GANs with integral probability metrics: some results and conjectures

Arthur Gretton

Gatsby Computational Neuroscience Unit, University College London

University of Oxford, 2020

A motivation: comparing two samples

Given: Samples from unknown distributions P and Q.
Goal: do P and Q differ?

Training implicit generative models

Have: One collection of samples X from unknown distribution P.
Goal: generate samples Q that look like P

LSUN bedroom samples P Generated Q, MMD GAN Using a critic D(P, Q) to train a GAN

(Binkowski, Sutherland, Arbel, G., ICLR 2018), (Arbel, Sutherland, Binkowski, G., NeurIPS 2018)

Outline

Measures of distance between distributions

- The MMD: an integral probability metric
- f-divergences vs integral probability metrics

Gradient penalties for GAN critics

- The optimisation viewpoint
- The regularisation viewpoint

Theory

- Relation of MMD critic and Wasserstein
- Gradient bias

• Evaluating GAN performance, experiments

The Maximum Mean Discrepancy: An Integral Probability Metric

Are P and Q different?

Are P and Q different?

Integral probability metric:

Find a "well behaved function" f(x) to maximize

$\mathbf{E}_{P}f(X) - \mathbf{E}_{Q}f(Y)$

Integral probability metric:

Find a "well behaved function" f(x) to maximize

 $\mathbf{E}_{P}f(X) - \mathbf{E}_{Q}f(Y)$

The MMD: an integral probability metric

Maximum mean discrepancy: smooth function for P vs Q

$$egin{aligned} MMD(P,oldsymbol{Q};F) := \sup_{\|f\|\leq 1} \left[\mathbf{E}_P f(X) - \mathbf{E}_{oldsymbol{Q}} f(oldsymbol{Y})
ight] \ (F = ext{unit ball in RKHS } \mathcal{F}) \end{aligned}$$

The MMD: an integral probability metric

Maximum mean discrepancy: smooth function for P vs Q

$$egin{aligned} MMD(P,oldsymbol{Q};F) &:= \sup_{\|f\|\leq 1} \left[\mathbf{E}_P f(X) - \mathbf{E}_{oldsymbol{Q}} f(oldsymbol{Y})
ight] \ (F &= ext{unit ball in RKHS } \mathcal{F}) \end{aligned}$$

Functions are linear combinations of features:

$$f(x) = \langle f, \varphi(x) \rangle_{\mathcal{F}} = \sum_{\ell=1}^{\infty} f_{\ell} \varphi_{\ell}(x) = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ \vdots \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} \varphi_1(x) & \uparrow & \uparrow \\ \varphi_2(x) & \uparrow & \uparrow \\ \varphi_3(x) & \uparrow & \downarrow \\ \varphi_3(x) & \uparrow & \downarrow \\ \vdots & \downarrow \end{bmatrix}$$
$$\|f\|_{\mathcal{F}}^2 := \sum_{i=1}^{\infty} f_i^2 \le 1$$

Infinitely many features using kernels

Kernels: dot products of features

Feature map $\varphi(x) \in \mathcal{F}$,

 $\varphi(x) = [\dots \varphi_i(x) \dots] \in \ell_2$

For positive definite k,

$$k(x,x')=\langle arphi(x),arphi(x')
angle_{\mathcal{F}}$$

Infinitely many features $\varphi(x)$, dot product in closed form!

Infinitely many features using kernels

Kernels: dot products of features

Exponentiated quadratic kernel

$$k(x,x') = \exp\left(-\gamma \left\|x-x'
ight\|^2
ight)$$

Features: Gaussian Processes for Machine learning, Rasmussen and Williams, Ch. 4. 11/62

Feature map $\varphi(x) \in \mathcal{F}$,

$$arphi(x) = [\dots arphi_i(x) \dots] \in \ell_2$$

For positive definite k,

$$k(x,x')=\langle arphi(x),arphi(x')
angle_{\mathcal{F}}$$

Infinitely many features $\varphi(x)$, dot product in closed form!

The MMD: an integral probability metric

Maximum mean discrepancy: smooth function for P vs Q

$$egin{aligned} MMD(P,oldsymbol{Q};F) &:= \sup_{\|f\|\leq 1} \left[\mathbf{E}_P f(X) - \mathbf{E}_{oldsymbol{Q}} f(Y)
ight] \ (F &= ext{unit ball in RKHS } \mathcal{F}) \end{aligned}$$

For characteristic RKHS \mathcal{F} , MMD(P, Q; F) = 0 iff P = Q

Other choices for witness function class:

Bounded continuous [Dudley, 2002] Bounded varation 1 (Kolmogorov metric) [Müller, 1997] Lipschitz (Wasserstein distances) [Dudley, 2002]

Energy distance is a special case [Sejdinovic, Sriperumbudur, G. Fukumizu, 2013] 12/62

The MMD: an integral probability metric

Maximum mean discrepancy: smooth function for P vs Q

$$egin{aligned} MMD(P,oldsymbol{Q};F) := \sup_{\|f\|\leq 1} \left[\mathbf{E}_P f(X) - \mathbf{E}_{oldsymbol{Q}} f(Y)
ight] \ (F = ext{unit ball in RKHS } \mathcal{F}) \end{aligned}$$

Expectations of functions are linear combinations of expected features

$$\mathbf{E}_P(f(X)) = \langle f, \mathbf{E}_P arphi(X)
angle_{\mathcal{F}} = \langle f, oldsymbol{\mu}_P
angle_{\mathcal{F}}$$

(always true if kernel is bounded)

The MMD:

 $egin{aligned} & MMD(P, \, oldsymbol{Q}; \, F) \ &= \sup_{\||f\| \leq 1} \left[\mathbf{E}_P f(X) - \mathbf{E}_{oldsymbol{Q}} f(\, Y)
ight] \end{aligned}$

The MMD:

use

MMD(P, Q; F)

- $= \sup_{\|f\|\leq 1} \left[\mathbf{E}_{P} f(X) \mathbf{E}_{\mathcal{Q}} f(Y)
 ight]$
- $= \sup_{\|f\|\leq 1} ig\langle f, \mu_P \mu_Q ig
 angle_{\mathcal{F}}$

 $\mathbf{E}_{P}f(X) = \langle \boldsymbol{\mu}_{P}, f \rangle_{\mathcal{F}}$

The MMD:

MMD(P, Q; F)

- $= \sup_{\|f\|\leq 1} \left[\mathbf{E}_{P} f(X) \mathbf{E}_{\mathcal{Q}} f(Y)
 ight]$
- $= \sup_{\|f\|\leq 1} \langle f, \mu_P \mu_Q
 angle_{\mathcal{F}}$

The MMD:

MMD(P, Q; F)

- $= \sup_{\|f\|\leq 1} \left[\mathbf{E}_P f(X) \mathbf{E}_{\mathcal{Q}} f(Y)
 ight]$
- $= \sup_{\|f\|\leq 1} \langle f, \mu_P \mu_Q
 angle_{\mathcal{F}}$

The MMD:

MMD(P, Q; F)

