowozin, Cseke, Tomioka, NeurIPS (2016)
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q(z )

�
dz

=

Z
q(z ) sup

fz

�
p(z )
q(z )

fz � ��(fz )
�

� sup
f 2H

EP f (X )�EQ�
� (f (Y ))

(restrict the function class)

Optimum f �z has property
p(z )
q(z )

= @��(f �z ) () f �z = @�

�
p(z )
q(z )

�
:

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010);
Nowozin, Cseke, Tomioka, NeurIPS (2016)

32/62



�-divergences in practice
Case of the reverse KL

DKL(Q ;P) =

Z
q(z ) log

�
q(z )
p(z )

�
dz

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010);
Nowozin, Cseke, Tomioka, NeurIPS (2016)
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�-divergences in practice
Case of the reverse KL

DKL(Q ;P) =

Z
q(z ) log

�
q(z )
p(z )

�
dz

� sup
f<0; f 2H

EP f (X ) + EQ log (�f (Y )) + 1| {z }
���(f (Y ))

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010);
Nowozin, Cseke, Tomioka, NeurIPS (2016)
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�-divergences in practice
Case of the reverse KL

DKL(Q ;P) =

Z
q(z ) log

�
q(z )
p(z )

�
dz

� sup
f<0; f 2H

EP f (X ) + EQ log (�f (Y )) + 1

Bound tight when:

f �(z ) = �
q(z )
p(z )

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010);
Nowozin, Cseke, Tomioka, NeurIPS (2016)
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�-divergences in practice
Case of the reverse KL

DKL(Q ;P) =

Z
q(z ) log

�
q(z )
p(z )

�
dz

� sup
f<0; f 2H

EP f (X ) + EQ log (�f (Y )) + 1

� sup
f<0; f 2H

24 1
n

nX
j=1

f (xi ) +
1
n

nX
i=1

log(�f (yi ))

35+ 1

xi
i:i:d:
� P

yi
i:i:d:
� Q

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010);
Nowozin, Cseke, Tomioka, NeurIPS (2016)
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�-divergences in practice
Case of the reverse KL

DKL(Q ;P) =

Z
q(z ) log

�
q(z )
p(z )

�
dz

� sup
f<0; f 2H

EP f (X ) + EQ log (�f (Y )) + 1

� sup
f<0; f 2H

24 1
n

nX
j=1

f (xi ) +
1
n

nX
i=1

log(�f (yi ))

35+ 1

This is a
KL
Approximate
Lower-bound
Estimator.

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010);
Nowozin, Cseke, Tomioka, NeurIPS (2016)
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� sup
f<0; f 2H

EP f (X ) + EQ log (�f (Y )) + 1

� sup
f<0; f 2H

24 1
n

nX
j=1

f (xi ) +
1
n

nX
i=1

log(�f (yi ))

35+ 1

This is a
K
A
L
E

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010);
Nowozin, Cseke, Tomioka, NeurIPS (2016)
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The KALE divergence

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010);
Nowozin, Cseke, Tomioka, NeurIPS (2016)
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How does the KALE divergence behave?

KALE(Q ;P) = sup
f<0;f 2H

EP f (X ) + EQ log (�f (Y )) + 1

f = � exp hw ; �(x )iF
kwk2F penalized :

KALE smoothie

KALE(Q ;P)=0.12
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The KALE smoothie and “mode collapse”
Two Gaussians with same means, different variance

“Mode collapse”

Example thanks to M. Arbel and M. Rosca
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Gradient penalty:
the regularisation viewpoint
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MMD for GAN critic
Can you use MMD as a critic to train GANs?
From ICML 2015:

From UAI 2015:
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MMD for GAN critic

Can you use MMD as a critic to train GANs?

Need better image features.
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CNN features for IPM witness functions
Add convolutional features!
The critic (teacher) also needs to be trained.

K(x ; y) = h >(x )h (y)
where h (x ) is a CNN map:

Wasserstein GAN Arjovsky
et al. [ICML 2017]

WGAN-GP Gulrajani et al.
[NeurIPS 2017]

K(x ; y) = k(h (x ); h (y))
where h (x ) is a CNN map,
k is e.g. an exponentiated quadratic
kernel
MMD Li et al., [NeurIPS 2017]
Cramer Bellemare et al. [2017]
Coulomb Unterthiner et al., [ICLR 2018]
Demystifying MMD GANs Binkowski,
Sutherland, Arbel, G., [ICLR 2018]
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Witness function, kernels on deep features
Reminder: witness function,
k(x ; y) is exponentiated quadratic
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Witness function, kernels on deep features
Reminder: witness function,
k(h (x ); h (y)) with nonlinear h and exp. quadratic k
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Challenges for learned critic features
Learned critic features:
MMD with kernel k(h (x ); h (y)) must give useful gradient to
generator.

