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A motivation: comparing two samples

m Given: Samples from unknown distributions P and Q.
m Goal: do P and @ differ?
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Training implicit generative models

m Have: One collection of samples X from unknown distribution P.
m Goal: generate samples @ that look like P

LSUN bedroom samples P Generated @, MMD GAN
Using a critic D(P, Q) to train a GAN
(Binkowski, Sutherland, Arbel, G., ICLR 2018), - 3/62

(Arbel. Sutherland. Binkowski. G.. NeurIPS 2018)



Outline

m Measures of distance between distributions
The MMD: an integral probability metric
f-divergences vs integral probability metrics

m Gradient penalties for GAN critics
The optimisation viewpoint
The regularisation viewpoint

m Theory
Relation of MMD critic and Wasserstein
Gradient bias

m Evaluating GAN performance, experiments
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The Maximum Mean Discrepancy:
An Integral Probability Metric



Integral probability metrics

Are P and @ different?

Samples from P and Q
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Integral probability metrics

Are P and @ different?
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Integral probability metrics

Integral probability metric:

Find a "well behaved function" f(z) to maximize

Epf(X) - Eqf(Y)

Smooth function
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Integral probability metrics

Integral probability metric:

Find a "well behaved function" f(z) to maximize

Epf(X) - Eqf(Y)

Smooth function
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The MMD: an integral probability metric

Maximum mean discrepancy: smooth function for P vs @

MMD(P, Q; F) := \|§1|\1<pl [Epf(X) —Eqf(Y)]
(F = unit b;ll in RKHS F)
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The MMD: an integral probability metric

Maximum mean discrepancy: smooth function for P vs @

MMD(P, Q; F) := H?ngl [Epf(X) —Eqf(

(F = unit ball in RKHS F)

Yl

Functions are linear combinations of features:

bt
fo
f(@) = (f oz ]:—ZféSOE =1 /3

2
IfIF =2, /% <1




Infinitely many features using kernels

Kernels: dot products
of features

Feature map ¢(z) € F,

p(z)=[..0iz).. ] €L

For positive definite k,

k(z,2') = (p(z), o(z'))

Infinitely many features
o(z), dot product in
closed form!
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Infinitely many features using kernels

Kernels: dot products
of features

Feature map ¢(z) € F,

olz)=1[..0i(z)..] €L

For positive definite k,

k(z,2') = (p(z), o(z'))

Infinitely many features
o(z), dot product in
closed form!

Exponentiated quadratic kernel

k(z,2') = exp (—v |z — 2'||%)

AN
—~J ;
(@) = | ZONN_
pa(z) |~
e

Features: Gaussian Processes for Machine learning, Ras-
mussen and Williams, Ch. 4. 11/62




The MMD: an integral probability metric

Maximum mean discrepancy: smooth function for P vs @

MMD(P, Q; F) := chhlgl [Epf(X) —Eqf(Y)]

(F = unit ball in RKHS F)

For characteristic RKHS 7, MMD(P,Q; F)=0iff P = Q

Other choices for witness function class:

Bounded continuous [pudiey, 2002]
Bounded varation 1 (Kolmogorov metric) puiter, 1997)

Lipschitz (Wasserstein distances) [pudiey, 2002

Energy distance j.S a Special CaSE€ [Sejdinovic, Sriperumbudur, G. Fukumizu, 201%
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The MMD: an integral probability metric

Maximum mean discrepancy: smooth function for P vs @

MMD(P, Q; F) := chhlgl [Epf(X) —Eqf(Y)]
(F = unit b;ll in RKHS F)

Expectations of functions are linear combinations
of expected features

Ep(f(X)) = (/,Epp(X))r = (f1P) 5

(always true if kernel is bounded)
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Integral prob. metric vs feature mean difference

The MMD:

Smooth function

MMD(P, Q; F)

= sup [Epf(X)—Eqf(Y)]
[IFI<1

0 0.2 0.4 0.6 0.8 1
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Integral prob. metric vs feature mean difference

The MMD:
use

MMD(P, Q; F)

= sup [Epf(X)—Egf(Y)]
HES!

= sup (f,up — KQ)r
[IFI<1

Epf(X) = (upr, )5
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Integral prob. metric vs feature mean difference

The MMD:

MMD(P, Q; F)

= sup [Epf(X)—Eqf(Y)]
[IFI<1

= sup (f,up — LQ)r
[IFI<1
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Integral prob. metric vs feature mean difference

The MMD: o
\ D
x) 9
MMD(P, Q; F) D&“o v
= sup [Epf(X) —Eqf(Y)] f
[IFI<1

= sup (f,up — LQ)r
[IFI<1
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Integral prob. metric vs feature mean difference

The MMD:
Q
N
<oV <
MMD(P, Q; F) Do\‘ )
= sup [Epf(X)—Eqf(Y)]
IFlI<1 (o
= sup (f,pp — KQ)F
IFlI<1
* up — hQ

T lur el e



Integral prob. metric vs feature mean difference

The MMD:

MMD(P, Q; F)

= sup [Epf(X)—Eqf(Y)]
[IFI<1

= sup (f,up — HQ)r
lI711<1

= |lup - pall

IPM view equivalent to feature mean
difference (kernel case only)
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Construction of MMD witness

Construction of empirical witness function (proof: next slide!)