 $= \sup_{\|f\|\leq 1} \left[\mathbf{E}_{P} f(X) - \mathbf{E}_{\mathcal{Q}} f(Y)
ight]$

$$= \sup_{\|f\|\leq 1} \langle f, \mu_P - \mu_Q
angle_{\mathcal{F}}$$

The MMD:

- MMD(P, Q; F)
- $= \sup_{\|f\|\leq 1} \left[\mathrm{E}_{P} f(X) \mathrm{E}_{\mathcal{Q}} f(Y)
 ight]$
- $= \sup_{\|f\|\leq 1} \langle f, \mu_P \mu_Q
 angle_{\mathcal{F}}$
- $= \|\boldsymbol{\mu}_P \boldsymbol{\mu}_Q\|$

IPM view equivalent to feature mean difference (kernel case only)

Recall the witness function expression

 $f^* \propto \mu_P - \mu_Q$

Recall the witness function expression

 $f^* \propto \mu_P - \mu_Q$

The empirical feature mean for P

$$\widehat{\mu}_P := rac{1}{n}\sum_{i=1}^n arphi(x_i)$$

Recall the witness function expression

 $f^* \propto \mu_P - \mu_Q$

The empirical feature mean for P

$$\widehat{\mu}_P := rac{1}{n}\sum_{i=1}^n arphi(x_i)$$

The empirical witness function at v

$$f^*(v)=\left\langle f^*,arphi(v)
ight
angle_{\mathcal{F}}$$

Recall the witness function expression

 $f^* \propto \mu_P - \mu_Q$

The empirical feature mean for P

$$\widehat{\mu}_P := rac{1}{n}\sum_{i=1}^n arphi(x_i)$$

The empirical witness function at v

$$egin{aligned} &f^*(v) = \langle f^*, arphi(v)
angle_\mathcal{F} \ &\propto \langle \widehat{\mu}_P - \widehat{\mu}_{\mathcal{Q}}, arphi(v)
angle_\mathcal{F} \end{aligned}$$

Recall the witness function expression

 $f^* \propto \mu_P - \mu_Q$

The empirical feature mean for P

$$\widehat{\mu}_P := rac{1}{n}\sum_{i=1}^n arphi(x_i)$$

The empirical witness function at v

$$egin{aligned} f^*(v) &= \langle f^*, arphi(v)
angle_{\mathcal{F}} \ &\propto \langle \widehat{\mu}_P - \widehat{\mu}_Q, arphi(v)
angle_{\mathcal{F}} \ &= rac{1}{n} \sum_{i=1}^n k(oldsymbol{x}_i, v) - rac{1}{n} \sum_{i=1}^n k(oldsymbol{y}_i, v) \end{aligned}$$

Don't need explicit feature coefficients $f^* := \begin{bmatrix} f_1^* & f_2^* & \dots \end{bmatrix}$

15/62

Interlude: divergence measures

Sriperumbudur, Fukumizu, G, Schoelkopf, Lanckriet (2012)
Training Generative Adversarial Networks: Critics and Gradient Penalties

Visual notation: GAN setting

Visual notation: GAN setting

What I won't cover: the generator

Radford, Metz, Chintala, ICLR 2016

An unhelpful critic? Jensen-Shannon,

Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017] $D_{JS}(P, Q) = \frac{1}{2} D_{KL} \left(p, \frac{p+q}{2}\right) + \frac{1}{2} D_{KL} \left(q, \frac{p+q}{2}\right)$

 $D_{JS}(P, Q) = \log 2$

An unhelpful critic? Jensen-Shannon,

Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017] $D_{JS}(P, Q) = \frac{1}{2} D_{KL} \left(p, \frac{p+q}{2}\right) + \frac{1}{2} D_{KL} \left(q, \frac{p+q}{2}\right)$

 $D_{JS}(P, Q) = \log 2$

An unhelpful critic? Jensen-Shannon,

Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017] $D_{JS}(P, Q) = \frac{1}{2} D_{KL} \left(p, \frac{p+q}{2}\right) + \frac{1}{2} D_{KL} \left(q, \frac{p+q}{2}\right)$

What is done in practice?

An unhelpful critic? Jensen-Shannon,

Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017] $D_{JS}(P, Q) = \frac{1}{2} D_{KL} \left(p, \frac{p+q}{2} \right) + \frac{1}{2} D_{KL} \left(q, \frac{p+q}{2} \right)$

What is done in practice?

 Use a variational approximation to the critic, alternate generator and critic training (we will return to this!) Goodfellow et al. [NeurIPS 2014], Nowozin et al. [NeurIPS 2016]

An unhelpful critic? Jensen-Shannon,

Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017] $D_{JS}(P, Q) = \frac{1}{2} D_{KL} \left(p, \frac{p+q}{2} \right) + \frac{1}{2} D_{KL} \left(q, \frac{p+q}{2} \right)$

What is done in practice?

Use a variational approximation to the critic, alternate generator and critic training (we will return to this!) Goodfellow et al. [NeurIPS 2014], Nowozin et al. [NeurIPS 2016]
 Add "instance noise" to the reference and generator observations

Sonderby et al. [arXiv 2016], Arjovsky and Bottou [ICLR 2017]

An unhelpful critic? Jensen-Shannon,

Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017] $D_{JS}(P, Q) = \frac{1}{2} D_{KL} \left(p, \frac{p+q}{2} \right) + \frac{1}{2} D_{KL} \left(q, \frac{p+q}{2} \right)$

What is done in practice?

- Use a variational approximation to the critic, alternate generator and critic training (we will return to this!) Goodfellow et al. [NeurIPS 2014], Nowozin et al. [NeurIPS 2016]
- Add "instance noise" to the reference and generator observations Sonderby et al. [arXiv 2016], Arjovsky and Bottou [ICLR 2017]
 - ...or (approx. equivalently) a data-dependent gradient penalty for the variational critic (we will return to this!) Roth et al [NeurIPS 2017], 25/62
 Nagarajan and Kolter [NeurIPS 2017], Mescheder et al. [ICML 2018]

Wasserstein distance as critic

 $W_1 = 0.88$

Wasserstein distance as critic

A helpful critic witness: $W_1(P, Q) = \sup_{\|f\|_L \leq 1} E_P f(X) - E_Q f(Y).$ $\|f\|_L := \sup_{x \neq y} |f(x) - f(y)| / \|x - y\|$

 $W_1 = 0.65$

Santambrogio, Optimal Transport for Applied Mathematicians (2015, Section 5.4) G Peyré, M Cuturi, Computational Optimal Transport (2019) M. Cuturi, J. Solomon, NeurIPS tutorial (2017)

A helpful critic witness: $MMD(P, Q) = \sup_{\|f\|_{\mathcal{F}} \leq 1} E_P f(X) - E_Q f(Y).$

MMD=1.8

A helpful critic witness: $MMD(P, Q) = \sup_{\|f\|_{\mathcal{F}} \leq 1} E_P f(X) - E_Q f(Y)$

MMD=1.1

An unhelpful critic witness: MMD(P, Q) with a narrow kernel.

MMD=0.64

An unhelpful critic witness: MMD(P, Q) with a narrow kernel.