Relation with test power?
If the MMD with kernel k(h (x ); h (y)) gives a powerful test, will it
be a good critic?
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A simple 2-D example

Samples from target P and model Q

target
model
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A simple 2-D example

Witness gradient, MMD with exp. quad. kernel k(x ; y)
MMD Gaussian

target
model

42/62



A simple 2-D example

What the kernels k(x ; y) look like

MMD Gaussian
target
model
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A data-adaptive gradient penalty: NeurIPS 2018
New gradient regulariser Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]
Also related to Sobolev GAN Mroueh et al. [ICLR 2018]

On gradient regularizers for MMD GANs

Michael Arbel
Gatsby Computational Neuroscience Unit

University College London
michael.n.arbel@gmail.com

Dougal J. Sutherland
Gatsby Computational Neuroscience Unit

University College London
dougal@gmail.com

Mikołaj Bińkowski
Department of Mathematics

Imperial College London
mikbinkowski@gmail.com

Arthur Gretton
Gatsby Computational Neuroscience Unit

University College London
arthur.gretton@gmail.com

Abstract

We propose a principled method for gradient-based regularization of the critic of
GAN-like models trained by adversarially optimizing the kernel of a Maximum
Mean Discrepancy (MMD). We show that controlling the gradient of the critic
is vital to having a sensible loss function, and devise a method to enforce exact,
analytical gradient constraints at no additional cost compared to existing approxi-
mate techniques based on additive regularizers. The new loss function is provably
continuous, and experiments show that it stabilizes and accelerates training, giving
image generation models that outperform state-of-the art methods on 160 ⇥ 160
CelebA and 64 ⇥ 64 unconditional ImageNet.

1 Introduction

There has been an explosion of interest in implicit generative models (IGMs) over the last few years,
especially after the introduction of generative adversarial networks (GANs) [16]. These models
allow approximate samples from a complex high-dimensional target distribution P, using a model
distribution Q✓, where estimation of likelihoods, exact inference, and so on are not tractable. GAN-
type IGMs have yielded very impressive empirical results, particularly for image generation, far
beyond the quality of samples seen from most earlier generative models [e.g. 18, 21, 22, 23, 37].

These excellent results, however, have depended on adding a variety of methods of regularization and
other tricks to stabilize the notoriously difficult optimization problem of GANs [37, 41]. Some of
this difficulty is perhaps because when a GAN is viewed as minimizing a discrepancy DGAN(P, Q✓),
its gradient r✓ DGAN(P, Q✓) does not provide useful signal to the generator if the target and model
distributions are not absolutely continuous, as is nearly always the case [2].

An alternative set of losses are the integral probability metrics (IPMs) [35], which can give credit to
models Q✓ “near” to the target distribution P [3, 8, Section 4 of 15]. IPMs are defined in terms of a
critic function: a “well behaved” function with large amplitude where P and Q✓ differ most. The IPM
is the difference in the expected critic under P and Q✓, and is zero when the distributions agree. The
Wasserstein IPMs, whose critics are made smooth via a Lipschitz constraint, have been particularly
successful in IGMs [3, 14, 18]. But the Lipschitz constraint must hold uniformly, which can be hard
to enforce. A popular approximation has been to apply a gradient constraint only in expectation [18]:
the critic’s gradient norm is constrained to be small on points chosen uniformly between P and Q.

Another class of IPMs used as IGM losses are the Maximum Mean Discrepancies (MMDs) [17],
as in [13, 27]. Here the critic function is a member of a reproducing kernel Hilbert space (except
in [49], who learn a deep approximation to an RKHS critic). Better performance can be obtained,

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.
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A data-adaptive gradient penalty: NeurIPS 2018
New gradient regulariser Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]
Also related to Sobolev GAN Mroueh et al. [ICLR 2018]

Modified witness constraint:

where

Maximise^MMD wrt critic features
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A data-adaptive gradient penalty: NeurIPS 2018
New gradient regulariser Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]
Also related to Sobolev GAN Mroueh et al. [ICLR 2018]

Modified witness constraint:

