Kernel Methods for Two-Sample and Goodness-Of-Fit Testing

Arthur Gretton

Gatsby Computational Neuroscience Unit, University College London

PHYSTAT, 2023

A motivation: comparing two samples

- Given: Samples from unknown distributions P and Q.
- Goal: do P and Q differ?

A real-life example: two-sample tests

\square Goal: do P and Q differ?

CIFAR 10 samples

Cifar 10.1 samples

Significant difference?

G,Borgwardt, Rasch, Schoelkopf, Smola. A kernel two-sample test. JMLR 2012.
Feng, Xu, Lu, Zhang, G., Sutherland. Learning Deep Kernels for Non-Parametric Two-Sample Tests. ICML 2020

A second task: dependence testing

■ Given: Samples from a distribution $P_{X Y}$

G., Fukumizu, Teo, Song, Schoelkopf, Smola. A Kernel Statistical Test of Independence.

NeurIPS 2007
Chwialkopski, G. A kernel independence test for random processes. ICML 2023

A third task: model comparison

■ Have: two candidate models P and Q, and samples $\left\{x_{i}\right\}_{i=1}^{n}$ from reference distribution R

- Goal: which of P and Q is better?

P : two components
Q : ten components
Kanagawa, Jitkrittum, Mackey, Fukumizu, G., A Kernel Stein Test for comparing Lateq崜 Variable Models. JRSS B 2023.

Most interesting models have latent structure

Graphical model representation of hierarchical LDA with a nested CRP prior, Blei et al. (2003)

Outline

■ Maximum Mean Discrepancy (MMD)...

- ...as a difference in feature means
- ...as an integral probability metric (not just a technicality!)
- A statistical test based on the MMD
- learn adaptive NN features
- learn interpretable features with maximium testing power

The MMD

Feature mean difference

■ Simple example: 2 Gaussians with different means

- Answer: t-test

Feature mean difference

- Two Gaussians with same means, different variance

■ Idea: look at difference in means of features of the RVs

- In Gaussian case: second order features of form $\varphi(x)=x^{2}$

Feature mean difference

- Two Gaussians with same means, different variance

■ Idea: look at difference in means of features of the RVs
■ In Gaussian case: second order features of form $\varphi(x)=x^{2}$

Feature mean difference

- Gaussian and Laplace distributions
- Same mean and same variance

■ Difference in means using higher order features...RKHS

Infinitely many features using kernels

Kernels: dot products of features

Feature map $\varphi(x) \in \mathcal{F}$,

$$
\varphi(x)=\left[\ldots \varphi_{i}(x) \ldots\right] \in \ell_{2}
$$

For positive definite k,

$$
k\left(x, x^{\prime}\right)=\left\langle\varphi(x), \varphi\left(x^{\prime}\right)\right\rangle_{\mathcal{F}}
$$

Infinitely many features $\varphi(x)$, dot product in closed form!

Exponentiated quadratic kernel

$$
k\left(x, x^{\prime}\right)=\exp \left(-\gamma\left\|x-x^{\prime}\right\|^{2}\right)
$$

Features: Gaussian Processes for Machine learning, Rasmussen and Williams, Ch. 4.

Infinitely many features of distributions

Given P a Borel probability measure on \mathcal{X}, define feature map of probability P,

$$
\mu_{P}=\left[\ldots \mathrm{E}_{P}\left[\varphi_{i}(X)\right] \ldots\right]
$$

For positive definite $k\left(x, x^{\prime}\right)$,

$$
\left\langle\mu_{P}, \mu_{Q}\right\rangle_{\mathcal{F}}=\mathrm{E}_{P, Q} k(x, y)
$$

Fine print: feature map $\varphi(x)$ must be Bochner integrable for all probability measures considered. Always true if kernel bounded.

Infinitely many features of distributions

Given P a Borel probability measure on \mathcal{X}, define feature map of probability P,

$$
\mu_{P}=\left[\ldots \mathrm{E}_{P}\left[\varphi_{i}(X)\right] \ldots\right]
$$

For positive definite $k\left(x, x^{\prime}\right)$,

$$
\left\langle\mu_{P}, \mu_{Q}\right\rangle_{\mathcal{F}}=\mathrm{E}_{P, Q} k(x, y)
$$

for $x \sim P$ and $y \sim Q$.

