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A motivation: comparing two samples

m Given: Samples from unknown distributions P and Q.
m Goal: do P and @ differ?
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A real-life example: two-sample tests
m Goal: do P and @ differ?

CIFAR 10 samples Cifar 10.1 samples
Significant difference?

G,Borgwardt, Rasch, Schoelkopf, Smola. A kernel two-sample test. JMLR 2012.

Feng, Xu, Lu, Zhang, G., Sutherland. Learning Deep Kernels for Non-Parametric

Two-Sample Tests. ICML 2020 3/51



A second task: dependence testing

m Given: Samples from a distribution Pxy
X Y

A large animal who slings slobber,
exudes a distinctive houndy odor,
and wants nothing more than to
follow his nose.

) Their noses guide them
” ! through life, and they're
never happier than when
following an interesting scent.

A responsive, interactive
pet, one that will blow in
your ear and follow you
everywhere.

Text from dogtime.com and petfinder.com

G., Fukumizu, Teo, Song, Schoelkopf, Smola. A Kernel Statistical Test of Independence.
NeurIPS 2007

Chwialkopski, G. A kernel independence test for random processes. ICML 2023
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A third task: model comparison

m Have: two candidate models P and @, and samples {z;}7 ; from
reference distribution R
m Goal: which of P and @) is better?

Ry
15 v’x\\
ey
Yy 7 -
(oA
&gﬁ%

P : two components @ : ten components

Kanagawa, Jitkrittum, Mackey, Fukumizu, G., A Kernel Stein Test for comparing Latepg;
Variable Models. JRSS B 2023.



Most interesting models have latent structure

Graphical model representation of hierarchical LDA with a nested
CRP prior, Blei et al. (2003)
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m Maximum Mean Discrepancy (MMD)...

® ...as a difference in feature means
® ...as an integral probability metric (not just a technicality!)

m A statistical test based on the MMD

® learn adaptive NN features
® learn interpretable features with maximium testing power
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The MMD



Feature mean difference

m Simple example: 2 Gaussians with different means
m Answer: t-test

Two Gaussians with different means

Prob. density
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Feature mean difference

Prob. density

Two Gaussians with same means, different variance
Idea: look at difference in means of features of the RVs

In Gaussian case: second order features of form ¢(z) = z

Two Gaussians with different variances

2

10/51



Feature mean difference

Prob. density

Two Gaussians with different variances

Two Gaussians with same means, different variance

Idea: look at difference in means of features of the RVs

Densities of feature X2

In Gaussian case: second order features of form ¢(z) = z

2

Prob. density

x

<

o
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Feature mean difference

m Gaussian and Laplace distributions
m Same mean and same variance

m Difference in means using higher order features... RKHS

Gaussian and Laplace densities

0.7

o
)
T

Prob. density
o o o
L £ @

o
o
T

0.1F
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Infinitely many features using kernels

Kernels: dot products of
features

Feature map ¢(z) € F,

p(z)=1[..0iz).. ] €Ly

For positive definite k&,

k(z,z') = (p(z), o(z')) 7

Infinitely many features
¢(z), dot product in
closed form!

Exponentiated quadratic kernel

K(z,2') = exp (—llz - /|

p(z) =

p1() /\

-V

T

aVAE

pa(z) |~

—T

T

Features: Gaussian Processes for Machine learning, Ras-
mussen and Williams, Ch. 4.
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Infinitely many features of distributions

Given P a Borel probability measure on X, define feature map of
probability P,
pp = ... Belp(X)].. ]
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Infinitely many features of distributions

Given P a Borel probability measure on X, define feature map of
probability P,
pp = ... Belp(X)].. ]

For positive definite k(z, z’),

(pp,po)Fr = Ep,ok(z,y)

forz ~ Pand y ~ Q.

Fine print: feature map ¢(z) must be Bochner integrable for all probability measures considered.
Always true if kernel bounded.
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The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature
means:

MMD*(P, Q) = |lup — pollx
=(up — K@, bP — Q) F
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The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature
means:

MMD?*(P, Q) = |lup — pollx
=(up — K@, bP — Q) F
={up,kp)r+ (L0, LQ)F — 2(kP, LQ) £
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The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature
means:

MMD?*(P, Q) = |lup — poll%
= (kP — 1, bP — Q) 5

= BEpk(X,X') + Bok(Y, Y') — 2Ep ok(X, Y)

(2) (2) (b)

(a)= within distrib. similarity, (b)= cross-distrib. similarity.
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[Mustration of MMD

m Dogs (= P) and fish (= Q) example revisited
m Bach entry is one of k(dog,, dog;), k(dog;, fish;), or k(fish;, fish;)

Ll e
P -~

>

»?