MMD=0.64

f-divergences $(\phi - divergences)$

The ϕ -divergences

Define the ϕ -divergence(*f*-divergence):

$$D_{\phi}(P,Q) = \int \phi\left(rac{dP}{dQ}
ight) dQ = \int \phi\left(rac{p(x)}{q(x)}
ight) q(x) dx$$

where ϕ is convex, lower-semicontinuous, $\phi(1) = 0$.

Example: $\phi(x) = -\log(x)$ gives reverse KL divergence,

$$D_{KL}(oldsymbol{Q},oldsymbol{P}) = \int \log\left(rac{oldsymbol{q}(x)}{oldsymbol{p}(x)}
ight) oldsymbol{q}(x) dx$$

The ϕ -divergences

Define the ϕ -divergence(*f*-divergence):

$$D_{\phi}(P,Q) = \int \phi\left(rac{d\,P}{d\,Q}
ight) \, d\,Q = \int \phi\left(rac{p(x)}{q(x)}
ight) \, q(x) dx$$

where ϕ is convex, lower-semicontinuous, $\phi(1) = 0$.

Example: $\phi(x) = -\log(x)$ gives reverse KL divergence,

$$D_{KL}(oldsymbol{Q},P) = \int \log\left(rac{oldsymbol{q}(x)}{p(x)}
ight) oldsymbol{q}(x) dx$$

How do ϕ -divergences behave?

Simple example: disjoint support, revisited.

Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017]

How do ϕ -divergences behave?

Simple example: disjoint support, revisited.

Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017]

Background: the Fenchel dual

Conjugate (fenchel) dual:

$$\phi^*(v) = \sup_{u\in \Re} \left\{ uv - \phi(u)
ight\}.$$

• v is slope of ϕ

• u is the argument of ϕ where it has slope v.

$$\partial \phi^*(v) = u$$

 φ^{*}(v) is the negative of the intercept of the line with slope v, tangent to φ(u) at u.

Background: the Fenchel dual

Conjugate (fenchel) dual:

$$\phi^*(v) = \sup_{u\in \Re} \left\{ uv - \phi(u)
ight\}.$$

- v is slope of ϕ
- u is the argument of ϕ where it has slope v.

$$\partial \phi^*(v) = u$$

• $\phi^*(v)$ is the negative of the intercept of the line with slope v, tangent to $\phi(u)$ at u.

• For a convex l.s.c. ϕ we have

$$\phi^{**}(v)=\phi(v)=\sup_{u\in\mathfrak{R}}\left\{uv-\phi^{*}(u)
ight\}$$

Background: the Fenchel dual

Conjugate (fenchel) dual:

$$\phi^*(v) = \sup_{u\in \Re} \left\{ uv - \phi(u)
ight\}.$$

- v is slope of ϕ
- u is the argument of ϕ where it has slope v.

$$\partial \phi^*(v) = u$$

• $\phi^*(v)$ is the negative of the intercept of the line with slope v, tangent to $\phi(u)$ at u.

Reverse KL:

$$\phi(u) = -\log(u) \qquad \phi^*(v) = egin{cases} -1 - \log v & v < 0 \ \infty & v \ge 0 \end{cases}$$

How to compute ϕ -divergences in practice:

$$D_{\phi}(P, \boldsymbol{Q}) = \int \boldsymbol{q}(z) \phi\left(rac{p(z)}{q(z)}
ight) dz$$

How to compute ϕ -divergences in practice:

$$egin{aligned} D_{\phi}(P, oldsymbol{Q}) &= \int egin{aligned} q(z) \phi\left(rac{p(z)}{q(z)}
ight) dz \ &= \int egin{aligned} q(z) \sup_{f_z} \left(rac{p(z)}{q(z)}f_z - \phi^*(f_z)
ight) \ & extstyle rac{p(z)}{q(z)} \end{pmatrix} \ & extstyle \phiigg(rac{p(z)}{q(z)}igg) \end{aligned}$$

$$\phi^*(u)$$
 is dual of $\phi(u)$.

How to compute ϕ -divergences in practice:

$$egin{aligned} D_{\phi}(P, oldsymbol{Q}) &= \int oldsymbol{q}(z) \phi\left(rac{p(z)}{q(z)}
ight) dz \ &= \int oldsymbol{q}(z) \sup_{f_z} \left(rac{p(z)}{q(z)} f_z - \phi^*(f_z)
ight) \end{aligned}$$

How to compute ϕ -divergences in practice:

$$egin{aligned} D_{\phi}(P,oldsymbol{Q}) &= \int q(z) \phi\left(rac{p(z)}{q(z)}
ight) dz \ &= \int q(z) \sup_{f_z} \left(rac{p(z)}{q(z)} f_z - \phi^*(f_z)
ight) \ &\geq \sup_{f\in\mathcal{H}} \mathrm{E}_P f(X) - \mathrm{E}_{oldsymbol{Q}} \phi^*\left(f(oldsymbol{Y})
ight) \end{aligned}$$

(restrict the function class)

How to compute ϕ -divergences in practice:

$$egin{aligned} D_{\phi}(P,oldsymbol{Q}) &= \int q(z) \phi\left(rac{p(z)}{q(z)}
ight) dz \ &= \int q(z) \sup_{f_z} \left(rac{p(z)}{q(z)} f_z - \phi^*(f_z)
ight) \ &\geq \sup_{f\in\mathcal{H}} \mathrm{E}_P f(X) - \mathrm{E}_{oldsymbol{Q}} \phi^*\left(f(oldsymbol{Y})
ight) \end{aligned}$$

(restrict the function class)

Optimum f_z^\diamond has property $rac{p(z)}{q(z)} = \partial \phi^*(f_z^\diamond) \iff f_z^\diamond = \partial \phi\left(rac{p(z)}{q(z)}
ight).$

Case of the reverse KL

$$D_{KL}(oldsymbol{Q},P) = \int oldsymbol{q}(z) \log\left(rac{oldsymbol{q}(z)}{oldsymbol{p}(z)}
ight) dz$$

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010); Nowozin, Cseke, Tomioka, NeurIPS (2016)

33/62

Case of the reverse KL

$$egin{aligned} D_{KL}(oldsymbol{Q},oldsymbol{P}) &= \int oldsymbol{q}(z)\log\left(rac{oldsymbol{q}(z)}{oldsymbol{p}(z)}
ight)dz \ &\geq \sup_{f < 0, f \in \mathcal{H}} \mathbf{E}_{P}f(X) + \mathbf{E}_{oldsymbol{Q}} \underbrace{\log\left(-f(oldsymbol{Y})
ight) + 1}_{-\phi^*(f(oldsymbol{Y}))} \end{aligned}$$

Case of the reverse KL

$$egin{aligned} D_{KL}(oldsymbol{Q},P) &= \int oldsymbol{q}(z)\log\left(rac{oldsymbol{q}(z)}{oldsymbol{p}(z)}
ight) dz \ &\geq \sup_{f < 0, f \in \mathcal{H}} \mathbf{E}_P f(X) + \mathbf{E}_oldsymbol{Q}\log\left(-f(oldsymbol{Y})
ight) + 1 \end{aligned}$$