Fine print: feature map $\varphi(x)$ must be Bochner integrable for all probability measures considered. Always true if kernel bounded.

The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature means:

$$
\begin{aligned}
M M D^{2}(P, Q) & =\left\|\mu_{P}-\mu_{Q}\right\|_{\mathcal{F}}^{2} \\
& =\left\langle\mu_{P}-\mu_{Q}, \mu_{P}-\mu_{Q}\right\rangle_{\mathcal{F}}
\end{aligned}
$$

The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature means:

$$
\begin{aligned}
M M D^{2}(P, Q) & =\left\|\mu_{P}-\mu_{Q}\right\|_{\mathcal{F}}^{2} \\
& =\left\langle\mu_{P}-\mu_{Q}, \mu_{P}-\mu_{Q}\right\rangle_{\mathcal{F}} \\
& =\left\langle\mu_{P}, \mu_{P}\right\rangle_{\mathcal{F}}+\left\langle\mu_{Q}, \mu_{Q}\right\rangle_{\mathcal{F}}-2\left\langle\mu_{P}, \mu_{Q}\right\rangle_{\mathcal{F}}
\end{aligned}
$$

The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature means:

$$
\begin{aligned}
M M D^{2}(P, Q) & =\left\|\mu_{P}-\mu_{Q}\right\|_{\mathcal{F}}^{2} \\
& =\left\langle\mu_{P}-\mu_{Q}, \mu_{P}-\mu_{Q}\right\rangle_{\mathcal{F}} \\
& =\underbrace{\mathrm{E}_{P} k\left(X, X^{\prime}\right)}_{\text {(a) }}+\underbrace{\mathrm{E}_{Q} k\left(Y, Y^{\prime}\right)}_{\text {(a) }}-2 \underbrace{\mathrm{E}_{P, Q} k(X, Y)}_{\text {(b) }}
\end{aligned}
$$

$(\mathrm{a})=$ within distrib. similarity, $(\mathrm{b})=$ cross-distrib. similarity.

Illustration of MMD

■ Dogs $(=P)$ and fish ($=Q$) example revisited
■ Each entry is one of $k\left(\operatorname{dog}_{i}, \operatorname{dog}_{j}\right), k\left(\operatorname{dog}_{i}\right.$, fish $\left._{j}\right)$, or $k\left(\right.$ fish $_{i}$, fish $\left._{j}\right)$

Illustration of MMD

The maximum mean discrepancy:

$$
\widehat{M M D}^{2}=\frac{1}{n(n-1)} \sum_{i \neq j} k\left(\operatorname{dog}_{i}, \operatorname{dog}_{j}\right)+\frac{1}{n(n-1)} \sum_{i \neq j} k\left(\text { fish }_{i}, \mathrm{fish}_{j}\right)
$$

$$
-\frac{2}{n^{2}} \sum_{i, j} k\left(\operatorname{dog}_{i}, \mathrm{fish}_{j}\right)
$$

MMD as an integral probability metric

Integral probability metric:
Find a "well behaved function" $f(x)$ to maximize

$$
\mathrm{E}_{P} f(X)-\mathrm{E}_{Q} f(Y)
$$

MMD as an integral probability metric

Integral probability metric:
Find a "well behaved function" $f(x)$ to maximize

$$
\mathrm{E}_{P} f(X)-\mathrm{E}_{Q} f(Y)
$$

MMD as an integral probability metric

Maximum mean discrepancy: smooth function for P vs Q

$$
\begin{gathered}
M M D(P, Q ; F):=\sup _{\|f\|_{\mathcal{F}} \leq 1}\left[\mathrm{E}_{P} f(X)-\mathrm{E}_{Q} f(Y)\right] \\
(F=\text { unit ball in RKHS } \mathcal{F})
\end{gathered}
$$