-
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[Mustration of MMD

The maximum mean discrepancy:

—_—2
MMD Zn(n— Zk dog;,dog;) + (n—zk (fish;, fish;)
z;éj 1#]
- ﬁ > k(dog,, fish,)
]
LR
» < Ly

dog;, dog;;)

K(ish;. dog,) |

k(dog;, fish;)
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MMD as an integral probability metric

Integral probability metric:
Find a "well behaved function" f(z) to maximize

Epf(X)—Eqf(Y)

Smooth function
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MMD as an integral probability metric

Integral probability metric:
Find a "well behaved function" f(z) to maximize

Epf(X)—Eqf(Y)

Smooth function

0.5

-05 1
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MMD as an integral probability metric

Maximum mean discrepancy: smooth function for P vs @
MMD(P, Q; F) = sup [Epf(X)—Bof(Y)]

17l 7<1
(F = unit ball in RKHS F)
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MMD as an integral probability metric

Maximum mean discrepancy: smooth function for P vs @

MMD(P, Q; F) :=
171l 7<1

(F' = unit ball in RKHS F)

sup [Epf(X) - Eqf(Y)]

Functions are linear combinations of features:

bt

e fa
f@)=(fro@)r=>_ froelx)=| F,
(=1 .

2
1% = Z?ilfﬁ <1

19/51




MMD as an integral probability metric

Maximum mean discrepancy: smooth function for P vs @

MMD(P, Q; F) := S [Epf(X) —Eof(Y)]
(F' = unit ba_ll in RKHS F)

Witness f for Gauss and Laplace densities
0.8 : : : : :

e
0.6r = Gauss |
m— |_aplace

Prob. density and f

Xot
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MMD as an integral probability metric

Maximum mean discrepancy: smooth function for P vs @

MMD(P, Q; F) := S [Epf(X) —Eof(Y)]
(F' = unit ba_ll in RKHS F)

For characteristic RKHS F, MMD(P,Q; F)=0iff P = Q

Other choices for witness function class:

m Bounded continuous [pudiey, 2002]
m Bounded varation 1 (Kolmogorov metric) puiter, 1997)

m Bounded Lipschitz (Wasserstein distances) [pudiey, 2002]
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MMD as an integral probability metric

Maximum mean discrepancy: smooth function for P vs @

MMD(P, Q; F) := Hfsilup<1 [Epf(X) —Eqf(Y)]

(F = unit ball in RKHS F)

Expectations of functions are linear combinations of
expected features

Ep(f(X)) = (/,Ero(X))x = {f, kP) £

(always true if kernel is bounded)
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Integral prob. metric vs feature mean difference

The MMD:

MMD(P, Q; F)

= sup [Epf(X)—Eqf(Y)]
IIF11<1

Smooth function

0 0.2 0.4 0.6 0.8 1
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Integral prob. metric vs feature mean difference

The MMD:

use
MMD(P, Q; F)

— H?ng [Epf(X) - BEof(Y)] Epf(X) = (ur,f)r

= sup (f,pup — LQ)r
I7ll<1
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Integral prob. metric vs feature mean difference

The MMD:
\
&
MMD ; ~
(P7 Q’ F)
= sup [Epf(X)—-Eqf(Y)]
IIF1I<1

= sup (f,pup — LQ)r
I7lI<1
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Integral prob. metric vs feature mean difference

The MMD: / \}>Q‘
(.\\@a“ o
MMD(P, Q; F) > f
= sup [Epf(X)—-Eqf(Y)]
If[1<1

= sup (f,pup — LQ)r
I7lI<1
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Integral prob. metric vs feature mean difference

The MMD: / \)'OJ
MMD(P, Q; F) .
= sup [Epf(X)—Eqf(Y)] f*
IF1[<1
= sup (f,up — ko)
IFI<1
. P —Hg

~ lup — uoll

20/51



Integral prob. metric vs feature mean difference

The MMD:
MMD(P, Q; F)
= sup [Epf(X)—Eqf(Y)]
If1I<1
= sup (f,up — Q) x
IIF11<1
= |lup — poll£