Bound tight when:

$$f^\diamond(z) = -rac{m{q}(z)}{m{p}(z)}$$

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010); 33/62 Nowozin, Cseke, Tomioka, NeurIPS (2016)

Case of the reverse KL

$$egin{aligned} D_{KL}(oldsymbol{Q},P) &= \int oldsymbol{q}(z)\log\left(rac{q(z)}{p(z)}
ight)dz \ &\geq \sup_{f < 0, f \in \mathcal{H}} \mathbf{E}_P f(X) + \mathbf{E}_{oldsymbol{Q}}\log\left(-f(Y)
ight) + 1 & x_i \stackrel{ ext{i.i.d.}}{\sim} P \ &y_i \stackrel{ ext{i.i.d.}}{\sim} Q \ &lpha \sup_{f < 0, f \in \mathcal{H}} \left[rac{1}{n}\sum_{j=1}^n f(x_i) + rac{1}{n}\sum_{i=1}^n \log(-f(y_i))
ight] + 1 \end{aligned}$$

Case of the reverse KL

$$egin{split} D_{KL}(oldsymbol{Q},P) &= \int oldsymbol{q}(z)\log\left(rac{oldsymbol{q}(z)}{p(z)}
ight)dz \ &\geq \sup_{f < 0, f \in \mathcal{H}} \mathbf{E}_P f(X) + \mathbf{E}_{oldsymbol{Q}}\log\left(-f(oldsymbol{Y})
ight) + 1 \ &pprox \sup_{f < 0, f \in \mathcal{H}} \left[rac{1}{n}\sum_{j=1}^n f(x_i) + rac{1}{n}\sum_{i=1}^n \log(-f(y_i))
ight] + 1 \end{split}$$

This is a

 $\mathbf{K}\mathbf{L}$

Approximate

Lower-bound

Estimator.

Case of the reverse KL

$$egin{split} D_{KL}(oldsymbol{Q},P) &= \int oldsymbol{q}(z)\log\left(rac{oldsymbol{q}(z)}{p(z)}
ight)dz \ &\geq \sup_{f < 0, f \in \mathcal{H}} \mathbf{E}_P f(X) + \mathbf{E}_{oldsymbol{Q}}\log\left(-f(oldsymbol{Y})
ight) + 1 \ &pprox \sup_{f < 0, f \in \mathcal{H}} \left[rac{1}{n}\sum_{j=1}^n f(x_i) + rac{1}{n}\sum_{i=1}^n \log(-f(y_i))
ight] + 1 \end{split}$$

This is a

 \mathbf{K}

 \mathbf{A}

 \mathbf{L}

 \mathbf{E}

Case of the reverse KL

$$egin{aligned} D_{KL}(oldsymbol{Q},P) &= \int oldsymbol{q}(z)\log\left(rac{q(z)}{p(z)}
ight)dz\ &\geq \sup_{f < 0, f \in \mathcal{H}} \mathbf{E}_P f(X) + \mathbf{E}_oldsymbol{Q}\log\left(-f(oldsymbol{Y})
ight) + 1\ &pprox \sup_{f < 0, f \in \mathcal{H}} \left[rac{1}{n}\sum_{j=1}^n f(x_i) + rac{1}{n}\sum_{i=1}^n \log(-f(oldsymbol{y}_i))
ight] + 1 \end{aligned}$$

The KALE divergence

$$egin{aligned} & ext{KALE}(oldsymbol{Q}, P) = \sup_{f < 0, f \in \mathcal{H}} E_P f(X) + E_oldsymbol{Q} \log\left(-f(Y)
ight) + 1 \ & f = -\exp\left\langle w, \phi(x)
ight
angle_{\mathcal{F}} \ & \|w\|_{\mathcal{F}}^2 \quad ext{penalized} : \end{aligned}$$

$$egin{aligned} & ext{KALE}(oldsymbol{Q}, P) = \sup_{f < 0, f \in \mathcal{H}} E_P f(X) + E_oldsymbol{Q} \log\left(-f(Y)
ight) + 1 \ & f = -\exp\left\langle w, \phi(x)
ight
angle_{\mathcal{F}} \ & \|w\|_{\mathcal{F}}^2 \quad ext{penalized}: ext{KALE smoothie} \end{aligned}$$

$$egin{aligned} & \operatorname{KALE}(\mathcal{Q}, \mathcal{P}) = \sup_{f < 0, f \in \mathcal{H}} E_{\mathcal{P}}f(X) + E_{\mathcal{Q}}\log\left(-f(Y)
ight) + 1 \ & f = -\exp\left\langle w, \phi(x)
ight
angle_{\mathcal{F}} \ & \|w\|_{\mathcal{F}}^2 \quad ext{penalized} : \operatorname{KALE} \operatorname{smoothie} \ & \operatorname{KALE}(\mathcal{Q}, \mathcal{P}) = 0.18 \end{aligned}$$

$$egin{aligned} & ext{KALE}(oldsymbol{Q}, P) = \sup_{f < 0, f \in \mathcal{H}} E_P f(X) + E_Q \log \left(-f(Y)
ight) + 1 \ & f = -\exp \left\langle w, \phi(x)
ight
angle_{\mathcal{F}} \ & \|w\|_{\mathcal{F}}^2 \quad ext{penalized} : ext{KALE smoothie} \ & ext{KALE}(oldsymbol{Q}, P) = 0.12 \end{aligned}$$

The KALE smoothie and "mode collapse"

Two Gaussians with same means, different variance

Example thanks to M. Arbel and M. Rosca

Gradient penalty: the regularisation viewpoint

MMD for GAN critic

Can you use MMD as a critic to train GANs? From ICML 2015:

Generative Moment Matching Networks

Yujia Li¹ Kevin Swersky¹ KSWERSKY@CS.TORONTO.EDU Richard Zemel^{1,2} ¹Department of Computer Science, University of Toronto, Toronto, ON, CANADA ²Canadian Institute for Advanced Research, Toronto, ON, CANADA

From UAI 2015:

Training generative neural networks via Maximum Mean Discrepancy optimization

Gintare Karolina Dziugaite University of Cambridge

Daniel M. Rov University of Toronto

Zoubin Ghahramani University of Cambridge

YUJIALI@CS.TORONTO.EDU

ZEMEL @CS TORONTO EDU

MMD for GAN critic

Can you use MMD as a critic to train GANs?

Need better image features.

CNN features for IPM witness functions

- Add convolutional features!
- The critic (teacher) also needs to be trained.

 $\mathfrak{K}(x,y) = h_{\psi}^{ op}(x)h_{\psi}(y)$ where $h_{\psi}(x)$ is a CNN map:

 Wasserstein GAN Arjovsky et al. [ICML 2017]
 WGAN-GP Gulrajani et al. [NeurIPS 2017] $\Re(x, y) = k(h_{\psi}(x), h_{\psi}(y))$ where $h_{\psi}(x)$ is a CNN map, k is e.g. an exponentiated quadratic kernel MMD Li et al., [NeurIPS 2017] Cramer Bellemare et al. [2017] Coulomb Unterthiner et al., [ICLR 2018] Demystifying MMD GANs Binkowski, Sutherland, Arbel, G., [ICLR 2018]

CNN features for IPM witness functions

- Add convolutional features!
- The critic (teacher) also needs to be trained.