MMD as an integral probability metric

Maximum mean discrepancy: smooth function for P vs Q

$$
\begin{gathered}
M M D(P, Q ; F):=\sup _{\|f\|_{\mathcal{F}} \leq 1}\left[\mathrm{E}_{P} f(X)-\mathrm{E}_{Q} f(Y)\right] \\
(F=\text { unit ball in RKHS } \mathcal{F})
\end{gathered}
$$

Functions are linear combinations of features:

$$
f(x)=\langle f, \varphi(x)\rangle_{\mathcal{F}}=\sum_{\ell=1}^{\infty} f_{\ell} \varphi_{\ell}(x)=\left[\begin{array}{c}
f_{1} \\
f_{2} \\
f_{3} \\
\vdots
\end{array}\right]^{\top f \|_{\mathcal{F}}^{2}:=\sum_{i=1}^{\infty} f_{i}^{2} \leq 1}
$$

MMD as an integral probability metric

Maximum mean discrepancy: smooth function for P vs Q

$$
\begin{gathered}
M M D(P, Q ; F):=\sup _{\|f\|_{\mathcal{F}} \leq 1}\left[\mathrm{E}_{P} f(X)-\mathrm{E}_{Q} f(Y)\right] \\
(F=\text { unit ball in RKHS } \mathcal{F})
\end{gathered}
$$

MMD as an integral probability metric

Maximum mean discrepancy: smooth function for P vs Q

$$
\begin{gathered}
M M D(P, Q ; F):=\sup _{\|f\|_{\mathcal{F}} \leq 1}\left[\mathrm{E}_{P} f(X)-\mathrm{E}_{Q} f(Y)\right] \\
(F=\text { unit ball in RKHS } \mathcal{F})
\end{gathered}
$$

For characteristic RKHS $\mathcal{F}, \operatorname{MMD}(P, Q ; F)=0$ iff $P=Q$

Other choices for witness function class:
■ Bounded continuous [Dudley, 2002]
■ Bounded varation 1 (Kolmogorov metric) [Müller, 1997]
■ Bounded Lipschitz (Wasserstein distances) [Dudley, 2002]

MMD as an integral probability metric

Maximum mean discrepancy: smooth function for P vs Q

$$
\begin{gathered}
M M D(P, Q ; F):=\sup _{\|f\|_{\mathcal{F}} \leq 1}\left[\mathrm{E}_{P} f(X)-\mathrm{E}_{Q} f(Y)\right] \\
(F=\text { unit ball in RKHS } \mathcal{F})
\end{gathered}
$$

Expectations of functions are linear combinations of expected features

$$
\mathrm{E}_{P}(f(X))=\left\langle f, \mathrm{E}_{P} \varphi(X)\right\rangle_{\mathcal{F}}=\left\langle f, \mu_{P}\right\rangle_{\mathcal{F}}
$$

(always true if kernel is bounded)

Integral prob. metric vs feature mean difference

The MMD:

$$
\begin{aligned}
& M M D(P, Q ; F) \\
& =\sup _{\|f\| \leq 1}\left[\mathrm{E}_{P} f(X)-\mathrm{E}_{Q} f(Y)\right]
\end{aligned}
$$

Integral prob. metric vs feature mean difference

The MMD:

$$
\begin{aligned}
& M M D(P, Q ; F) \\
& =\sup _{\|f\| \leq 1}\left[\mathrm{E}_{P} f(X)-\mathrm{E}_{Q} f(Y)\right] \quad \mathrm{E}_{P} f(X)=\left\langle\mu_{P}, f\right\rangle_{\mathcal{F}} \\
& =\sup _{\|f\| \leq 1}\left\langle f, \mu_{P}-\mu_{Q}\right\rangle_{\mathcal{F}}
\end{aligned}
$$

Integral prob. metric vs feature mean difference

The MMD:
$M M D(P, Q ; F)$
$=\sup \left[\mathrm{E}_{P} f(X)-\mathrm{E}_{Q} f(Y)\right]$ $\|f\| \leq 1$
$=\sup \left\langle f, \mu_{P}-\mu_{Q}\right\rangle_{\mathcal{F}}$ $\|f\| \leq 1$