IPM view equivalent to feature mean
difference (kernel case only)
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Two-Sample Testing with MMD



A statistical test using MMD
The empirical MMD:

—2
MMD =——— YCRY > k(i) Zk (v, 75)
z;éj 1-75]

4]

How does this help decide whether P = Q7
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A statistical test using MMD
The empirical MMD:

—_—2
MMD™ =———— YCRY > k(i)
z;ﬁj

4]

Perspective from statistical hypothesis testing:

m Null hypothesis Ho when P = Q

should see mz “close to zero”.
m Alternative hypothesis H; when P # Q

2
should see MMD “far from zero”

Zk (vi,¥5)

z;ﬁj
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A statistical test using MMD
The empirical MMD:

—_—2
MMD == S k(zi, ) Zk (v:,75)
z;éj 1-75]

4]

Perspective from statistical hypothesis testing:

m Null hypothesis Ho when P = Q

should see mz “close to zero”.
m Alternative hypothesis H; when P # Q

2
should see MMD “far from zero”

—2
Want Threshold ¢, for MMD to get false positive rate a
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— 2
Asymptotics of MMD when P # Q
When P # @, statistic is asymptotically normal,
MMD  — MMD?(P, Q) »p

— N(0,1),
3 _ -1
where variance V,(P, Q)= O (n7!) .
MMD density U_nder Hl Two Laplace distributions with different variances
1 -
15 T T . T T T —Px
I Erpirical PDF —%
e Giaussian fit =
5 ﬂg)
(= 5
= 2.,
X
e 6 4 2 0 2 4 6
. 05 X
e}
2
s}y
0

0 05 1 15 2 25 3 35
— 2
nx MMD
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—2
Behaviour of MMD when P = Q

What happens when P and @ are the same?
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—_— 2
Asymptotics of MMD when P = Q)

Where P = @, statistic has asymptotic distribution

o0
nl\m2 ~ Z Wy [zlz — 2]

=1
) where
MMD density under H,
‘ : ‘ Az ::u/p E(z, 2')i(2)dP(z
o | AE) = [ Hes)@)dPe)
™ ’ -Empirical PDF centred

Prob. of n x MM D
o
~

2 ~N(0,2) iid.

o
o

n x MID
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A statistical test

A summary of the asymptotics:

0.7 T

2

Prob. of n x MMD
& 2 &

o
n
T

0.1
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A statistical test

Test construction: (G., Borgwardt, Rasch, Schoelkopf, and Smola, JMLR 2012)

0.7 T
—P=Q
06 . — P ?é Q|
(2
Q o5 i
= 04| .
X
<
G 03F 8
a ¢ = 1 — a quantile when P = @
o
& oo2f 1
R~ false negatives
0.1
0
-2 1 0 1 2 3 4 5 6
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How do we get test threshold c,?
Original empirical MMD for dogs and fish:

X =[P ™ P ... ]
Y =2, M ... |
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How do we get test threshold c,?

Permuted dog and fish samples (merdogs):
X = [@) Tmi gyl ]

Y = [Paed ]
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How do we get test threshold c,?

Permuted dog and fish samples (merdogs):

= [ Mot I
MMD" = an =T Zk
1751
(n— 1 Z k(
17&1

- ﬁZk(i 7
]

Permutation simulates

P=Q

X =12 "matt ..
%

i

e Ll | Ll -l CEE B
rIII 11




How do we get test threshold c,?

Permuted dog and fish samples (merdogs):

X = [ mat ]
V= [l W]

Exact level a (upper bound
on false positive rate)

at finite 7 and number of
permutations

(when unpermuted statistic
included in pool)

Proposition 1, Schrab, Kim, Albert, Lau-
rent, Guedj, Gretton (2021), MMD Aggre-

gated Two-Sample Test, arXiv:2110.15073




How to choose the best kernel:
optimising the kernel parameters



Choosing a kernel for the test

m Simple choice: exponentiated quadratic

1
k(a,) = exp (o sle - ol

m Characteristic: for any o: for any P and @, power — 1 as n — o0
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Choosing a kernel for the test

m Simple choice: exponentiated quadratic

1
k(a,) = exp (o sle - ol

m Characteristic: for any o: for any P and @, power — 1 as n — o0
m But choice of ¢ is very important for finite n...
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Choosing a kernel for the test

m Simple choice: exponentiated quadratic
1 2
k(a,) = exp (o sle - ol

m Characteristic: for any o: for any P and @, power — 1 as n — o0
m But choice of ¢ is very important for finite n...

