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A motivation: comparing two samples

Given: Samples from unknown distributions P and Q .

Goal: do P and Q differ?
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A real-life example: two-sample tests
Goal: do P and Q differ?

CIFAR 10 samples Cifar 10.1 samples

Significant difference?
G,Borgwardt, Rasch, Schoelkopf, Smola. A kernel two-sample test. JMLR 2012.
Feng, Xu, Lu, Zhang, G., Sutherland. Learning Deep Kernels for Non-Parametric
Two-Sample Tests. ICML 2020 3/51



A second task: dependence testing
Given: Samples from a distribution PXY

Goal: Are X and Y independent?

Their	noses	guide	them	
through	life,	and	they're	
never	happier	than	when	
following	an	interesting	scent.	

A	large	animal	who	slings	slobber,	
exudes	a	distinctive	houndy odor,	
and	wants	nothing	more	than	to	
follow	his	nose.	

Text	from	dogtime.com and	petfinder.com

A responsive,		interactive	
pet,	one	that	will	blow	in	
your	ear	and	follow	you	
everywhere.

YX

G., Fukumizu, Teo, Song, Schoelkopf, Smola. A Kernel Statistical Test of Independence.
NeurIPS 2007
Chwialkopski, G. A kernel independence test for random processes. ICML 2023
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A third task: model comparison
Have: two candidate models P and Q , and samples fxigni=1 from
reference distribution R
Goal: which of P and Q is better?

P : two components Q : ten components
Kanagawa, Jitkrittum, Mackey, Fukumizu, G., A Kernel Stein Test for comparing Latent
Variable Models. JRSS B 2023.
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Most interesting models have latent structure
Graphical model representation of hierarchical LDA with a nested
CRP prior, Blei et al. (2003)
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Figure 1: (a) The paths of four tourists through the infinite tree of Chinese restaurants (L =
3). The solid lines connect each restaurant to the restaurants referred to by its tables. The
collected paths of the four tourists describe a particular subtree of the underlying infinite
tree. This illustrates a sample from the state space of the posterior nested CRP of Figure 1b
for four documents. (b) The graphical model representation of hierarchical LDA with a
nested CRP prior. We have separated the nested Chinese restaurant process from the topics.
Each of the infinite β’s corresponds to one of the restaurants.

to one of the L available topics. All other variables in the model—θ and β—are integrated
out. The Gibbs sampler thus assesses the values of zm,n and cm,ℓ.
Conceptually, we divide the Gibbs sampler into two parts. First, given the current state
of the CRP, we sample the zm,n variables of the underlying LDA model following the
algorithm developed in [12], which we do not reproduce here. Second, given the values of
the LDA hidden variables, we sample the cm,ℓ variables which are associated with the CRP
prior. The conditional distribution for cm, the L topics associated with documentm, is:

p(cm |w, c−m, z) ∝ p(wm | c,w−m, z)p(cm | c−m),

where w−m and c−m denote the w and c variables for all documents other than m. This
expression is an instance of Bayes’ rule with p(wm | c,w−m, z) as the likelihood of the data
given a particular choice of cm and p(cm | c−m) as the prior on cm implied by the nested
CRP. The likelihood is obtained by integrating over the parameters β, which gives:

p(wm | c,w−m, z) =
L∏

ℓ=1

(
Γ(n

(·)
cm,ℓ,−m + Wη)

∏
w Γ(n

(w)
cm,ℓ,−m + η)

∏
w Γ(n

(w)
cm,ℓ,−m + n

(w)
cm,ℓ,m + η)

Γ(n
(·)
cm,ℓ,−m + n

(·)
cm,ℓ,m + Wη)

)
,

where n
(w)
cm,ℓ,−m is the number of instances of word w that have been assigned to the topic

indexed by cm,ℓ, not including those in the current document, W is the total vocabulary
size, and Γ(·) denotes the standard gamma function. When c contains a previously unvisited
restaurant, n(w)

cm,ℓ,−m is zero.

Note that the cm must be drawn as a block. The set of possible values for cm corresponds
to the union of the set of existing paths through the tree, equal to the number of leaves,
with the set of possible novel paths, equal to the number of internal nodes. This set can be
enumerated and scored using Eq. (1) and the definition of a nested CRP in Section 2.2.
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Outline

Maximum Mean Discrepancy (MMD)...
� ...as a difference in feature means
� ...as an integral probability metric (not just a technicality!)