Integral prob. metric vs feature mean difference

The MMD:

$$
\begin{aligned}
& M M D(P, Q ; F) \\
& =\sup _{\|f\| \leq 1}\left[\mathrm{E}_{P} f(X)-\mathrm{E}_{Q} f(Y)\right] \\
& =\sup _{\|f\| \leq 1}\left\langle f, \mu_{P}-\mu_{Q}\right\rangle_{\mathcal{F}}
\end{aligned}
$$

Integral prob. metric vs feature mean difference

```
The MMD:
MMD(P,Q;F)
    = sup [E E f f X ) - E E Q f(Y)]
        |f|\leq1
    = sup}\langlef,\mp@subsup{\mu}{P}{}-\mp@subsup{\mu}{Q}{}\mp@subsup{\rangle}{\mathcal{F}}{
        |f|\leq1
```


$$
f^{*}=\frac{\mu_{P}-\mu_{Q} \|}{\left\|\mu_{P}-\mu_{Q}\right\|}
$$

Integral prob. metric vs feature mean difference

The MMD:

$$
\begin{aligned}
& M M D(P, Q ; F) \\
& =\sup _{\|f\| \leq 1}\left[\mathrm{E}_{P} f(X)-\mathrm{E}_{Q} f(Y)\right] \\
& =\sup _{\|f\| \leq 1}\left\langle f, \mu_{P}-\mu_{Q}\right\rangle_{\mathcal{F}} \\
& =\left\|\mu_{P}-\mu_{Q}\right\|_{\mathcal{F}}
\end{aligned}
$$

IPM view equivalent to feature mean difference (kernel case only)

Two-Sample Testing with MMD

A statistical test using MMD

The empirical MMD:

$$
\begin{gathered}
\widehat{M M D}^{2}=\frac{1}{n(n-1)} \sum_{i \neq j} k\left(x_{i}, x_{j}\right)+\frac{1}{n(n-1)} \sum_{i \neq j} k\left(\mathrm{y}_{i}, \mathrm{y}_{j}\right) \\
\quad-\frac{2}{n^{2}} \sum_{i, j} k\left(x_{i}, \mathrm{y}_{j}\right)
\end{gathered}
$$

How does this help decide whether $P=Q$?

A statistical test using MMD

The empirical MMD:

$$
\begin{gathered}
\widehat{M M D}^{2}=\frac{1}{n(n-1)} \sum_{i \neq j} k\left(x_{i}, x_{j}\right)+\frac{1}{n(n-1)} \sum_{i \neq j} k\left(\mathrm{y}_{i}, \mathrm{y}_{j}\right) \\
\quad-\frac{2}{n^{2}} \sum_{i, j} k\left(x_{i}, \mathrm{y}_{j}\right)
\end{gathered}
$$

Perspective from statistical hypothesis testing:
■ Null hypothesis \mathcal{H}_{0} when $P=Q$

- should see $\widehat{M M D}^{2}$ "close to zero".
- Alternative hypothesis \mathcal{H}_{1} when $P \neq Q$
- should see $\widehat{M M D}^{2}$ "far from zero"

A statistical test using MMD

The empirical MMD:

$$
\begin{gathered}
\widehat{M M D}^{2}=\frac{1}{n(n-1)} \sum_{i \neq j} k\left(x_{i}, x_{j}\right)+\frac{1}{n(n-1)} \sum_{i \neq j} k\left(\mathrm{y}_{i}, \mathrm{y}_{j}\right) \\
\quad-\frac{2}{n^{2}} \sum_{i, j} k\left(x_{i}, \mathrm{y}_{j}\right)
\end{gathered}
$$

Perspective from statistical hypothesis testing:
■ Null hypothesis \mathcal{H}_{0} when $P=Q$

- should see $\widehat{M M D}^{2}$ "close to zero".
- Alternative hypothesis \mathcal{H}_{1} when $P \neq Q$
- should see $\widehat{M M D}^{2}$ "far from zero"

Want Threshold c_{α} for $\widehat{M M D}^{2}$ to get false positive rate α

Asymptotics of $\widehat{M M D}^{2}$ when $P \neq Q$
When $P \neq Q$, statistic is asymptotically normal,

$$
\frac{\widehat{\mathrm{MMD}}^{2}-\operatorname{MMD}^{2}(P, Q)}{\sqrt{V_{n}(P, Q)}} \xrightarrow{D} \mathcal{N}(0,1)
$$

where variance $V_{n}(P, Q)=O\left(n^{-1}\right)$.