Observe X = {xy,...,X,} ~ P

Yt~ @
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Construction of MMD witness

Construction of empirical witness function (proof: next slide!)
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Construction of MMD witness

Construction of empirical witness function (proof: next slide!)
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Construction of MMD witness

Construction of empirical witness function (proof: next slide!)

witness(v)
—————
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Derivation of empirical witness function

Recall the witness function expression

ffocpp —pg
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Derivation of empirical witness function

Recall the witness function expression

ffocpp —pg

The empirical feature mean for P

S\I—\

n
> ()
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Derivation of empirical witness function
Recall the witness function expression

ffocpp —pg

The empirical feature mean for P

§\l—\

n
> ()

The empirical witness function at v

()=o) #
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Derivation of empirical witness function
Recall the witness function expression

ffocpp —pg

The empirical feature mean for P
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Derivation of empirical witness function
Recall the witness function expression

ffocpp —pg

The empirical feature mean for P

S\l—\
||M:
3:3

1=1 1=1

Don’t need explicit feature coefficients f* := [ 5
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Interlude: divergence measures
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Divergences
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Divergences

tesr! prob. Metrig,,

Dy (P,Q)
= sup |[Ex.pg(X) —Ey.qg(Y)|
gEH
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Divergences

tesr! prob. Metrig,,

wasserstein

Dy (P,Q)
= sup |[Ex.pg(X) —Ey.qg(Y)|
gEH
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Divergences

sesr prob. Metrig,

wasserstein

Dy (P,Q)
= sup |[Ex.pg(X) —Ey.qg(Y)|
gEH
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Divergences

¢tesra| pI'Ob. met’.'-q’

wasserstein

Dy (P,Q)
= sup |[Ex.pg(X) —Ey.qg(Y)|
gEH

Sriperumbudur, Fukumizu, G, Schoelkopf, Lanckriet (2012)
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Training Generative Adversarial
Networks: Critics and Gradient
Penalties



Visual notation: GAN setting
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Visual notation: GAN setting

feed back

?iif

‘1 ‘,

£ =

23/62



What I won’t cover: the generator

Stride 2

Project and reshape

CONV 2

CONV 3 64

CONV 4 .
G(2)

Radford, Metz, Chintala, ICLR 2016

24/62



F-divergence as critic

P~

An unhelpful critic? Jensen-Shannon,
Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017]

Dys(P, Q) = $Dxr (10, %) + 3 Dgy (q, 1‘%”)

Djs(P, Q) =log2
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An unhelpful critic? Jensen-Shannon,
Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017]
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F-divergence as critic

- An unhelpful critic? Jensen-Shannon,
Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017]

Dys(P, Q) = $Dxr (10, %) + 3 Dgy (q, 1‘%”)

What is done in practice?
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F-divergence as critic

An unhelpful critic? Jensen-Shannon,
Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017]

D;s(P, Q) = 3Dxr (P, %) + 3 Dgy (q, 1’%")

What is done in practice?
m Use a variational approximation to the critic, alternate generator and

critic training (we will return to this!) Goodfellow et al. [NeurIPS 2014,
Nowozin et al. [NeurIPS 2016]
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F-divergence as critic

- An unhelpful critic? Jensen-Shannon,
Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017]

Dys(P, Q) = $Dxr (10, %) + 3 Dgy (q, 1’7*’1>

What is done in practice?

m Use a variational approximation to the critic, alternate generator and
critic training (we will return to this!) Goodfellow et al. [NeurIPS 2014,

Nowozin et al. [NeurIPS 2016]
m Add “instance noise” to the reference and generator observations
Sonderby et al. [arXiv 2016], Arjovsky and Bottou [ICLR 2017]

25/62



F-divergence as critic

An unhelpful critic? Jensen-Shannon,
Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017]

D;s(P, Q) = 3Dxr (P, %) + 3 Dgy (q, 1’%")

What is done in practice?

m Use a variational approximation to the critic, alternate generator and
critic training (we will return to this!) Goodfellow et al. [NeurIPS 2014,
Nowozin et al. [NeurIPS 2016]

m Add “instance noise” to the reference and generator observations
Sonderby et al. [arXiv 2016], Arjovsky and Bottou [ICLR 2017]

e ...or (approx. equivalently) a data-dependent gradient penalty for the
variational critic (we will return to this!) Roth et al [NeurIPS 2017],
Nagarajan and Kolter [NeurIPS 2017], Mescheder et al. [ICML 2018]
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Wasserstein distance as critic

. A helpful critic witness:
@// Wi(P, Q) = sups),<1 Brf(X) — Bof(Y).
1]z := supyy 1F(2) — F(¥)| /llz — 9l
W1=0.88
o ome L& L4, .4