- $\mathfrak{K}(x,y) = h_{\psi}^{ op}(x)h_{\psi}(y)$ where $h_{\psi}(x)$ is a CNN map:
- Wasserstein GAN Arjovsky et al. [ICML 2017]

 WGAN-GP Gulrajani et al. [NeurIPS 2017] $\Re(x, y) = k(h_{\psi}(x), h_{\psi}(y))$ where $h_{\psi}(x)$ is a CNN map, k is e.g. an exponentiated quadratic kernel MMD Li et al., [NeurIPS 2017] Cramer Bellemare et al. [2017] Coulomb Unterthiner et al., [ICLR 2018] Demystifying MMD GANs Binkowski, Sutherland, Arbel, G., [ICLR 2018]

Witness function, kernels on deep features

Reminder: witness function,

k(x, y) is exponentiated quadratic

Witness function, kernels on deep features

Reminder: witness function,

 $k(h_{\psi}(x), h_{\psi}(y))$ with nonlinear h_{ψ} and exp. quadratic k

Challenges for learned critic features

Learned critic features:

MMD with kernel $k(h_{\psi}(x), h_{\psi}(y))$ must give useful gradient to generator.

Challenges for learned critic features

Learned critic features:

MMD with kernel $k(h_{\psi}(x), h_{\psi}(y))$ must give useful gradient to generator.

Relation with test power?

If the MMD with kernel $k(h_{\psi}(x), h_{\psi}(y))$ gives a powerful test, will it be a good critic?

Challenges for learned critic features

Learned critic features:

MMD with kernel $k(h_{\psi}(x), h_{\psi}(y))$ must give useful gradient to generator.

Relation with test power?

If the MMD with kernel $k(h_{\psi}(x), h_{\psi}(y))$ gives a powerful test, will it be a good critic?

A simple 2-D example

Samples from target P and model Q

A simple 2-D example

Witness gradient, MMD with exp. quad. kernel k(x, y)

A simple 2-D example

What the kernels k(x, y) look like

New gradient regulariser Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]
 Also related to Sobolev GAN Mroueh et al. [ICLR 2018]

On gradient regularizers for MMD GANs

Michael Arbel Gatsby Computational Neuroscience Unit University College London michael.n.arbel@gmail.com

Mikołaj Bińkowski

Department of Mathematics Imperial College London mikbinkowski@gmail.com Dougal J. Sutherland Gatsby Computational Neuroscience Unit University College London dougal@gmail.com

Arthur Gretton

Gatsby Computational Neuroscience Unit University College London arthur.gretton@gmail.com

New gradient regulariser Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]
 Also related to Sobolev GAN Mroueh et al. [ICLR 2018]

Modified witness constraint:

$$\widetilde{MMD} := \sup_{\|f\|_{S} \leq 1} [\mathbb{E}_{P}f(X) - \mathbb{E}_{Q}f(Y)]$$

where

$$\left\|f\right\|_{S}^{2} = \left\|f\right\|_{L_{2}(P)}^{2} + \left\|\nabla f\right\|_{L_{2}(P)}^{2} + \lambda \left\|f\right\|_{k}^{2}$$

$$\begin{array}{c} \mathsf{L}_{2} \text{ norm} \\ \mathsf{control} \end{array}$$

$$\begin{array}{c} \mathsf{Gradient} \\ \mathsf{control} \end{array}$$

$$\begin{array}{c} \mathsf{RKHS} \\ \mathsf{smoothness} \end{array}$$

New gradient regulariser Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]
 Also related to Sobolev GAN Mroueh et al. [ICLR 2018]

Modified witness constraint:

$$\widetilde{MMD} := \sup_{\|\|f\|_{S} \leq 1} [\mathbb{E}_{P}f(X) - \mathbb{E}_{Q}f(Y)]$$

Problem: not computationally feasible: $O(n^3)$ per iteration.

New gradient regulariser Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]
 Also related to Sobolev GAN Mroueh et al. [ICLR 2018]

Modified witness constraint:

$$\widetilde{MMD} := \sup_{\|f\|_{S} \leq 1} [\mathbb{E}_{P}f(X) - \mathbb{E}_{Q}f(Y)]$$

Maximise scaled MMD over critic features:

$$SMMD(P, \lambda) = \sigma_{P, \lambda} MMD$$

where

$$\sigma^2_{P,\lambda} = \lambda + \int k(h_\psi(x),h_\psi(x)) dP(x) + \sum_{i=1}^d \int \partial_i \partial_{i+d} k(h_\psi(x),h_\psi(x)) \ dP(x)$$

Replace expensive constraint with cheap upper bound:

$$\|f\|_{S}^{2} \leq \sigma_{P,\lambda}^{-1} \|f\|_{k}^{2}$$

New gradient regulariser Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]
 Also related to Sobolev GAN Mroueh et al. [ICLR 2018]

Maximise scaled MMD over critic features:

$$SMMD(P, \lambda) = \sigma_{P, \lambda} \ MMD$$

where

$$\sigma^2_{P,\lambda} = \lambda + \int k(h_\psi(x),h_\psi(x)) dP(x) + \sum_{i=1}^d \int \partial_i \partial_{i+d} k(h_\psi(x),h_\psi(x)) \; dP(x)$$

Replace expensive constraint with cheap upper bound:

$$\|f\|_{S}^{2} \leq \sigma_{P,\lambda}^{-1} \|f\|_{k}^{2}$$

Idea: rather than regularise the critic or witness function, regularise features directly

Simple 2-D example revisited

Samples from target P and model Q

Use kernels $k(h_{\psi}(x), h_{\psi}(y))$ with features

$$h_\psi(x) = L_3\left(\left[egin{array}{c} x \ L_2(L_1(x)) \end{array}
ight]
ight)$$

where L_1, L_2, L_3 are fully connected with quadratic nonlinearity.

Simple 2-D example revisited

Witness gradient, maximise $SMMD(P, \lambda)$ to learn $h_{\psi}(x)$ for $k(h_{\psi}(x), h_{\psi}(y))$

vector field movie, use Acrobat Reader to play 44/62

Simple 2-D example revisited

What the kenels $k(h_{\psi}(x), h_{\psi}(y))$ look like

isolines movie, use Acrobat Reader to play

Data-adaptive critic loss:

• Witness function class for $SMMD(P, \lambda)$ depends on P.

- Without data-dependent regularisation, maximising MMD over features h_{ψ} of kernel $k(h_{\psi}(x), h_{\psi}(y))$ can be unhelpful.
- WGAN-GP is a pretty good data-dependent regularisation strategy
- Similar regularisation strategies apply to variational form in f-GANs

Roth et al [NeurIPS 2017, eq. 19 and 20]

Data-adaptive critic loss:

• Witness function class for $SMMD(P, \lambda)$ depends on P.