Behaviour of $\widehat{M M D}^{2}$ when $P=Q$

What happens when P and Q are the same?

Asymptotics of $\widehat{M M D}^{2}$ when $P=Q$
Where $P=Q$, statistic has asymptotic distribution

$$
n \widehat{\mathrm{MMD}}^{2} \sim \sum_{l=1}^{\infty} \lambda_{l}\left[z_{l}^{2}-2\right]
$$

where

$$
\begin{aligned}
\lambda_{i} \psi_{i}\left(x^{\prime}\right) & =\int_{\mathcal{X}} \underbrace{\tilde{k}\left(x, x^{\prime}\right)}_{\text {centred }} \psi_{i}(x) d P(x) \\
z_{l} & \sim \mathcal{N}(0,2) \quad \text { i.i.d. }
\end{aligned}
$$

A statistical test

A summary of the asymptotics:

A statistical test

Test construction: (G., Borgwardt, Rasch, Schoelkopf, and Smola, JMLR 2012)

26/51

How do we get test threshold c_{α} ?

Original empirical MMD for dogs and fish:

$$
\begin{aligned}
& X=\left[\begin{array}{ll}
\operatorname{lon} & \ldots
\end{array}\right] \\
& Y=\left[\begin{array}{ll}
\log
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
\widehat{M M D}^{2}= & \frac{1}{n(n-1)} \sum_{i \neq j} k\left(x_{i}, x_{j}\right) \\
& +\frac{1}{n(n-1)} \sum_{i \neq j} k\left(\mathrm{y}_{i}, \mathrm{y}_{j}\right) \\
& -\frac{2}{n^{2}} \sum_{i, j} k\left(x_{i}, \mathrm{y}_{j}\right)
\end{aligned}
$$

How do we get test threshold c_{α} ?

Permuted dog and fish samples (merdogs):

$$
\begin{aligned}
& \tilde{X}=\left[\begin{array}{ll}
\operatorname{lon} & \operatorname{mon}
\end{array}\right] \\
& \tilde{Y}=\left[\begin{array}{ll}
\operatorname{lom}
\end{array}\right]
\end{aligned}
$$

How do we get test threshold c_{α} ?

Permuted dog and fish samples (merdogs):

$$
\begin{aligned}
\tilde{X}= & {\left[\begin{array}{c}
\tilde{Y}= \\
\widehat{M M D}^{2}= \\
\frac{1}{n(n-1)} \sum_{i \neq j} k\left(\tilde{x}_{i}, \tilde{x}_{j}\right) \\
\\
+\frac{1}{n(n-1)} \sum_{i \neq j} k\left(\tilde{y}_{i}, \tilde{y}_{j}\right) \\
\\
-\frac{2}{n^{2}} \sum_{i, j} k\left(\tilde{x}_{i}, \tilde{y}_{j}\right)
\end{array}\right.}
\end{aligned}
$$

Permutation simulates
$P=Q$

How do we get test threshold c_{α} ?

Permuted dog and fish samples (merdogs):

Exact level α (upper bound on false positive rate)
at finite n and number of permutations
(when unpermuted statistic included in pool)

Proposition 1, Schrab, Kim, Albert, Lau-
rent, Guedj, Gretton (2021), MMD Aggre-
gated Two-Sample Test, arXiv:2110.15073

How to choose the best kernel: optimising the kernel parameters

Choosing a kernel for the test

- Simple choice: exponentiated quadratic

$$
k(x, y)=\exp \left(-\frac{1}{2 \sigma^{2}}\|x-y\|^{2}\right)
$$

- Characteristic: for any σ : for any P and Q, power $\rightarrow 1$ as $n \rightarrow \infty$