A statistical test based on the MMD
� learn adaptive NN features
� learn interpretable features with maximium testing power
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The MMD
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Feature mean difference

Simple example: 2 Gaussians with different means

Answer: t-test
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Feature mean difference

Two Gaussians with same means, different variance

Idea: look at difference in means of features of the RVs

In Gaussian case: second order features of form '(x ) = x 2
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Feature mean difference

Two Gaussians with same means, different variance

Idea: look at difference in means of features of the RVs

In Gaussian case: second order features of form '(x ) = x 2
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Feature mean difference

Gaussian and Laplace distributions

Same mean and same variance

Difference in means using higher order features...RKHS
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Infinitely many features using kernels

Kernels: dot products of
features

Feature map '(x ) 2 F ,

'(x ) = [: : : 'i (x ) : : :] 2 `2

For positive definite k ,

k(x ; x 0) = h'(x ); '(x 0)iF

Infinitely many features
'(x ), dot product in
closed form!

Exponentiated quadratic kernel

k(x ; x 0) = exp
(
� kx � x 0k2

)

Features: Gaussian Processes for Machine learning, Ras-
mussen and Williams, Ch. 4. 12/51



Infinitely many features of distributions

Given P a Borel probability measure on X , define feature map of
probability P ,

�P = [: : :EP ['i (X )] : : :]

For positive definite k(x ; x 0),

h�P ; �QiF = EP ;Qk(x ; y)

for x � P and y � Q .

Fine print: feature map '(x) must be Bochner integrable for all probability measures considered.
Always true if kernel bounded.
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The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature
means:

MMD2(P ;Q) = k�P � �Qk2
F

= h�P � �Q ; �P � �QiF

= h�P ; �P iF + h�Q ; �QiF � 2 h�P ; �QiF
= EPk(X ;X 0)︸ ︷︷ ︸

(a)

+ EQk(Y ;Y 0)︸ ︷︷ ︸
(a)

� 2EP ;Qk(X ;Y )︸ ︷︷ ︸
(b)

(a)= within distrib. similarity, (b)= cross-distrib. similarity.
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Illustration of MMD

Dogs (= P) and fish (= Q) example revisited

Each entry is one of k(dogi ;dogj ), k(dogi ;fishj ), or k(fishi ;fishj )
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Illustration of MMD
The maximum mean discrepancy:

\MMD
2
=

1
n(n � 1)

∑

i 6=j

k(dogi ;dogj ) +
1

n(n � 1)

∑

i 6=j

k(fishi ;fishj )

�

2
n2

∑

i ;j

k(dogi ;fishj )
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MMD as an integral probability metric
Integral probability metric:
Find a "well behaved function" f (x ) to maximize

EP f (X )� EQ f (Y )
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MMD as an integral probability metric
Maximum mean discrepancy: smooth function for P vs Q

MMD(P ;Q ;F ) := sup
kf k

F
�1

[EP f (X )� EQ f (Y )]

(F = unit ball in RKHS F)
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MMD as an integral probability metric
Maximum mean discrepancy: smooth function for P vs Q

MMD(P ;Q ;F ) := sup
kf k

F
�1

[EP f (X )� EQ f (Y )]

(F = unit ball in RKHS F)

Functions are linear combinations of features:

kf k2
F :=

∑1
i=1 fi 2 � 1
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MMD as an integral probability metric
Maximum mean discrepancy: smooth function for P vs Q

MMD(P ;Q ;F ) := sup
kf k

F
�1

[EP f (X )� EQ f (Y )]

(F = unit ball in RKHS F)

For characteristic RKHS F , MMD(P ;Q ;F ) = 0 iff P = Q

Other choices for witness function class:

Bounded continuous [Dudley, 2002]

Bounded varation 1 (Kolmogorov metric) [Müller, 1997]

Bounded Lipschitz (Wasserstein distances) [Dudley, 2002]
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MMD as an integral probability metric
Maximum mean discrepancy: smooth function for P vs Q

MMD(P ;Q ;F ) := sup
kf k

F
�1

[EP f (X )� EQ f (Y )]

(F = unit ball in RKHS F)

Expectations of functions are linear combinations of
expected features

EP (f (X )) = hf ;EP'(X )iF = hf ; �P iF

(always true if kernel is bounded)
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Integral prob. metric vs feature mean difference

The MMD:

MMD(P ;Q ;F )

= sup
kf k�1

[EP f (X )� EQ f (Y )]
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Integral prob. metric vs feature mean difference

The MMD:

MMD(P ;Q ;F )

= sup
kf k�1

[EP f (X )� EQ f (Y )]

= sup
kf k�1

hf ; �P � �QiF

use

EP f (X ) = h�P ; f iF

20/51



Integral prob. metric vs feature mean difference

The MMD:

MMD(P ;Q ;F )

= sup
kf k�1

[EP f (X )� EQ f (Y )]