- Without data-dependent regularisation, maximising MMD over features h_{ψ} of kernel $k(h_{\psi}(x), h_{\psi}(y))$ can be unhelpful.
- WGAN-GP is a pretty good data-dependent regularisation strategy
- Similar regularisation strategies apply to variational form in f-GANs Roth et al [NeurIPS 2017, eq. 19 and 20]

Alternate critic and generator training:

- Weaker critics can give better signals to poor (early stage) generators.
- Incomplete training of the critic is also a regularisation strategy

Linear vs nonlinear kenels

■ Critic features from DCGAN: an *f*-filter critic has *f*, 2*f*, 4*f* and 8*f* convolutional filters in layers 1-4. LSUN 64 × 64.

 $k(h_{\psi}(x), h_{\psi}(y)), f = 64,$ KID=3

Linear vs nonlinear kenels

■ Critic features from DCGAN: an *f*-filter critic has *f*, 2*f*, 4*f* and 8*f* convolutional filters in layers 1-4. LSUN 64 × 64.

 $k(h_{\psi}(x), h_{\psi}(y)), f = 16,$ KID=9

 $h_{\psi}^{ op}(x)h_{\psi}(y), f = 16, ext{KID}=37$

The theory for MMD GANs

Scaled MMD vs Wasserstein-1 (NeurIPS 18)

Let $k_{\psi} = \mathbf{k} \circ \mathbf{h}_{\psi}$.

Wasserstein-1 bounds SMMD,

$$SMMD(P, Q) \leq rac{Q_k \kappa^L}{d_L lpha^L} \mathcal{W}(P, Q)$$

Conditions on the neural network layers:

- $h_{\psi}: \mathcal{X} \to \Re^s$ fully-connected *L*-layer network, Leaky-ReLU_{α} activations whose layers do not increase in width
- Width of ℓ th layer is d_{ℓ} .

κ is the bound on condition number of the weight matrices W^ℓ
Conditions on the kernel and gradient regulariser:

- k satisfying mild smoothness conditions, summarised in $Q_k < \infty$.
- μ is a probabilty measure with support over \mathcal{X} ,

$$\int k(x,x) d\mu(x) + \sum_{i=1}^d \int \partial_i \partial_{i+d} k(x,x) \,\, d\mu(x)$$

Scaled MMD vs Wasserstein-1 (NeurIPS 18)

Let $k_{\psi} = \mathbf{k} \circ \mathbf{h}_{\psi}$.

Wasserstein-1 bounds SMMD,

$$SMMD(P, \boldsymbol{Q}) \leq rac{\boldsymbol{Q}_k \kappa^L}{d_L lpha^L} \mathcal{W}(P, \boldsymbol{Q})$$

Conditions on the neural network layers:

- $h_{\psi}: \mathcal{X} \to \Re^s$ fully-connected *L*-layer network, Leaky-ReLU_{α} activations whose layers do not increase in width
- Width of ℓ th layer is d_{ℓ} .

κ is the bound on condition number of the weight matrices W^ℓ
 Conditions on the kernel and gradient regulariser:

- k satisfying mild smoothness conditions, summarised in $Q_k < \infty$.
- μ is a probability measure with support over \mathcal{X} ,

$$\int k(x,x)\,d\mu(x)+\sum_{i=1}^d\int \partial_i\partial_{i+d}k(x,x)\,\,d\mu(x)$$

Scaled MMD vs Wasserstein-1 (NeurIPS 18)

Let $k_{\psi} = \mathbf{k} \circ \mathbf{h}_{\psi}$.

Wasserstein-1 bounds SMMD,

$$SMMD(P, oldsymbol{Q}) \leq rac{oldsymbol{Q}_k \kappa^L}{d_L lpha^L} \mathcal{W}(P, oldsymbol{Q})$$

Conditions on the neural network layers:

- $h_{\psi}: \mathcal{X} \to \Re^s$ fully-connected *L*-layer network, Leaky-ReLU_{α} activations whose layers do not increase in width
- Width of ℓ th layer is d_{ℓ} .
- κ is the bound on condition number of the weight matrices W^ℓ
 Conditions on the kernel and gradient regulariser:
 - k satisfying mild smoothness conditions, summarised in $Q_k < \infty$.
 - μ is a probability measure with support over \mathcal{X} ,

$$\int k(x,x) d\mu(x) + \sum_{i=1}^d \int \partial_i \partial_{i+d} k(x,x) \,\, d\mu(x)$$

Unbiased gradients of MMD, WGAN-GP (ICLR 18)

Subject to mild conditions on

- Critic mappings h_{ψ} (conditions hold for almost all feedforward networks: convolutions, max pooling, ReLU,....)
- kernel k (a growth assumption)
- Target distribution P, generator network Y ~ G_θ(Z) (densities not needed, second moments must exist),
 - Then for μ -almost all ψ, θ where μ is Lebesgue,

$$\mathbf{E}_{\substack{X\sim P\ Z\sim R}}[\partial_{\psi, heta}k(h_\psi(X),h_\psi(G_ heta(Z)))]=\partial_{\psi, heta}\mathbf{E}_{\substack{X\sim P\ Z\sim R}}\left[k(h_\psi(X),h_\psi(G_ heta(Z)))
ight].$$

and thus MMD gradients unbiased. Also true for WGAN-GP.
Gradient bias when critic trained on a separate dataset? Recall definition of MMD for P vs Q

 $MMD(P,\, Q;F):= \sup_{\|f\|\leq 1} \left[\mathbf{E}_P f(X) - \mathbf{E}_Q f(Y)
ight]$

Define f_{tr} as discriminator witness trained on $\{x_i^{\text{tr}}\}_{i=1}^m \stackrel{\text{i.i.d.}}{\sim} P$, $y_i^{\text{tr}}\}_{i=1}^n \stackrel{\text{i.i.d.}}{\sim} Q$. Then

$\left[\mathbf{E}_{P} f_{tr}(X) - \mathbf{E}_{Q} f_{tr}(Y) ight] \leq MMD(P,Q;F)$

Downwards bias. Unless bias is in f_{tr} constant, biased gradients too. Same true for WGAN-GP.

Gradient bias when critic trained on a separate dataset? Recall definition of MMD for P vs Q

> $MMD(P, Q; F) := \sup_{\|f\| \le 1} [\mathbf{E}_P f(X) - \mathbf{E}_Q f(Y)]$ $(F = \text{unit ball in RKHS } \mathcal{F})$

Define f_{tr} as discriminator witness trained on $\{x_i^{\text{tr}}\}_{i=1}^m \stackrel{\text{i.i.d.}}{\sim} P$, $\{y_i^{\text{tr}}\}_{i=1}^n \stackrel{\text{i.i.d.}}{\sim} Q$. Then

$\left[\mathbf{E}_{P} f_{tr}(X) - \mathbf{E}_{Q} f_{tr}(Y) ight] \leq MMD(P,Q;F)$

Downwards bias. Unless bias is in f_{tr} constant, biased gradients too. Same true for WGAN-GP.