Choosing a kernel for the test

- Simple choice: exponentiated quadratic

$$
k(x, y)=\exp \left(-\frac{1}{2 \sigma^{2}}\|x-y\|^{2}\right)
$$

- Characteristic: for any σ : for any P and Q, power $\rightarrow 1$ as $n \rightarrow \infty$

■ But choice of σ is very important for finite $n \ldots$

Choosing a kernel for the test

- Simple choice: exponentiated quadratic

$$
k(x, y)=\exp \left(-\frac{1}{2 \sigma^{2}}\|x-y\|^{2}\right)
$$

- Characteristic: for any σ : for any P and Q, power $\rightarrow 1$ as $n \rightarrow \infty$

■ But choice of σ is very important for finite $n \ldots$

Choosing a kernel for the test

- Simple choice: exponentiated quadratic

$$
k(x, y)=\exp \left(-\frac{1}{2 \sigma^{2}}\|x-y\|^{2}\right)
$$

- Characteristic: for any σ : for any P and Q, power $\rightarrow 1$ as $n \rightarrow \infty$

■ But choice of σ is very important for finite $n \ldots$

Choosing a kernel for the test

- Simple choice: exponentiated quadratic

$$
k(x, y)=\exp \left(-\frac{1}{2 \sigma^{2}}\|x-y\|^{2}\right)
$$

- Characteristic: for any σ : for any P and Q, power $\rightarrow 1$ as $n \rightarrow \infty$

■ But choice of σ is very important for finite $n \ldots$

Choosing a kernel for the test

- Simple choice: exponentiated quadratic

$$
k(x, y)=\exp \left(-\frac{1}{2 \sigma^{2}}\|x-y\|^{2}\right)
$$

■ Characteristic: for any σ : for any P and Q, power $\rightarrow 1$ as $n \rightarrow \infty$
■ But choice of σ is very important for finite $n \ldots$
■ ... and some problems (e.g. images) might have no good choice for σ

Graphical illustration

■ Maximising test power same as minimizing false negatives

$31 / 51$

Optimizing kernel for test power

The power of our test (Pr_{1} denotes probability under $P \neq Q$):

$$
\operatorname{Pr}_{1}\left(n \widehat{\mathrm{MMD}}^{2}>\hat{c}_{\alpha}\right)
$$

Optimizing kernel for test power

The power of our test $\left(\operatorname{Pr}_{1}\right.$ denotes probability under $\left.P \neq Q\right)$:

$$
\begin{aligned}
& \operatorname{Pr}_{1}\left(n \widehat{\mathrm{MMD}}^{2}>\hat{c}_{\alpha}\right) \\
& \rightarrow \Phi\left(\frac{\operatorname{MMD}^{2}(P, Q)}{\sqrt{V_{n}(P, Q)}}-\frac{c_{\alpha}}{n \sqrt{V_{n}(P, Q)}}\right)
\end{aligned}
$$

where
$■ \Phi$ is the CDF of the standard normal distribution.
■ \hat{c}_{α} is an estimate of c_{α} test threshold.

Optimizing kernel for test power

The power of our test $\left(\operatorname{Pr}_{1}\right.$ denotes probability under $\left.P \neq Q\right)$:

$$
\begin{aligned}
& \operatorname{Pr}_{1}(n{\left.\widehat{\mathrm{MMD}}^{2}>\hat{c}_{\alpha}\right)}^{\rightarrow \Phi(\underbrace{\frac{\operatorname{MMD}^{2}(P, Q)}{\sqrt{V_{n}(P, Q)}}}_{O\left(n^{1 / 2}\right)}-\underbrace{\frac{c_{\alpha}}{n \sqrt{V_{n}(P, Q)}}}_{O\left(n^{-1 / 2}\right)})}=\$ \text {. }
\end{aligned}
$$

For large n, second term negligible!