Santambrogio, Optimal Transport for Applied Mathematicians (2015, Section 5.4)
G Peyré, M Cuturi, Computational Optimal Transport (2019)
M. Cuturi, J. Solomon, NeurIPS tutorial (2017)

26/62



Wasserstein distance as critic

. A helpful critic witness:
@// Wi(P, Q) = sups),<1 Brf(X) — Bof(Y).
1]z := supyy 1F(2) — F(¥)| /llz — 9l
W1=0.65
o oo L X X 24

Santambrogio, Optimal Transport for Applied Mathematicians (2015, Section 5.4)
G Peyré, M Cuturi, Computational Optimal Transport (2019)
M. Cuturi, J. Solomon, NeurIPS tutorial (2017)
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MMD as critic

> A helpful critic witness:
MMD(P, Q) = supy.<1 Brf(X) — Eqf(Y).
MMD=1.8

Real
points
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MMD as critic

pea A helpful critic witness:
MMD(P, Q) = sup|s.<1 Erf(X) — Bqf(Y)
MMD=1.1

o 00 \ ¥ W
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MMD as critic

An unhelpful critic witness:
MMD(P, Q) with a narrow kernel.

MMD=0.64




MMD as critic

An unhelpful critic witness:
MMD(P, Q) with a narrow kernel.

MMD=0.64

o 0@ \ ¥ W
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f-divergences (¢ — divergences)



The ¢-divergences

Define the ¢-divergence(f-divergence):

Du(P, @)= [4(55) dQ:/qs(fq”Eg) o(z)dz

where ¢ is convex, lower-semicontinuous, ¢(1) = 0.
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The ¢-divergences

Define the ¢-divergence(f-divergence):

Du(P, @)= [4(55) dQ:/qs(fq”Eg) o(z)dz

where ¢ is convex, lower-semicontinuous, ¢(1) = 0.

] #(z) = —log(z) gives reverse KL divergence,
_ 9(z)
Dgr(Q, P) = /log (p(m)) q(z)dz
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How do ¢-divergences behave?

P~

Simple example: disjoint support, revisited.
Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017]

Dgr(Q, P) = o0 Djs(P, Q) =log2

1
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30,62



How do ¢-divergences behave?

P~

Simple example: disjoint support, revisited.
Goodfellow et al. (NeurIPS 2014), Arjovsky and Bottou [ICLR 2017]

Dgr(Q, P) = o0 Djs(P, Q) =log2
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¢-divergences in practice

the Fenchel dual
m Conjugate (fenchel) dual:

¢"(v) = sup {wv — $(u)}.

ueR

v is slope of ¢
u is the argument of ¢ where it has slope v.

8¢*(v) =u

¢*(v) is the negative of the intercept of the line with slope v, tangent

to ¢(u) at u.
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¢-divergences in practice
the Fenchel dual
m Conjugate (fenchel) dual:
¢*(v) = sup {uv — ¢(u)}.

ueR

v is slope of ¢
u is the argument of ¢ where it has slope v.

0¢*(v) =u
¢*(v) is the negative of the intercept of the line with slope v, tangent

to ¢(u) at u.

m For a convex l.s.c. ¢ we have

¢™*(v) = ¢(v) = sup{wv — ¢*(u)}

ueR
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¢-divergences in practice

the Fenchel dual
m Conjugate (fenchel) dual:

¢*(v) = sup {wv — ¢(u)}.

ueR

v is slope of ¢
u is the argument of ¢ where it has slope v.

0¢*(v) =u

¢*(v) is the negative of the intercept of the line with slope v, tangent
to ¢(u) at u.

—1—-logv v<O0

00 v2>0

B(u) = —log(u)  ¢*(v) = {
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A variational lower bound

How to compute ¢-divergences in practice:

Dy(P, Q) = [ a(2)p (%) dz

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010);
Nowozin, Cseke, Tomioka, NeurIPS (2016)
32/62



A variational lower bound

How to compute ¢-divergences in practice:

Dy(P, Q) Z/q(z)qb (zgz;) dz

i pa),
= [ atereun (L5 7~000) #"(u) is dual of §(u).

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010);
Nowozin, Cseke, Tomioka, NeurIPS (2016)
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A variational lower bound

How to compute ¢-divergences in practice:

Dy(P, Q) Z/q(z)qb (%) dz
= [ @) (257 - 00)

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010);
Nowozin, Cseke, Tomioka, NeurIPS (2016)
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A variational lower bound

How to compute ¢-divergences in practice:

Dy(P, @) = [ at)s (2]

~ [ a)se (’;j #0))
>supEpf( ) — Eq¢* (f(Y))

(restrict the function class)

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010);

Nowozin, Cseke, Tomioka, NeurIPS (2016)
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A variational lower bound

How to compute ¢-divergences in practice:

Dy(P, ©) = / ()¢(p8) az
yaup (2537 - (1)
)-

>SupEPf( Eq¢* (f(Y))

(restrict the function class)

Optimum f,;” has property

p(2) oo - p(z)
P = o) = f —a¢(q(z)).