Gradient bias when critic trained on a separate dataset? Recall definition of MMD for P vs Q

> $MMD(P, \mathbf{Q}; F) := \sup_{\|f\| \leq 1} [\mathbf{E}_P f(X) - \mathbf{E}_{\mathbf{Q}} f(Y)]$ $(F = ext{unit ball in RKHS } \mathcal{F})$

Define f_{tr} as discriminator witness trained on $\{x_i^{tr}\}_{i=1}^m \stackrel{\text{i.i.d.}}{\sim} P$, $\{y_i^{tr}\}_{i=1}^n \stackrel{\text{i.i.d.}}{\sim} Q$. Then

$$[\mathbf{E}_P f_{tr}(X) - \mathbf{E}_Q f_{tr}(Y)] \leq MMD(P, Q; F)$$

Downwards bias. Unless bias is in f_{tr} constant, biased gradients too. Same true for WGAN-GP.

Population critic function f^*

Bias in MMD vs training minibatch size:

Evaluation and experiments

The inception score? Salimans et al. [NeurIPS 2016]

Based on the classification output p(y|x) of the inception model szegedy et al. [ICLR 2014],

```
E_X \exp KL(P(y|X) || P(y)).
```

High when:

- predictive label distribution P(y|x) has low entropy (good quality images)
- label entropy P(y) is high (good variety).

The inception score? Salimans et al. [NeurIPS 2016]

Based on the classification output p(y|x) of the inception model szegedy et al. [ICLR 2014],

```
E_X \exp KL(P(y|X) || P(y)).
```

High when:

- predictive label distribution P(y|x) has low entropy (good quality images)
- label entropy P(y) is high (good variety).

Problem: relies on a trained classifier! Can't be used on new categories (celeb, bedroom...)

The Frechet inception distance? Heusel et al. [NeurIPS 2017]

Fits Gaussians to features in the inception architecture (pool3 layer):

$$FID(P, \boldsymbol{Q}) = \left\| \mu_P - \mu_{\boldsymbol{Q}}
ight\|^2 + \mathrm{tr}(\Sigma_P) + \mathrm{tr}(\Sigma_{\boldsymbol{Q}}) - 2\mathrm{tr}\left((\Sigma_P \Sigma_{\boldsymbol{Q}})^{rac{1}{2}}
ight)$$

where μ_P and Σ_P are the feature mean and covariance of P

The Frechet inception distance? Heusel et al. [NeurIPS 2017]

Fits Gaussians to features in the inception architecture (pool3 layer):

$$FID(P, \boldsymbol{Q}) = \left\| \mu_P - \mu_{\boldsymbol{Q}} \right\|^2 + \mathrm{tr}(\Sigma_P) + \mathrm{tr}(\Sigma_{\boldsymbol{Q}}) - 2\mathrm{tr}\left((\Sigma_P \Sigma_{\boldsymbol{Q}})^{rac{1}{2}}
ight)$$

where μ_P and Σ_P are the feature mean and covariance of P

Problem: bias. For finite samples can consistently give incorrect answer.

 Bias demo, CIFAR-10 train vs test

The FID can give the wrong answer in theory.

Assume m samples from P and $n \to \infty$ samples from Q. Given two alternatives:

$${\pmb P}_1\sim \mathcal{N}(0,(1-m^{-1})^2) \qquad {\pmb P}_2\sim \mathcal{N}(0,1) \qquad {\pmb Q}\sim \mathcal{N}(0,1).$$

Clearly,

$$FID(P_1, Q) = \frac{1}{m^2} > FID(P_2, Q) = 0$$

Given m samples from P_1 and P_2 ,

 $FID(\widehat{P_1},Q) < FID(\widehat{P_2},Q).$

The FID can give the wrong answer in theory. Assume m samples from P and $n \to \infty$ samples from Q. Given two alternatives:

 $egin{aligned} P_1 \sim \mathcal{N}(0,(1-m^{-1})^2) & P_2 \sim \mathcal{N}(0,1) & Q \sim \mathcal{N}(0,1). \end{aligned}$

Clearly,

$$FID(P_1, Q) = rac{1}{m^2} > FID(P_2, Q) = 0$$

Given m samples from P_1 and P_2 ,

 $FID(\widehat{P_1}, Q) < FID(\widehat{P_2}, Q).$

The FID can give the wrong answer in theory. Assume m samples from P and $n \to \infty$ samples from Q. Given two alternatives:

 $oldsymbol{P}_1\sim\mathcal{N}(0,(1-m^{-1})^2) \qquad oldsymbol{P}_2\sim\mathcal{N}(0,1) \qquad oldsymbol{Q}\sim\mathcal{N}(0,1).$

Clearly,

$$FID(P_1, \boldsymbol{Q}) = \frac{1}{m^2} > FID(P_2, \boldsymbol{Q}) = 0$$

Given m samples from P_1 and P_2 ,

 $FID(\widehat{P_1}, \mathcal{Q}) < FID(\widehat{P_2}, \mathcal{Q}).$

The FID can give the wrong answer in theory. Assume m samples from P and $n \to \infty$ samples from Q. Given two alternatives:

 $oldsymbol{P}_1\sim\mathcal{N}(0,(1-m^{-1})^2) \qquad oldsymbol{P}_2\sim\mathcal{N}(0,1) \qquad oldsymbol{Q}\sim\mathcal{N}(0,1).$

Clearly,

$$FID(P_1, \boldsymbol{Q}) = \frac{1}{m^2} > FID(P_2, \boldsymbol{Q}) = 0$$

Given m samples from P_1 and P_2 ,

 $FID(\widehat{P}_1, Q) < FID(\widehat{P}_2, Q).$

The FID can give the wrong answer in practice.

Let d = 2048, and define

 $P_1 = \operatorname{relu}(\mathcal{N}(0, I_d))$ $P_2 = \operatorname{relu}(\mathcal{N}(1, .8\Sigma + .2I_d))$ $Q = \operatorname{relu}(\mathcal{N}(1, I_d))$ where $\Sigma = \frac{4}{d} CC^T$, with C a $d \times d$ matrix with iid standard normal entries.

For a random draw of C:

 $FID(P_1, Q) \approx 1123.0 > 1114.8 \approx FID(P_2, Q)$ With $m = 50\,000$ samples, $FID(\widehat{P_1}, Q) \approx 1133.7 < 1136.2 \approx FID(\widehat{P_2}, Q)$

At $m = 100\,000$ samples, the ordering of the estimates is correct. This behavior is similar for other random draws of C.

The FID can give the wrong answer in practice. Let d = 2048, and define

 $P_1 = \operatorname{relu}(\mathcal{N}(0, I_d))$ $P_2 = \operatorname{relu}(\mathcal{N}(1, .8\Sigma + .2I_d))$ $Q = \operatorname{relu}(\mathcal{N}(1, I_d))$ where $\Sigma = \frac{4}{d} CC^T$, with C a $d \times d$ matrix with iid standard normal entries.

For a random draw of C:

 $FID(P_1, Q) \approx 1123.0 > 1114.8 \approx FID(P_2, Q)$ With $m = 50\,000$ samples, $FID(\widehat{P_1}, Q) \approx 1133.7 < 1136.2 \approx FID(\widehat{P_2}, Q)$

At $m = 100\,000$ samples, the ordering of the estimates is correct. This behavior is similar for other random draws of C.