Problem: not computationally feasible: O(n3) per iteration.
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A data-adaptive gradient penalty: NeurIPS 2018
New gradient regulariser Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]
Also related to Sobolev GAN Mroueh et al. [ICLR 2018]

Modified witness constraint:

Maximise scaled MMD over critic features:

SMMD(P ; �) = �P ;� MMD

where

�2P ;� = �+

Z
k(h (x ); h (x ))dP(x )+

dX
i=1

Z
@i@i+dk(h (x ); h (x )) dP(x )

Replace expensive constraint with cheap upper bound:

kf k2S � ��1P ;� kf k
2
k
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A data-adaptive gradient penalty: NeurIPS 2018
New gradient regulariser Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]
Also related to Sobolev GAN Mroueh et al. [ICLR 2018]

Maximise scaled MMD over critic features:

SMMD(P ; �) = �P ;� MMD

where

�2P ;� = �+

Z
k(h (x ); h (x ))dP(x )+

dX
i=1

Z
@i@i+dk(h (x ); h (x )) dP(x )

Replace expensive constraint with cheap upper bound:

kf k2S � ��1P ;� kf k
2
k

Idea: rather than regularise the critic or witness function, regularise
features directly
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Simple 2-D example revisited

Samples from target P and model Q

target
model
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Simple 2-D example revisited

Use kernels k(h (x ); h (y)) with features

h (x ) = L3

 "
x

L2(L1(x ))

#!

where L1;L2;L3 are fully connected with quadratic nonlinearity.
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Simple 2-D example revisited

Witness gradient, maximise SMMD(P ; �)
to learn h (x ) for k(h (x ); h (y))

vector field movie, use Acrobat Reader to play 44/62



Simple 2-D example revisited

What the kenels k(h (x ); h (y)) look like

isolines movie, use Acrobat Reader to play
44/62



Our empirical observations

Data-adaptive critic loss:
Witness function class for SMMD(P ; �) depends on P .

• Without data-dependent regularisation, maximising MMD over
features h of kernel k(h (x ); h (y)) can be unhelpful.

• WGAN-GP is a pretty good data-dependent regularisation strategy

Similar regularisation strategies apply to variational form in f-GANs
Roth et al [NeurIPS 2017, eq. 19 and 20]

Alternate critic and generator training:

Weaker critics can give better signals to poor (early stage) generators.
Incomplete training of the critic is also a regularisation strategy
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Linear vs nonlinear kenels
Critic features from DCGAN: an f -filter critic has f , 2f , 4f and 8f
convolutional filters in layers 1-4. LSUN 64� 64.

k(h (x ); h (y)), f = 64,
KID=3

h >(x )h (y), f = 64, KID=4
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Linear vs nonlinear kenels
Critic features from DCGAN: an f -filter critic has f , 2f , 4f and 8f
convolutional filters in layers 1-4. LSUN 64� 64.

k(h (x ); h (y)), f = 16,
KID=9

h >(x )h (y), f = 16, KID=37
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The theory for MMD GANs
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Scaled MMD vs Wasserstein-1 (NeurIPS 18)
Let k = k � h .
Wasserstein-1 bounds SMMD,

SMMD(P ;Q) �
Qk�

L

dL�LW(P ;Q)

Conditions on the neural network layers:
• h : X ! <s fully-connected L-layer network, Leaky-ReLU�

activations whose layers do not increase in width
• Width of `th layer is d`.
• � is the bound on condition number of the weight matrices W `

Conditions on the kernel and gradient regulariser:
• k satisfying mild smoothness conditions, summarised in Qk <1:

• � is a probabilty measure with support over X ,Z
k(x ; x )d�(x ) +

dX
i=1

Z
@i@i+dk(x ; x ) d�(x )
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Unbiased gradients of MMD, WGAN-GP (ICLR 18)

Subject to mild conditions on
Critic mappings h (conditions hold for almost all feedforward networks:
convolutions, max pooling, ReLU,....)

kernel k (a growth assumption)

Target distribution P , generator network Y � G�(Z ) (densities not

needed, second moments must exist),

Then for �-almost all  ; � where � is Lebesgue,

EX�P
Z�R

[@ ;�k(h (X ); h (G�(Z )))] = @ ;�EX�P
Z�R

[k(h (X ); h (G�(Z )))] :

and thus MMD gradients unbiased.
Also true for WGAN-GP.
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Bias of MMD GAN critic (ICLR 18)

Gradient bias when critic trained on a separate dataset?
Recall definition of MMD for P vs Q

MMD(P ;Q ;F ) := sup
kf k�1

[EP f (X )�EQ f (Y )]

(F = unit ball in RKHS F)

Define f tr as discriminator witness trained on
�
x tr
i
	m
i=1

i:i:d:
� P ,�

y tr
i
	n
i=1

i:i:d:
� Q .