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010);

Nowozin, Cseke, Tomioka, NeurIPS (2016) 32/63



¢-divergences in practice

Case of the reverse KL

Dx(Q,P) = [ a(aytog (7)) a

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010);

33/62
Nowozin, Cseke, Tomioka, NeurIPS (2016) /



¢-divergences in practice

Case of the reverse KL,

Dkir(Q, P) Z/Q(Z)log (%) dz
> e Epf(X)+ Eglog(—/(Y))+1
’ ~¢*(F(Y))

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010);

Nowozin, Cseke, Tomioka, NeurIPS (2016)
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¢-divergences in practice

Case of the reverse KL,

Dkir(Q, P) = / z)log ( ) dz Bound tight when:
> sup Epf(X)+Eglog(—f(Y))+1 f@(z):_Q(z)
f<0,feH p(2)
3
2,
21}
2
20
8
a-ir
—P
2}|—a
——log ratio q/p
%s 2 4 0 1 2 3

X
Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010); 33/62

Nowozin, Cseke, Tomioka, NeurIPS (2016)



¢-divergences in practice

Case of the reverse KL,

Dis(@, P) = [ a(2) 1og( )dz
7

iid.
> sup Epf(X)+Eqlog(~f(Y))+ w P
F<0,feEH iid.
Y~ Q
X~ sup — z)+ — log(— +1
f<0,feH n; ' Z

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010); 33,/62
Nowozin, Cseke, Tomioka, NeurIPS (2016)



¢-divergences in practice

Case of

Dxs(0, P) = / o(2) log (ZE‘ZD dz

> sup Epf(X)+Eglog(—f(Y))+1
f<0,fcH

This is a

KL
Approximate
Lower-bound

Estimator.
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¢-divergences in practice
Case of

Dxs(0, P) = / o(2) log (ZEE;) dz

> sup Epf(X)+Eglog(—f(Y))+1
f<0,fcH

= flw) + Y log(—(v:)

]:1 1=1

~ sup
f<0,feH

This is a
K

H =
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¢-divergences in practice

Case of the reverse KL,

Dis(@, P) = [ a(2) 1og( )dz
7

> sup Epf(X)+Eglog(—f(¥))+

f<0,fEH

X~ sup — z)+ — log(— +1
f<0,feH n]zzl ' Z

The KALE divergence

Nguyen, Wainwright, Jordan, IEEE Transactions on Information Theory (2010);
Nowozin, Cseke, Tomioka, NeurIPS (2016)
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How does the KALE divergence behave?

KALE(Q,P)= sup Epf(X)+ Eglog(—f(Y))+1

P f<0,feH
@J f=—exp(w,¢(z))x

|w||% penalized :

34/62



How does the KALE divergence behave?

KALE(Q,P)= sup Epf(X)+ Eglog(—f(Y))+1

P f<0,feH
@J f=—exp(w,¢(z))x

|w||% penalized : KALE smoothie
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How does the KALE divergence behave?

KALE(Q,P)= sup Epf(X)+ Eglog(—f(Y))+1

s f<0,feH
@J f = —exp (w, ¢(a))

|w||% penalized : KALE smoothie
KALE(Q, P)=0.18
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How does the KALE divergence behave?

KALE(Q,P)= sup Epf(X)+ Eglog(—f(Y))+1

s f<0,feH
@J f = —exp (w, ¢(a))

|w||% penalized : KALE smoothie
KALE(Q, P)=0.12

34/62
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The KALE smoothie and “mode collapse”

m Two Gaussians with same means, different variance

——observed | |
—target

0 0.2 0.4 0.6 0.8 1
KL

 wedecolape’

Example thanks to M. Arbel and M. Rosca
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Gradient penalty:
the regularisation viewpoint



MMD for GAN critic

Can you use MMD as a critic to train GANs?
From ICML 2015:

Generative Moment Matching Networks

Yujia Li! YUJIALI@CS.TORONTO.EDU
Kevin Swersky' KSWERSKY @CS.TORONTO.EDU
Richard Zemel'? ZEMEL@CS.TORONTO.EDU

! Department of Computer Science, University of Toronto, Toronto, ON, CANADA
2Canadian Institute for Advanced Research, Toronto, ON, CANADA

From UAI 2015:

Training generative neural networks via Maximum Mean Discrepancy

optimization
Gintare Karolina Dziugaite Daniel M. Roy Zoubin Ghahramani
University of Cambridge University of Toronto University of Cambridge

37,62



MMD for GAN critic

Can you use MMD as a critic to train GANs?