1

0.5

f(x)

-0.51
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Choosing a kernel for the test

m Simple choice: exponentiated quadratic
1 2
k(a,) = exp (o sle - ol

m Characteristic: for any o: for any P and @, power — 1 as n — o0
m But choice of ¢ is very important for finite n...

1

05
X o0 ®e = mans e

-0.51
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Choosing a kernel for the test

m Simple choice: exponentiated quadratic
1 2
k(a,) = exp (o sle - ol

m Characteristic: for any o: for any P and @, power — 1 as n — o0
m But choice of ¢ is very important for finite n...

1

0.5

f(x)

-0.51
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Choosing a kernel for the test

m Simple choice: exponentiated quadratic

1
k(a,) = exp (o sle - ol

m Characteristic: for any o: for any P and @, power — 1 as n — o0
m But choice of ¢ is very important for finite n...
® ...and some problems (e.g. images) might have no good choice for ¢
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Graphical illustration

® Maximising test power same as minimizing false negatives

0.7

0.6

2

Prob. of n x MMD
a 2 &

o
o

0.1

false negatives

—P=Q
—P+#Q

¢o = 1 — a quantile when P = @
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Optimizing kernel for test power

The power of our test (Pr; denotes probability under P # Q):

/\2
Pry (nMMD > aa>
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Optimizing kernel for test power

The power of our test (Pr; denotes probability under P # Q):

PI']_ <n1\m2 > &a>
s (MMD2(P, Q) c )

VVa(P, Q)  ny/Va(P,Q)

where

m ® is the CDF of the standard normal distribution.

m ¢, 1s an estimate of c, test threshold.
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Optimizing kernel for test power

The power of our test (Pr; denotes probability under P # Q):

Pr1 nMMD >ca>

MMD?(P, Q) Ca
\/ 2(P,Q) nJVu(P,Q)
1/2 O(nil/z)

For large n, second term negligible!
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Optimizing kernel for test power

The power of our test (Pr; denotes probability under P # Q):

Prq (nl\fl\-/IT:)2 > c":a>
2
s (MMD (P, Q) c )

VVa(P, Q) 1y Va(P,Q)

To maximize test power, maximize

MMD?(P, Q)
Vu(P, Q)
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Data splitting

Choose a kernel k

maximizing \/A%
Use chosen k& for MMD test

33/51



Learning a kernel helps a lot

Kernel with deep learned features:
ko(z,y) = [(1 — €)x(®s(z), Bo(y)) + €] a(z, y)
k and ¢ are Gaussian kernels
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Learning a kernel helps a lot

Kernel with deep learned features:
ko(z,y) = [(1 — €)x(®o(z), 26(y)) + €] o(z, y)
k and ¢ are Gaussian kernels
m CIFAR-10 vs CIFAR—lO 1 null rejected 75% of time

CIFAR-10 test set (Krizhevsky 2009)  CIFAR-10.1 (Recht+ ICML 2019)
X ~P Y ~Q
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Learning a kernel helps a lot

Kernel with deep learned features:
ke(z,y) = [(1 — €)rx(®o(z), Bo(y)) + €] a(z, y)
k and ¢ are Gaussian kernels

m CIFAR-10 vs CIFAR-10.1, null rejected 75% of time

arXiv.org > stat > arXiv:2002.09116

Statistics > Machine Learning
(Submitted on 21 Feb 2020}

Learning Deep Kernels for Non-Parametric Two-Sample Tests
Feng Liu, Wenkai Xu, Jie Lu, Guangquan Zhang, Arthur Gretton, D. J. Sutherland

ICML 2020
Code: https://github.com/fengliu90/DK-for-TST
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https://github.com/fengliu90/DK-for-TST

Adaptive testing without data splitting

=] I‘ (lV > stat > arXiv:2110.15073

Statistics > Machine Learning
[Submitted on 28 Oct 2021]

MMD Aggregated Two-Sample Test

Antonin Schrab, limun Kim, Mélisande Albert, Béatrice Laurent, Benjamin Guedj, Arthur Gretton

In revision, JMLR
Code: https://github.com/antoninschrab/mmdagg-paper
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https://github.com/antoninschrab/mmdagg-paper

Interpretable test features

From the two collections

() L

produce a new point indicating where to look for the differences
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Interpretable test features

From the two collections

EEE .. EEE

produce a new point indicating where to look for the differences
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Interpretable test features

ar <1V > stat > arXiv:1605.06796

Statistics > Machine Learning
[Submitted on 22 May 2016 (v1), last revised 28 Oct 2016 (this version, v2)]
Interpretable Distribution Features with Maximum Testing Power

Wittawat Jitkrittum, Zoltan Szabo, Kacper Chwialkowski, Arthur Gretton

NeurIPS 2016

Code: https://github.com/wittawatj/interpretable-test
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https://github.com/wittawatj/interpretable-test
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Questions?

m A brief introduction to RKHS

® Maximum Mean Discrepancy
(MMD)...