Then
[EP f tr (X )�EQ f tr (Y )] � MMD(P ;Q ;F )

Downwards bias. Unless bias is in f tr constant, biased gradients too.
Same true for WGAN-GP.
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Bias of MMD GAN critic (ICLR 18)

Training minibatch critic function ftr
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x
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Trained witness function f
tr
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Bias of MMD GAN critic (ICLR 18)

Population critic function f �

-1 -0.5 0 0.5 1

x

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

P
ro

b
. 

d
e

n
s
it
y
 a

n
d

 f
(x

)

Population witness function f
*

51/62



Bias of MMD GAN critic (ICLR 18)

Bias in MMD vs training minibatch size:
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Evaluation and experiments
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Evaluation of GANs

The inception score? Salimans et al. [NeurIPS 2016]

Based on the classification output p(y jx ) of the inception model Szegedy

et al. [ICLR 2014],
EX expKL(P(y jX )kP(y)):

High when:

predictive label distribution P(y jx ) has low entropy (good quality
images)

label entropy P(y) is high (good variety).
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Evaluation of GANs
The inception score? Salimans et al. [NeurIPS 2016]

Based on the classification output p(y jx ) of the inception model Szegedy

et al. [ICLR 2014],
EX expKL(P(y jX )kP(y)):

High when:

predictive label distribution P(y jx ) has low entropy (good quality
images)

label entropy P(y) is high (good variety).

Problem: relies on a trained classifier! Can’t be used on new
categories (celeb, bedroom...)
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Evaluation of GANs
The Frechet inception distance? Heusel et al. [NeurIPS 2017]

Fits Gaussians to features in the inception architecture (pool3 layer):

FID(P ;Q) = k�P � �Qk
2 + tr(�P ) + tr(�Q)� 2tr

�
(�P�Q)

1
2
�

where �P and �P are the feature mean and covariance of P
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Evaluation of GANs
The Frechet inception distance? Heusel et al. [NeurIPS 2017]

Fits Gaussians to features in the inception architecture (pool3 layer):

FID(P ;Q) = k�P � �Qk
2 + tr(�P ) + tr(�Q)� 2tr

�
(�P�Q)

1
2
�

where �P and �P are the feature mean and covariance of P

Problem: bias. For
finite samples can
consistently give
incorrect answer.

Bias demo,
CIFAR-10 train vs
test 0 2000 4000 6000 8000 10000

n

0
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20

30

40

50

FI
D
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Evaluation of GANs
The FID can give the wrong answer in theory.
Assume m samples from P and n !1 samples from Q .
Given two alternatives:

P1 � N (0; (1�m�1)2) P2 � N (0; 1) Q � N (0; 1):

Clearly,

FID(P1;Q) =
1

m2 > FID(P2;Q) = 0

Given m samples from P1 and P2,

FID(cP1;Q) < FID(cP2;Q):
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Evaluation of GANs
The FID can give the wrong answer in practice.
Let d = 2048, and define

P1 = relu(N (0; Id)) P2 = relu(N (1; :8�+:2Id)) Q = relu(N (1; Id))

where � = 4
d CCT , with C a d � d matrix with iid standard normal

entries.
For a random draw of C :

FID(P1;Q) � 1123:0 > 1114:8 � FID(P2;Q)

With m = 50 000 samples,

FID(cP1;Q) � 1133:7 < 1136:2 � FID(cP2;Q)

At m = 100 000 samples, the ordering of the estimates is correct.
This behavior is similar for other random draws of C . 56/62
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The kernel inception distance (KID)

The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018]

Measures similarity of the samples’ representations in the inception
architecture (pool3 layer)
MMD with kernel

k(x ; y) =
�
1
d
x>y + 1

�3
:

Checks match for feature
means, variances, skewness

Unbiased : eg CIFAR-10
train/test 0 250 500 750 1000 1250 1500 1750 2000

n

0.003

0.002

0.001

0.000

0.001

0.002

0.003

0.004

K
ID
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The kernel inception distance (KID)

The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018]

Measures similarity of the samples’ representations in the inception
architecture (pool3 layer)
MMD with kernel

k(x ; y) =
�
1
d
x>y + 1

�3
:

Checks match for feature
means, variances, skewness

Unbiased : eg CIFAR-10
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...“but isn’t KID is computationally costly?”
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...“but isn’t KID is computationally costly?”