Optimizing kernel for test power

The power of our test $\left(\operatorname{Pr}_{1}\right.$ denotes probability under $P \neq Q$):

$$
\begin{aligned}
& \operatorname{Pr}_{1}\left(n \widehat{\mathrm{MMD}}^{2}>\hat{c}_{\alpha}\right) \\
& \rightarrow \Phi\left(\frac{\mathrm{MMD}^{2}(P, Q)}{\sqrt{V_{n}(P, Q)}}-\frac{c_{\alpha}}{n \sqrt{V_{n}(P, Q)}}\right)
\end{aligned}
$$

To maximize test power, maximize

$$
\frac{\operatorname{MMD}^{2}(P, Q)}{\sqrt{V_{n}(P, Q)}}
$$

Data splitting

Learning a kernel helps a lot

Kernel with deep learned features:
$k_{\theta}(x, y)=\left[(1-\epsilon) \kappa\left(\Phi_{\theta}(x), \Phi_{\theta}(y)\right)+\epsilon\right] q(x, y)$
κ and q are Gaussian kernels

Learning a kernel helps a lot

Kernel with deep learned features:
$k_{\theta}(x, y)=\left[(1-\epsilon) \kappa\left(\Phi_{\theta}(x), \Phi_{\theta}(y)\right)+\epsilon\right] q(x, y)$
κ and q are Gaussian kernels
■ CIFAR-10 vs CIFAR-10.1, null rejected 75% of time

CIFAR-10 test set (Krizhevsky 2009)

$$
X \sim P
$$

CIFAR-10.1 (Recht+ ICML 2019)

$$
Y \sim Q
$$

Learning a kernel helps a lot

Kernel with deep learned features:
$k_{\theta}(x, y)=\left[(1-\epsilon) \kappa\left(\Phi_{\theta}(x), \Phi_{\theta}(y)\right)+\epsilon\right] q(x, y)$
κ and q are Gaussian kernels

- CIFAR-10 vs CIFAR-10.1, null rejected 75% of time

```
arXiv.org > stat > arXiv:2002.09116
```

Statistics > Machine Learning
[Submitted on 21 feb 2020]
Learning Deep Kernels for Non-Parametric Two-Sample Tests
Feng Liu, Wenkai Xu, Jie Lu, Guangquan Zhang, Arthur Gretton, D. J. Sutherland
ICML 2020
Code: https://github.com/fengliu90/DK-for-TST

Adaptive testing without data splitting

```
ZI\iV > stat > arXiv:2110.15073
    Statistics > Machine Learning
    [Submitted on 28 Oct 2021]
    MMD Aggregated Two-Sample Test
    Antonin Schrab, Ilmun Kim, Mélisande Albert, Béatrice Laurent, Benjamin Guedj, Arthur Gretton
```

In revision, JMLR
Code: https://github.com/antoninschrab/mmdagg-paper

Interpretable test features

From the two collections

produce a new point indicating where to look for the differences

Interpretable test features

From the two collections

produce a new point indicating where to look for the differences

Interpretable test features

Statistics > Machine Learning
[Submitted on 22 May 2016 (v1), last revised 28 Oct 2016 (this version, v2)]
Interpretable Distribution Features with Maximum Testing Power
Wittawat Jitkrittum, Zoltan Szabo, Kacper Chwialkowski, Arthur Gretton

NeurIPS 2016
Code: https://github.com/wittawatj/interpretable-test

Research support

Work supported by:

The Gatsby Charitable Foundation

Deepmind
(9) DeepMind

Questions?

- A brief introduction to RKHS

■ Maximum Mean Discrepancy (MMD)...

- ...as a difference in feature means
- ...as an integral probability metric (not just a technicality!)