7|02/

HEFICFEIE
MAnRIEE

Need better image features.
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CNN features for IPM witness functions

m Add convolutional features!
m The critic (teacher) also needs to be trained.

o B @ X M
e =Rt

A=z, y) = hy T (2)hy(y) R(z,y) = k(hy(z), hy(y))
where hy(z) is a CNN map: where hy(z) is a CNN map,
k ise.g. an exponentiated quadratic
m Wasserstein GAN Arjovsky kernel
et al. [ICML 2017] MMD Li et al., [NeurIPS 2017]
B WGAN-GP CGulrajani et al. Cramer Bellemare et al. [2017]
[NeurIPS 2017] Coulomb Unterthiner et al., [[CLR 2018

Demystifying MMD GANs Binkowski,
Sutherland, Arbel, G., [ICLR 2018] /62



CNN features for IPM witness functions

m Add convolutional features!
m The critic (teacher) also needs to be trained.

= WY
£ 22

A=z, y) = hy T (2)hy(y) A(z,y) = k(hy(z), hy(y))
where hy(z) is a CNN map: where hy(z) is a CNN map,
m Wasserstein GAN Arjovsky et al. | k£ is e.g. an exponentiated quadratic
[ICML 2017] kernel
m WGAN-GP Gulrajani et al. MMD Li et al., [NeurIPS 2017]
[NeurIPS 2017 Cramer Bellemare et al. [2017]

Coulomb Unterthiner et al., [[CLR 2018
Demystifying MMD GANS Binkoyski
Sutherland, Arbel, G., [ICLR 2018]
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Witness function, kernels on deep features

Reminder: witness function,

k(z,y) is exponentiated quadratic
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Witness function, kernels on deep features

Reminder: witness function,
k(hy(z), hy(y)) with nonlinear 4y and exp. quadratic &

40/62



Challenges for learned critic features

Learned critic features:

MMD with kernel k(hy(z), hy(y)) must give useful gradient to
generator.

41/62



Challenges for learned critic features

Learned critic features:

MMD with kernel k(hy(z), hy(y)) must give useful gradient to
generator.

Relation with test power?

If the MMD with kernel k(hy(z), hy(y)) gives a powerful test, will it
be a good critic?
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Challenges for learned critic features

Learned critic features:

MMD with kernel k(hy(z), hy(y)) must give useful gradient to
generator.

Relation with test power?

If the MMD with kernel k(hy(z), hy(y)) gives a powerful test, will it
be a good critic?

Real
points
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A simple 2-D example

Samples from target P and model @

e target
« model
L]
° ¢ oo
° L ]
o O
L] ® L ] L]
L]
¢ ®ole ¢
%" ....'.', .
F XL o ¢
R . : ¢« ° .c‘o.
L]
L ] ° e
o%s °® bt ¢
L] L]
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A simple 2-D example

Witness gradient, MMD with exp. quad. kernel k(z, y)

MMD Gaussian

‘ N AL
iR
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A simple 2-D example

What the kernels k(z, y) look like

MMD Gaussian

® - . target
. « model
A s
. . .. ’
LU )
W) () ),
L oo ¢ hd .E
ot . 0 .
o .. o . :..
S N . 4 T
] 9 . J Lo
.' : o0
« v ° °
.
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A data-adaptive gradient penalty: NeurIPS 2018

m New gradient regulariser Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]
m Also related to Sobolev GAN Mroueh et al. [ICLR 2018]

On gradient regularizers for MMD GANs

Michael Arbel Dougal J. Sutherland
Gatsby Computational Neuroscience Unit Gatsby Computational Neuroscience Unit
University College London University College London
michael.n.arbel@gmail.com dougal@gmail.com
Mikotaj Bifikowski Arthur Gretton
Department of Mathematics Gatsby Computational Neuroscience Unit
Imperial College London University College London
mikbinkowski@gmail.com arthur.gretton@gmail.com
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A data-adaptive gradient penalty: NeurIPS 2018

m New gradient regulariser Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]
m Also related to Sobolev GAN Mroueh et al. [ICLR 2018]

Modified witness constraint:

WD = o[/ (X) ~ B/ (V)

where 9 5 5 9
IS = 1/ 1zypy + IV pgmy + AN
Zi0N 4 Zi0S

‘ L, norm Gradient RKHS

control control smoothness

————

Maximise MMD wrt critic features
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A data-adaptive gradient penalty: NeurIPS 2018

m New gradient regulariser Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]
m Also related to Sobolev GAN Mroueh et al. [ICLR 2018]

Modified witness constraint:

MMD := sup [Epf(X)—Eof(V)]
17 <1

Problem: not computationally feasible: O(n?®) per iteration.
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A data-adaptive gradient penalty: NeurIPS 2018

m New gradient regulariser Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]
m Also related to Sobolev GAN Mroueh et al. [ICLR 2018]

Modified witness constraint:

WD = o[/ (X) ~ B/ (V)

Maximise scaled MMD over critic features:
SMMD(P,\) =opx MMD

where
d

obn =t [ E(hy(a), (@) dP(@) Y, [ 08iak(hy(2), 1)) dP(a)
=1

Replace expensive constraint with cheap upper bound:

2 ~1 2
1715 < opp lIfIT
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A data-adaptive gradient penalty: NeurIPS 2018

m New gradient regulariser Arbel, Sutherland, Binkowski, G. [NeurIPS 2018]
m Also related to Sobolev GAN Mroueh et al. [ICLR 2018]

Maximise scaled MMD over critic features:
SMMD(P,\) =o0px MMD

where
d

obp =Nt [ E(hy(@), (@) dP(@)+Y, [ 08iak(hy(2), 1)) dP(a)
1=1

Replace expensive constraint with cheap upper bound:

2 ~1 2
1715 < opy IIfIT%

Idea: rather than regularise the critic or witness function, regularise
features directly
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Simple 2-D example revisited

Samples from target P and model @

e target
e model
0
0 ¢ o0
" .
° .
. . . .
.
N (% 1 ¢
%" ....'.', .
F XL LI
Y S B
{ ¢ ¢« ° oge
(] L [ ° o
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0 - oo
e ®e °® . ¢
0 .
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Simple 2-D example revisited
Use kernels k(hy(z), hy(y)) with features

() = Ls ([ Lo D

where Ly, Ly, L3 are fully connected with quadratic nonlinearity.
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Simple 2-D example revisited

Witness gradient, maximise SMMD(P, A)
to learn hy(z) for k(hy(z), hy(y))

vector field movie, use Acrobat Reader to play  44/62



Simple 2-D example revisited

What the kenels %(hy(z), hy(y)) look like

isolines movie, use Acrobat Reader to play
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Our empirical observations

Data-adaptive critic loss:
m Witness function class for SMMD(P, ) depends on P.

Without data-dependent regularisation, maximising MMD over
features hy of kernel k(hy(z), hy(y)) can be unhelpful.
WGAN-GP is a pretty good data-dependent regularisation strategy

m Similar regularisation strategies apply to variational form in f-GANs
Roth et al [NeurIPS 2017, eq. 19 and 20]
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Our empirical observations

Data-adaptive critic loss:
m Witness function class for SMMD(P, ) depends on P.

Without data-dependent regularisation, maximising MMD over
features hy of kernel k(hy(z), hy(y)) can be unhelpful.
WGAN-GP is a pretty good data-dependent regularisation strategy

m Similar regularisation strategies apply to variational form in f-GANs
Roth et al [NeurIPS 2017, eq. 19 and 20]

Alternate critic and generator training:

m Weaker critics can give better signals to poor (early stage) generators.
m Incomplete training of the critic is also a regularisation strategy
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Linear vs nonlinear kenels

m Critic features from DCGAN: an f-filter critic has f, 2f, 4f and 8f
convolutional filters in layers 1-4. LSUN 64 x 64.

hy T(2)hy(y), f = 64, KID=4
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Linear vs nonlinear kenels

m Critic features from DCGAN: an f-filter critic has f, 2f, 4f and 8f
convolutional filters in layers 1-4. LSUN 64 x 64.

hy T(2)hy(y), f = 16, KID=37
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The theory for MMD GANs



Scaled MMD vs Wasserstein-1 (NeurIPS 18)

Let ky = ko hy.
Wasserstein-1 bounds SMMD,

Qk KL

SMMD(P <
( ? Q) — dLaL

wW(P, Q)
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Scaled MMD vs Wasserstein-1 (NeurIPS 18)

Let ky = ko hy.
Wasserstein-1 bounds SMMD,

L

K
WP, Q)

SMMD(P, Q) <

m Conditions on the neural network layers:
hy : X — R° fully-connected L-layer network, Leaky-ReLU,

activations whose layers do not increase in width
Width of £th layer is d,.

% is the bound on condition number of the weight matrices W*
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Scaled MMD vs Wasserstein-1 (NeurIPS 18)

Let ky = ko hy.
Wasserstein-1 bounds SMMD,

L

K
WP, Q)

SMMD(P, Q) <

m Conditions on the neural network layers:
hy : X — R° fully-connected L-layer network, Leaky-ReLU,
activations whose layers do not increase in width
Width of £th layer is d,.
% is the bound on condition number of the weight matrices W*
m Conditions on the and gradient regulariser:
satisfying mild smoothness conditions, summarised in < 00.
1 is a probabilty measure with support over X,

d
/k(w,x)du(x) +Z/6i6i+dk(:p,x) du(z)
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Unbiased gradients of MMD, WGAN-GP (ICLR 18)

Subject to mild conditions on

m Critic mappings h,¢ (conditions hold for almost all feedforward networks:
convolutions, max pooling, ReLU,....)

m kernel k (a growth assumption)

m Target distribution P, generator network Y ~ Gy(Z) (densities not

needed, second moments must exist),

Then for p-almost all ¢/, 8 where u is Lebesgue,

Exp [04,5k(h(X), h( Go(2)))] = 0y.sBg . [k(hy(X), iy Go( Z)]

and thus MMD gradients unbiased.
Also true for WGAN-GP.
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Bias of MMD GAN critic (ICLR 18)