The FID can give the wrong answer in practice. Let d = 2048, and define

 $P_1 = \operatorname{relu}(\mathcal{N}(0, I_d))$ $P_2 = \operatorname{relu}(\mathcal{N}(1, .8\Sigma + .2I_d))$ $Q = \operatorname{relu}(\mathcal{N}(1, I_d))$ where $\Sigma = \frac{4}{d} CC^T$, with C a $d \times d$ matrix with iid standard normal entries.

For a random draw of C:

 $FID(P_1, Q) \approx 1123.0 > 1114.8 \approx FID(P_2, Q)$ With $m = 50\,000$ samples, $FID(\widehat{P_1}, Q) \approx 1133.7 < 1136.2 \approx FID(\widehat{P_2}, Q)$

At $m = 100\,000$ samples, the ordering of the estimates is correct. This behavior is similar for other random draws of C. ^{56/62}

The FID can give the wrong answer in practice. Let d = 2048, and define

 $P_1 = \operatorname{relu}(\mathcal{N}(0, I_d))$ $P_2 = \operatorname{relu}(\mathcal{N}(1, .8\Sigma + .2I_d))$ $Q = \operatorname{relu}(\mathcal{N}(1, I_d))$ where $\Sigma = \frac{4}{d} CC^T$, with C a $d \times d$ matrix with iid standard normal entries.

For a random draw of C:

 $FID(P_1, Q) \approx 1123.0 > 1114.8 \approx FID(P_2, Q)$

With $m = 50\,000$ samples,

 $FID(\widehat{P_1}, Q) \approx 1133.7 < 1136.2 \approx FID(\widehat{P_2}, Q)$

At $m = 100\,000$ samples, the ordering of the estimates is correct. This behavior is similar for other random draws of C.

The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018] Measures similarity of the samples' representations in the inception architecture (pool3 layer) MMD with kernel

 $k(x,y) = \left(rac{1}{d}x^ op y + 1
ight)^3.$

- Checks match for feature means, variances, skewness
- Unbiased : eg CIFAR-10 train/test

.

The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018] Measures similarity of the samples' representations in the inception architecture (pool3 layer)

MMD with kernel

$$k(x,y) = \left(rac{1}{d}x^ op y + 1
ight)^3$$

 Checks match for feature means, variances, skewness

Unbiased : eg CIFAR-10 train/test

..."but isn't KID is computationally costly?"

The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018] Measures similarity of the samples' representations in the inception architecture (pool3 layer) MMD with kernel

$$k(x,y) = \left(rac{1}{d}x^ op y + 1
ight)^3.$$

 Checks match for feature means, variances, skewness
 Unbiased : eg CIFAR-10 train/test

..."but isn't KID is computationally costly?"

"Block" KID implementation is cheaper than FID: see paper (or use Tensorflow implementation)!

The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018] Measures similarity of the samples' representations in the inception architecture (pool3 layer) MMD with kernel

$$k(x,y) = \left(rac{1}{d}x^ op y + 1
ight)^3.$$

 Checks match for feature means, variances, skewness
 Unbiased : eg CIFAR-10 train/test

Also used for automatic learning rate adjustment: if $KID(\hat{P}_{t+1}, Q)$ not significantly better than $KID(\hat{P}_t, Q)$ then reduce learning rate. [Bounliphone et al. ICLR 2016]

Related: "An empirical study on evaluation metrics of generative adversarial networks", Xu et al. afxiv June 2018]

Benchmarks for comparison (all from ICLR 2018)

SPECTRAL NORMALIZATION FOR GENERATIVE ADVERSARIAL NETWORKS

Takeru Miyato¹, Toshiki Kataoka¹, Masanori Koyama², Yuichi Yoshida³

{miyato, kataoka}@preferred.jp oyama masanori@gmail.com i.ac.jp works, Inc. 2 Ritsumeikan University 3 National Institute of Informatics

MMD DEMYSTIFYING MMD GANS

Mikołaj Bińkowski*

Ne

combine with scaled

Department of Mathematics Imperial College London mikbinkowski@gmail.com

Dougal J. Sutherland, Michael Arbel & Arthur Gretton

Gatsby Computational Neuroscience Unit College London ,michael.n.arbel,arthur.gretton)@gmail.com

SOBOLEV GAN

Youssef Mroueh[†], Chun-Liang Li^{o,*}, Tom Sercu^{†,*}, Anant Raj^{0,*} & Yu Cheng[†] † IBM Research AI o Carnegie Mellon University O Max Planck Institute for Intelligent Systems * denotes Equal Contribution {mrouch, chengyu}@us.ibm.com, chunlial@cs.cmu.edu, tom.sercul@ibm.com,anant.raj@tuebingen.mpg.de

BOUNDARY-SEEKING GENERATIVE ADVERSARIAL NETWORKS

R Devon Hielm* MILA, University of Montréal, IVADO erroneus@gmail.com

Tong Che MILA, University of Montréal tong.che@umontreal.ca

Kyunghyun Cho New York University, CIFAR Azrieli Global Scholar kyunghyun.cho@nyu.edu Athul Paul Jacob* MILA, MSR, University of Waterloo apjacob@edu.uwaterloo.ca

Adam Trischler MCD adam.trischler@microsoft.com

Voshua Rengio MILA, University of Montréal, CIFAR, IVADO voshua.bengio@umontreal.ca

Results: unconditional imagenet 64×64

KID scores:

- BGAN: 47
- SN-GAN: 44

SMMD GAN: 35

ILSVRC2012 (ImageNet) dataset, 1 281 167 images, resized to 64 \times 64. 1000 classes.

Results: unconditional imagenet 64×64

KID scores:

BGAN:
 47

SN-GAN:
44
SMMD GAN:

35

ILSVRC2012 (ImageNet) dataset, 1 281 167 images, resized to 64 \times 64. 1000 classes.

Results: unconditional imagenet 64×64

KID scores:

BGAN:

47

SN-GAN: 44

SMMD GAN: 35

ILSVRC2012 (ImageNet) dataset, 1 281 167 images, resized to 64 \times 64. 1000 classes.

Summary

GAN critics rely on two sources of regularisation

- Regularisation by incomplete training
- Data-dependent gradient regulariser
- Some advantages of hybrid kernel/neural features:
 - MMD loss still a valid critic when features not optimal (unlike WGAN-GP)
 - Kernel features do some of the "work", so simpler h_{ψ} features possible.

"Demystifying MMD GANs," including KID score, ICLR 2018: https://github.com/mbinkowski/MMD-GAN

Gradient regularised MMD, NeurIPS 2018:

https://github.com/MichaelArbel/Scaled-MMD-GAN

Post-credit scene: MMD flow

From NeurIPS 2019:

Maximum Mean Discrepancy Gradient Flow

Michael Arbel Gatsby Computational Neuroscience Unit University College London michael.n.arbel@gmail.com

> Adil Salim Visual Computing Center KAUST adil.salim@kaust.edu.sa

Anna Korba Gatsby Computational Neuroscience Unit University College London a.korba@ucl.ac.uk

Arthur Gretton Gatsby Computational Neuroscience Unit University College London arthur.gretton@gmail.com