= sup
kf k�1

hf ; �P � �QiF f

20/51



Integral prob. metric vs feature mean difference

The MMD:

MMD(P ;Q ;F )

= sup
kf k�1

[EP f (X )� EQ f (Y )]

= sup
kf k�1

hf ; �P � �QiF

f

20/51



Integral prob. metric vs feature mean difference

The MMD:

MMD(P ;Q ;F )

= sup
kf k�1

[EP f (X )� EQ f (Y )]

= sup
kf k�1

hf ; �P � �QiF

f*
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Integral prob. metric vs feature mean difference

The MMD:

MMD(P ;Q ;F )

= sup
kf k�1

[EP f (X )� EQ f (Y )]

= sup
kf k�1

hf ; �P � �QiF

= k�P � �QkF

IPM view equivalent to feature mean
difference (kernel case only)
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Two-Sample Testing with MMD
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A statistical test using MMD
The empirical MMD:

\MMD
2
=

1
n(n � 1)

∑

i 6=j

k(xi ; xj ) +
1

n(n � 1)

∑

i 6=j

k(yi ; yj )

�

2
n2

∑

i ;j

k(xi ; yj )

How does this help decide whether P = Q?

Perspective from statistical hypothesis testing:

Null hypothesis H0 when P = Q
� should see\MMD

2
“close to zero”.

Alternative hypothesis H1 when P 6= Q
� should see\MMD

2
“far from zero”

Want Threshold c� for\MMD
2
to get false positive rate �
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Asymptotics of\MMD
2
when P 6= Q

When P 6= Q , statistic is asymptotically normal,

\MMD
2 �MMD2(P ;Q)√

Vn(P ;Q)

D�! N (0; 1);

where variance Vn(P ;Q) = O
(
n�1) .
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Behaviour of\MMD
2
when P = Q

What happens when P and Q are the same?
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Asymptotics of\MMD
2
when P = Q

Where P = Q , statistic has asymptotic distribution

n\MMD
2 �

1∑

l=1

�l
[
z 2
l � 2

]

-2 0 2 4 6

0
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where

�i i (x 0) =
∫
X

~k(x ; x 0)︸ ︷︷ ︸
centred

 i (x )dP(x )

zl � N (0; 2) i:i:d:
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A statistical test

A summary of the asymptotics:
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A statistical test
Test construction: (G., Borgwardt, Rasch, Schoelkopf, and Smola, JMLR 2012)
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How do we get test threshold c�?
Original empirical MMD for dogs and fish:

\MMD
2
=

1
n(n � 1)

∑

i 6=j

k(xi ; xj )

+
1

n(n � 1)

∑

i 6=j

k(yi ; yj )

�

2
n2

∑

i ;j

k(xi ; yj )

k(xi, yj)k(xi, xj)

k(yi, yj)
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How do we get test threshold c�?

Permuted dog and fish samples (merdogs):
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How do we get test threshold c�?
Permuted dog and fish samples (merdogs):

\MMD
2
=

1
n(n � 1)

∑

i 6=j

k(~xi ; ~xj )

+
1

n(n � 1)

∑

i 6=j

k(~yi ;~yj )

�

2
n2

∑

i ;j

k(~xi ;~yj )

Permutation simulates
P = Q

k(x̃i, ỹj)k(x̃i, x̃j)

k(ỹi, ỹj)

28/51



How do we get test threshold c�?
Permuted dog and fish samples (merdogs):

Exact level � (upper bound
on false positive rate)
at finite n and number of
permutations
(when unpermuted statistic
included in pool)
Proposition 1, Schrab, Kim, Albert, Lau-

rent, Guedj, Gretton (2021), MMD Aggre-

gated Two-Sample Test, arXiv:2110.15073

k(x̃i, ỹj)k(x̃i, x̃j)

k(ỹi, ỹj)
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How to choose the best kernel:
optimising the kernel parameters
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Choosing a kernel for the test
Simple choice: exponentiated quadratic

k(x ; y) = exp

(
� 1
2�2 kx � yk2

)

Characteristic: for any �: for any P and Q , power ! 1 as n !1

But choice of � is very important for finite n . . .
. . . and some problems (e.g. images) might have no good choice for �
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Graphical illustration
Maximising test power same as minimizing false negatives
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Optimizing kernel for test power

The power of our test (Pr1 denotes probability under P 6= Q):

Pr1

(
n\MMD

2
> ĉ�

)
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Optimizing kernel for test power

The power of our test (Pr1 denotes probability under P 6= Q):

Pr1

(
n\MMD

2
> ĉ�

)

! �

(
MMD2(P ;Q)√

Vn(P ;Q)
� c�

n
√

Vn(P ;Q)

)

where

� is the CDF of the standard normal distribution.