Gradient bias when critic trained on a separate dataset?
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Bias of MMD GAN critic (ICLR 18)

Gradient bias when critic trained on a separate dataset?
Recall definition of MMD for P vs @

MMD(P, Q; F) := H?‘hlgl [Epf(X) —Eqf(Y)]
(F' = unit ball in RKHS F)
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Bias of MMD GAN critic (ICLR 18)

Gradient bias when critic trained on a separate dataset?
Recall definition of MMD for P vs @

MMD(P, Q; F) := S [Epf(X) —Eqf(Y)]

(F' = unit ball in RKHS F)
Define f, as discriminator witness trained on {mfr}lil
iid.
{y;r}?:l R Q-
Then

iid.
~ _P’

[Epfu(X) —Eqfw(Y)] < MMD(P, Q; F)

Downwards bias. Unless bias is in f. constant, biased gradients too.
Same true for WGAN-GP.
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Bias of MMD GAN critic (ICLR 18)

Training minibatch critic function f;,

Trained witness function ftr
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Bias of MMD GAN critic (ICLR 18)

Population critic function f*

Population witness function f

e
[T N
T
s

o
o

Prob. density and f(x)
2R o

o
o
T

I

o
, ©
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Bias of MMD GAN critic (ICLR 18)

Bias in MMD vs training minibatch size:

o
PN
o

MMD estimate
o
o
()]

o
o
S

10*

10"

Ntrain
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Evaluation and experiments
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Evaluation of GANs

The inception score? satimans et al. [NeurIPS 2016]

Based on the classification output p(y|z) of the inception model szcqeay

et al. [ICLR 2014],

Ex exp KL(P(y|X)||P(y)).
High when:

m predictive label distribution P(y|z) has low entropy (good quality
images)

m label entropy P(y) is high (good variety).
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Evaluation of GANs

The inception score? satimans et al. [NeurIPS 2016]

Based on the classification output p(y|z) of the inception model s:ezeay

et al. [ICLR 2014],

Ex exp KL(P(y|X)[|P(y))-
High when:

m predictive label distribution P(y|z) has low entropy (good quality
images)

m label entropy P(y) is high (good variety).

Problem: relies on a trained classifier! Can’t be used on new
categories (celeb, bedroom...)
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Evaluation of GANs

The Frechet inception distance? meusel et al. [NeurIPs 2017]

Fits Gaussians to features in the inception architecture (pool3 layer):

FID(P, Q) = |[up — pol® + tx(Tp) + t2(3q) — 2tr (BpS0)?)

where up and X p are the feature mean and covariance of P
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Evaluation of GANs

The Frechet inception distance? meusel et al. [NeurIPs 2017]

Fits Gaussians to features in the inception architecture (pool3 layer):

FID(P, Q) = |[up — pol® + tx(Tp) + t2(3q) — 2tr (BpS0)?)

where up and X p are the feature mean and covariance of P

50
Problem: bias. For

. 40
finite samples can

consistently give 30

FID

incorrect answer. 20

m Bias demo,
CIFAR-10 train vs

0
test 0 2000 4000 6000 8000 10000

n
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Evaluation of GANs

The FID can give the wrong answer in theory.
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Evaluation of GANs

The FID can give the wrong answer in theory.
Assume m samples from P and n — oo samples from Q.

Given two alternatives:

P~ N(O,(1 - m™1)?) Py~ N(0,1) Q ~ N(0,1).
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Evaluation of GANs

The FID can give the wrong answer in theory.
Assume m samples from P and n — oo samples from Q.

Given two alternatives:

P~ N(O,(1 - m™1)?) Py~ N(0,1) Q ~ N(0,1).

Clearly,

FID(Py, Q) = —; > FID(P;, Q) = 0
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Evaluation of GANs

The FID can give the wrong answer in theory.
Assume m samples from P and n — oo samples from Q.

Given two alternatives:

P~ N(O,(1 - m™1)?) Py~ N(0,1) Q ~ N(0,1).

Clearly,
1
FID(Py, Q) = 2 > FID(P,, Q) =0

Given m samples from P; and P,,

FID(Pi, Q) < FID(P;, Q).
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Evaluation of GANs

The FID can give the wrong answer in practice.
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Evaluation of GANs

The FID can give the wrong answer in practice.
Let d = 2048, and define

Py =relu(N(0, I3)) P, =relu(N(1,.88+.21;)) Q =relu(WN(1, 1))

where & = %CCT, with C a d x d matrix with iid standard normal
entries.
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Evaluation of GANs

The FID can give the wrong answer in practice.
Let d = 2048, and define

Py =relu(N(0, I3)) P, =relu(N(1,.88+.21;)) Q =relu(WN(1, 1))

where & = %CCT, with C a d x d matrix with iid standard normal

entries.