“Block” KID implementation is cheaper than FID: see paper
(or use Tensorflow implementation)!
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Also used for automatic learning rate adjustment: if KID( bP t+1;Q)

not significantly better than KID( bP t ;Q) then reduce learning rate.
[Bounliphone et al. ICLR 2016]

Related: “An empirical study on evaluation metrics of generative adversarial networks”, Xu et al. [arxiv,
June 2018]
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Benchmarks for comparison (all from ICLR 2018)
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Results: unconditional imagenet 64�64

KID scores:

BGAN:
47

SN-GAN:
44

SMMD GAN:
35

ILSVRC2012 (ImageNet)
dataset, 1 281 167 images,
resized to 64 × 64. 1000
classes.
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Summary

GAN critics rely on two sources of regularisation
• Regularisation by incomplete training
• Data-dependent gradient regulariser

Some advantages of hybrid kernel/neural features:
• MMD loss still a valid critic when features not optimal (unlike

WGAN-GP)
• Kernel features do some of the “work”, so simpler h features possible.

“Demystifying MMD GANs,” including KID score, ICLR 2018:
https://github.com/mbinkowski/MMD-GAN

Gradient regularised MMD, NeurIPS 2018:
https://github.com/MichaelArbel/Scaled-MMD-GAN
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Post-credit scene: MMD flow

From NeurIPS 2019:

Maximum Mean Discrepancy Gradient Flow

Michael Arbel
Gatsby Computational Neuroscience Unit

University College London
michael.n.arbel@gmail.com

Anna Korba
Gatsby Computational Neuroscience Unit
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a.korba@ucl.ac.uk

Adil Salim
Visual Computing Center
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Arthur Gretton
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Abstract

We construct a Wasserstein gradient flow of the maximum mean discrepancy
(MMD) and study its convergence properties. The MMD is an integral probability
metric defined for a reproducing kernel Hilbert space (RKHS), and serves as a
metric on probability measures for a sufficiently rich RKHS. We obtain conditions
for convergence of the gradient flow towards a global optimum, that can be related
to particle transport when optimizing neural networks. We also propose a way to
regularize this MMD flow, based on an injection of noise in the gradient. This
algorithmic fix comes with theoretical and empirical evidence. The practical
implementation of the flow is straightforward, since both the MMD and its gradient
have simple closed-form expressions, which can be easily estimated with samples.

1 Introduction

We address the problem of defining a gradient flow on the space of probability distributions endowed
with the Wasserstein metric, which transports probability mass from a starting distribtion ⌫ to a target
distribution µ. Our flow is defined on the maximum mean discrepancy (MMD) [21], an integral
probability metric [40] which uses the unit ball in a characteristic RKHS [53] as its witness function
class. Specifically, we choose the function in the witness class that has the largest difference in
expectation under ⌫ and µ: this difference constitutes the MMD. The idea of descending a gradient
flow over the space of distributions can be traced back to the seminal work of [27], who revealed
that the Fokker-Planck equation is a gradient flow of the Kullback-Leibler divergence. Its time-
discretization leads to the celebrated Langevin Monte Carlo algorithm, which comes with strong
convergence guarantees (see [16, 17]), but requires the knowledge of an analytical form of the target
µ. A more recent gradient flow approach, Stein Variational Gradient Descent (SVGD) [36], also
leverages this analytical µ.

The study of particle flows defined on the MMD relates to two important topics in modern machine
learning. The first is in training Implicit Generative Models, notably generative adversarial networks
[20]. Integral probability metrics have been used extensively as critic functions in this setting: these
include the Wasserstein distance [3, 19, 24] and maximum mean discrepancy [2, 4, 6, 18, 32, 34]. In
[39, Section 3.3], a connection between IGMs and particle transport is proposed, where it is shown
that gradient flow on the witness function of an integral probability metric takes a similar form to the
generator update in a GAN. The critic IPM in this case is the Kernel Sobolev Discrepancy (KSD),
which has an additional gradient norm constraint on the witness function compared with the MMD. It
is intended as an approximation to the negative Sobolev distance from the optimal transport literature
[42, 43, 56]. There remain certain differences between gradient flow and GAN training, however.
First, and most obviously, gradient flow can be approximated by representing ⌫ as a set of particles,

Preprint. Under review.
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Questions?
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