ĉ� is an estimate of c� test threshold.
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Optimizing kernel for test power

The power of our test (Pr1 denotes probability under P 6= Q):

Pr1

(
n\MMD

2
> ĉ�

)

! �

(
MMD2(P ;Q)√

Vn(P ;Q)︸ ︷︷ ︸
O(n1=2)

� c�
n
√

Vn(P ;Q)︸ ︷︷ ︸
O(n�1=2)

)

For large n , second term negligible!
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Optimizing kernel for test power

The power of our test (Pr1 denotes probability under P 6= Q):

Pr1

(
n\MMD

2
> ĉ�

)

! �

(
MMD2(P ;Q)√

Vn(P ;Q)
� c�

n
√

Vn(P ;Q)

)

To maximize test power, maximize

MMD2(P ;Q)√
Vn(P ;Q)
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Data splitting

X � P Y � Q

Choose a kernel k

maximizing \MMD
2p

V̂n (P ;Q)

Use chosen k for MMD test
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Learning a kernel helps a lot
Kernel with deep learned features:
k�(x ; y) = [(1� �)�(��(x );��(y)) + �] q(x ; y)
� and q are Gaussian kernels

CIFAR-10 vs CIFAR-10.1, null rejected 75% of time
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Learning a kernel helps a lot
Kernel with deep learned features:
k�(x ; y) = [(1� �)�(��(x );��(y)) + �] q(x ; y)
� and q are Gaussian kernels

CIFAR-10 vs CIFAR-10.1, null rejected 75% of time

CIFAR-10 test set (Krizhevsky 2009)

X � P
CIFAR-10.1 (Recht+ ICML 2019)

Y � Q
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Learning a kernel helps a lot

Kernel with deep learned features:
k�(x ; y) = [(1� �)�(��(x );��(y)) + �] q(x ; y)
� and q are Gaussian kernels

CIFAR-10 vs CIFAR-10.1, null rejected 75% of time

ICML 2020
Code: https://github.com/fengliu90/DK-for-TST
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Adaptive testing without data splitting

In revision, JMLR
Code: https://github.com/antoninschrab/mmdagg-paper
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Interpretable test features
From the two collections

{ , , ; : : :g
and

{ , , ; : : :g;

produce a new point indicating where to look for the differences
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Interpretable test features

NeurIPS 2016
Code: https://github.com/wittawatj/interpretable-test
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Research support

Work supported by:

The Gatsby Charitable Foundation

Deepmind
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Questions?

A brief introduction to RKHS

Maximum Mean Discrepancy
(MMD)...
� ...as a difference in feature means
� ...as an integral probability metric

(not just a technicality!)

Statistical tests based on the MMD

39/51



Derivation of empirical witness function
Recall the witness function expression

f � / �P � �Q
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Derivation of empirical witness function
Recall the witness function expression

f � / �P � �Q

The empirical feature mean for P

�̂P :=
1
n

n∑

i=1

'(xi )

The empirical witness function at v

f �(v) = hf �; '(v)iF
/ h�̂P � �̂Q ; '(v)iF

=
1
n

n∑

i=1

k(xi ; v)�
1
n

n∑

i=1

k(yi ; v)

Don’t need explicit feature coefficients f � :=
[

f �1 f �2 : : :
]
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Interpretable test features
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Overview
From the two collections

{ , , ; : : :g
and

{ , , ; : : :g;

produce a new point indicating where to look for the differences
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Distinguishing Feature(s)

Where is the best location to observe the difference of P(x) and Q(y)?

P(x)

Q(y)

43/51



Maximum of the witness function?

P(x)

Q(y)

witness2(v)

witness2(v) only cares about the “signal”.
Not the “noise” (variability) at each feature.
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P(x)

Q(y)

witness2(v)

v�? v�?

witness2(v) only cares about the “signal”.
Not the “noise” (variability) at each feature. 44/51



Signal-to-noise of witness function maximizes power
Variance of v = variance of v from X + variance of v from Y.
ME Statistic: �̂n(v) := n witness2(v)

variance of v .

Best location is v� that maximizes �̂n .
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Signal-to-noise of witness function maximizes power

Variance of v = variance of v from X + variance of v from Y.
ME Statistic: �̂n(v) := n witness2(v)

variance of v .

v ¤

^̧
n(v)

Best location is v� that maximizes �̂n .
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Divergence measures
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Divergences
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Divergences
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The integral probability metrics

49/51



The �-divergences
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Divergences
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Divergences

Sriperumbudur, Fukumizu, G, Schoelkopf, Lanckriet, EJS (2012)
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