For a random draw of C':

FID(Py, Q) ~ 1123.0 > 1114.8 & FID(Ps, Q)
With m = 50000 samples,
FID(P;, Q) ~ 1133.7 < 1136.2 & FID(P, Q)
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Evaluation of GANs

The FID can give the wrong answer in practice.
Let d = 2048, and define

Py =relu(N(0, I3)) P, =relu(N(1,.88+.21;)) Q =relu(WN(1, 1))

where & = %C’CT, with C a d x d matrix with iid standard normal

entries.

For a random draw of C':

FID(Py, Q) ~ 1123.0 > 1114.8 & FID(Ps, Q)
With m = 50000 samples,
FID(P;, Q) ~ 1133.7 < 1136.2 & FID(P, Q)

At m = 100000 samples, the ordering of the estimates is correct.

This behavior is similar for other random draws of C. 56/62



The kernel inception distance (KID)

The Kernel inception distance Binkowski, Sutherland, Arbel, G. [[CLR 2018]

Measures similarity of the samples’ representations in the inception

architecture (pool3 layer)
MMD with kernel

1 3
k(z,y) = (mey + 1) .
m Checks match for feature
means, variances, skewness

m Unbiased : eg CIFAR-10
train/test

[a]

0.004
0.003
0.002
0.001

< 0.000 3

-0.001
-0.002
-0.003

0 250 500 750
n

1000 1250 1500 1750 2000
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The kernel inception distance (KID)

The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018]
Measures similarity of the samples’ representations in the inception
architecture (pool3 layer)

MMD with kernel 0.004

0.003

1 3 0.002
k(z,y) = (da:Ty + 1) . o0

m Checks match for feature 0.000

means, variances, skewness

-0.001

-0.002
m Unbiased : eg CIFAR-10 -0.003

tra]_n/test 0 250 500 750 12;)0 1250 1500 1750 2000

.but isn’t KID is computationally costly?”
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The kernel inception distance (KID)

The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018]

Measures similarity of the samples’ representations in the inception
architecture (pool3 layer)
MMD with kernel 0.004
0.003
k(z,y) = 1 + 1 3 0.002
' Y) = ((j:E y+ ) ) 0.001

m Checks match for feature 0.000

means, variances, skewness

-0.001
-0.002

m Unbiased : eg CIFAR-10 -0.003

traln/test 0 250 500 750 1(1:)0 1250 1500 1750 2000

.“but isn’t KID is computationally costly?”

“Block” KID implementation is cheaper than FID: see paper

(or use Tensorflow implementation)!
57/62



The kernel inception distance (KID)

The Kernel inception distance Binkowski, Sutherland, Arbel, G. [ICLR 2018]

Measures similarity of the samples’ representations in the inception
architecture (pool3 layer)
MMD with kernel 0.004

0.003

1 3 0.002
k(z,y) = (dacTy + l) . oo

m Checks match for feature 0.000

i -0.001
means, variances, skewness

-0.002

m Unbiased : eg CIFAR-10 -0.003

traln/test 0 250 500 750 1(1:)0 1250 1500 1750 2000

Also used for automatic learning rate adjustment: if KID(ﬁtJrl, Q)
not significantly better than KID(]Bt, @) then reduce learning rate.
[Bounliphone et al. ICLR 2016]

7/62
Related: “An empirical study on evaluation metrics of generative adversarial networks”, Xu et al. ﬁa/xiv,
June 2018]



Benchmarks for comparison (all from ICLR 2018)
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Results: unconditional imagenet 64 x 64

KID scores:

m BGAN:
47

m SN-GAN:
44

m SMMD GAN:
35

ILSVRC2012 (ImageNet)
dataset, 1 281 167 images,
resized to 64 x 64. 1000
classes.
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Results: unconditional imagenet 64 x64

KID scores:

m BGAN:
47

m SN-GAN:
44

m SMMD GAN:
35

ILSVRC2012 (ImageNet)
dataset, 1 281 167 images,
resized to 64 x 64. 1000
classes.




Summary

m GAN critics rely on two sources of regularisation

Regularisation by incomplete training
Data-dependent gradient regulariser

m Some advantages of hybrid kernel/neural features:

MMD loss still a valid critic when features not optimal (unlike
WGAN-GP)
Kernel features do some of the “work”, so simpler hy features possible.

“Demystifying MMD GANSs,” including KID score, ICLR 2018:
https://github.com/mbinkowski/MMD-GAN

Gradient regularised MMD, NeurIPS 2018:
https://github.com/MichaelArbel/Scaled-MMD-GAN
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Post-credit scene: MMD flow

From NeurIPS 2019:

Maximum Mean Discrepancy Gradient Flow

Michael Arbel Anna Korba

Gatsby Computational Neuroscience Unit Gatsby Computational Neuroscience Unit

University College London University College London
michael.n.arbel@gmail.com a.korba@ucl.ac.uk
Adil Salim Arthur Gretton

Visual Computing Center Gatsby Computational Neuroscience Unit

KAUST University College London
adil.salim@kaust.edu.sa arthur.gretton@gmail.com
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Questions?
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