...as a difference in feature means
...as an integral probability metric
(not just a technicality!)

m Statistical tests based on the MMD
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Derivation of empirical witness function

Recall the witness function expression

frocpup — g
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Derivation of empirical witness function

Recall the witness function expression

frocpup — g
The empirical feature mean for P

_ 1<
bp = Py Z;SO(%‘)
1=
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Derivation of empirical witness function
Recall the witness function expression

fropp = po
The empirical feature mean for P
1 n
o= D)
1=

The empirical witness function at v

Fr(v) = e(v) £
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Derivation of empirical witness function
Recall the witness function expression

fropp = po
The empirical feature mean for P
1 n
o= D)
1=

The empirical witness function at v

F(v) = e(v)F
x (up — 1o, 9(v)) £
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Derivation of empirical witness function

Recall the witness function expression

frocpup — g
The empirical feature mean for P
1 n
hp = Z o(z:)
1=1
The empirical witness function at v

Fr(v) =" e(v) #
o (kp — 1o, 9(v)) 5

1 < 1 &
— n;k(mﬁv) — n;k(yi,v)

Don'’t need explicit feature coefficients f* := [ Vi Y

]
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Interpretable test features



Overview

From the two collections

() L

produce a new point indicating where to look for the differences
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Overview

From the two collections

{, .. and{g’,ﬁ,...},

produce a new point indicating where to look for the differences
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Distinguishing Feature(s)

Where is the best location to observe the difference of P(x) and Q(y)?

— Px)
— Q)
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Maximum of the witness function?

— Px)
— Qy)

—  witness?(v)
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Maximum of the witness function?

— M)

— QW)
—  witness?(v) ;

V!

A
+ 1

*
~
<
*
~
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Maximum of the witness function?

— M)

— QW)
—  witness?(v)
? v*7

m witness?(v) only cares about the “signal”.
m Not the “noise” (variability) at each feature.

*
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Signal-to-noise of witness function maximizes power

m Variance of v = variance of'v frzqm X + variance of v from Y.
m ME Statistic: A, (v) := y, Witness®(v)

variance of v °
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Signal-to-noise of witness function maximizes power

m Variance of v = variance of v from X 4+ variance of v from Y.
m ME Statistic: A,(v) := p itness®(v).

variance of v°

—  witness?(v)

[ variance of v

45/51



Signal-to-noise of witness function maximizes power

m Variance of v = variance of v from X + variance of v from Y.
m ME Statistic: A, (v) := ntizess(v)

variance of v°

- >A‘n (V)

A
/ \

m Best location is v* that maximizes 5\n.
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Divergence measures
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Divergences
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Divergences

\oxegﬁ‘ prob. metriq’

DH(P7 Q)

= sup |[Ex~pg(X) — Ey~qg(Y)|
geEH
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The integral probability metrics

\O‘egrd prob. Metrj

wasserstein

DH(P7 Q)

= sup |[Ex~pg(X) — Ey~qg(Y)|
geEH
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The ¢-divergences

Hellinger
KL

Dy(P,Q)
- [ o (B2 o

Pearson chi?

50/51



Divergences

\o‘eg'd prob. metrie, &,d'\vergenceo

wasserstein Hellinger

KL

Dy(P,Q)
- /X a(@)¢ (%) dz

Pearson chi?

D’H(P7 Q)

= sup |[Ex~pg(X) — Ey~qg(Y)|
geEH
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Divergences

\‘\‘egrd prob. metl’iq'\ &,d‘wergencem

wasserstein

Hellinger
KL

D’H(P7 Q)

= sup [Ex~pg(X) — Eyqg(Y)
gEH

Dy(P,Q)

oo (55) o

Pearson chi?

MMD

Sriperumbudur, Fukumizu, G, Schoelkopf, Lanckriet, EJS (2012)
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