■ Statistical tests based on the MMD

Derivation of empirical witness function

Recall the witness function expression

$$
f^{*} \propto \mu_{P}-\mu_{Q}
$$

Derivation of empirical witness function

Recall the witness function expression

$$
f^{*} \propto \mu_{P}-\mu_{Q}
$$

The empirical feature mean for P

$$
\widehat{\mu}_{P}:=\frac{1}{n} \sum_{i=1}^{n} \varphi\left(x_{i}\right)
$$

Derivation of empirical witness function

Recall the witness function expression

$$
f^{*} \propto \mu_{P}-\mu_{Q}
$$

The empirical feature mean for P

$$
\widehat{\mu}_{P}:=\frac{1}{n} \sum_{i=1}^{n} \varphi\left(x_{i}\right)
$$

The empirical witness function at v

$$
f^{*}(v)=\left\langle f^{*}, \varphi(v)\right\rangle_{\mathcal{F}}
$$

Derivation of empirical witness function

Recall the witness function expression

$$
f^{*} \propto \mu_{P}-\mu_{Q}
$$

The empirical feature mean for P

$$
\widehat{\mu}_{P}:=\frac{1}{n} \sum_{i=1}^{n} \varphi\left(x_{i}\right)
$$

The empirical witness function at v

$$
\begin{aligned}
f^{*}(v) & =\left\langle f^{*}, \varphi(v)\right\rangle_{\mathcal{F}} \\
& \propto\left\langle\widehat{\mu}_{P}-\widehat{\mu}_{Q}, \varphi(v)\right\rangle_{\mathcal{F}}
\end{aligned}
$$

Derivation of empirical witness function

Recall the witness function expression

$$
f^{*} \propto \mu_{P}-\mu_{Q}
$$

The empirical feature mean for P

$$
\widehat{\mu}_{P}:=\frac{1}{n} \sum_{i=1}^{n} \varphi\left(x_{i}\right)
$$

The empirical witness function at v

$$
\begin{aligned}
f^{*}(v) & =\left\langle f^{*}, \varphi(v)\right\rangle_{\mathcal{F}} \\
& \propto\left\langle\widehat{\mu}_{P}-\widehat{\mu}_{Q}, \varphi(v)\right\rangle_{\mathcal{F}} \\
& =\frac{1}{n} \sum_{i=1}^{n} k\left(x_{i}, v\right)-\frac{1}{n} \sum_{i=1}^{n} k\left(\mathrm{y}_{i}, v\right)
\end{aligned}
$$

Don't need explicit feature coefficients $f^{*}:=\left[\begin{array}{lll}f_{1}^{*} & f_{2}^{*} & \ldots\end{array}\right]$

Interpretable test features

Overview

From the two collections

produce a new point indicating where to look for the differences

Overview

From the two collections

produce a new point indicating where to look for the differences

Distinguishing Feature(s)

Where is the best location to observe the difference of $P(\mathrm{x})$ and $Q(\mathrm{y})$?

Maximum of the witness function?

- $P(\mathbf{x})$
- $Q(\mathbf{y})$
- \quad witness $^{2}(\mathbf{v})$

Maximum of the witness function?

$$
\begin{array}{ll}
- & P(\mathbf{x}) \\
- & Q(\mathbf{y}) \\
- & \text { witness }^{2}(\mathbf{v})
\end{array}
$$

Maximum of the witness function?

$$
\begin{array}{ll}
- & P(\mathbf{x}) \\
= & Q(\mathbf{y}) \\
- & \text { witness }^{2}(\mathbf{v})
\end{array}
$$

■ witness ${ }^{2}(\mathrm{v})$ only cares about the "signal".

- Not the "noise" (variability) at each feature.

Signal-to-noise of witness function maximizes power

■ Variance of $\mathrm{v}=$ variance of v from $\mathrm{X}+$ variance of v from Y .
■ ME Statistic: $\hat{\lambda}_{n}(\mathrm{v}):=n \frac{\text { witness }^{2}(\mathrm{v})}{\text { variance of } \mathrm{v}}$.

Signal-to-noise of witness function maximizes power

■ Variance of $\mathrm{v}=$ variance of v from $\mathrm{X}+$ variance of v from Y .
■ ME Statistic: $\hat{\lambda}_{n}(\mathrm{v}):=n \frac{\text { witness }^{2}(\mathrm{v})}{\text { variance of } \mathrm{v}}$.

Signal-to-noise of witness function maximizes power

■ Variance of $\mathrm{v}=$ variance of v from $\mathrm{X}+$ variance of v from Y .

- ME Statistic: $\hat{\lambda}_{n}(\mathrm{v}):=n \frac{\text { witness }^{2}(\mathrm{v})}{\text { variance of } \mathrm{v}}$.

Divergence measures

Divergences

Divergences

The integral probability metrics

The ϕ-divergences

Divergences

Divergences

Sriperumbudur, Fukumizu, G, Schoelkopf, Lanckriet, EJS (2012)

