Bayesian Inference with Kernels

Arthur Gretton

Joint work with Danny Bickson, Carlos Guestrin, Yucheng Low, Le Song

Gatsby Computational Neuroscience Unit Carnegie Mellon University Max Planck Institute for Biological Cybernetics

A challenge: cross-language document retrieval

Cross-language document retrieval

- Many translations from "other" to English
- Few translations between unlike languages: Portuguese to Swedish

The problem: retrieve document in target language given document in source language, without examples of direct translation

Motivation and further applications

- Why use a non-parametric (kernel) algorithm?
 - Complex high-dimensional/structured data (discretization fails)
 - Non-Gaussian/multimodal (Gaussian BP fails)
 - Density estimation/integration too expensive (Parzen window approximations fail)
 - Model learned from training data

Motivation and further applications

- Why use a non-parametric (kernel) algorithm?
 - Complex high-dimensional/structured data (discretization fails)
 - Non-Gaussian/multimodal (Gaussian BP fails)
 - Density estimation/integration too expensive (Parzen window approximations fail)
 - Model learned from training data
- Exact inference on trees [Song, Gretton, and Guestrin, 2010b]
 - Cross-language document retrieval
 - Camera orientation recovery from images
- Loopy BP on pairwise MRFs [Song, Gretton, Bickson, Low, and Guestrin, 2010a]
 - Depth recovery from 2D images
 - Predicting paper categories from citation networks
 - Protein structure prediction

Motivation and further applications

- Why use a non-parametric (kernel) algorithm?
 - Complex high-dimensional/structured data (discretization fails)
 - Non-Gaussian/multimodal (Gaussian BP fails)
 - Density estimation/integration too expensive (Parzen window approximations fail)
 - Model learned from training data
- Exact inference on trees [Song, Gretton, and Guestrin, 2010b]
 - Cross-language document retrieval
 - Camera orientation recovery from images
- Loopy BP on pairwise MRFs [Song, Gretton, Bickson, Low, and Guestrin, 2010a]
 - Depth recovery from 2D images
 - Predicting paper categories from citation networks
 - Protein structure prediction

$$\mathbf{P}(X_1, x_2, x_4, x_5) = \int_{x_3} \mathbf{P}(X_1) \mathbf{P}(x_2 | X_1) \mathbf{P}(X_3 | X_1) \mathbf{P}(x_4 | X_3) \mathbf{P}(x_5 | X_3)$$

$$\begin{aligned} \mathbf{P}(X_1, x_2, x_4, x_5) &= \int_{x_3} \mathbf{P}(X_1) \mathbf{P}(x_2 | X_1) \mathbf{P}(X_3 | X_1) \mathbf{P}(x_4 | X_3) \mathbf{P}(x_5 | X_3) \\ &= \mathbf{P}(X_1) \mathbf{P}(x_2 | X_1) \int_{x_3} \mathbf{P}(X_3 | X_1) \mathbf{P}(x_4 | X_3) \mathbf{P}(x_5 | X_3) \end{aligned}$$

$$\mathbf{P}(X_1, x_2, x_4, x_5) = \int_{x_3} \mathbf{P}(X_1) \mathbf{P}(x_2 | X_1) \mathbf{P}(X_3 | X_1) \mathbf{P}(x_4 | X_3) \mathbf{P}(x_5 | X_3)$$

$$= \mathbf{P}(X_1) \underbrace{\mathbf{P}(x_2 | X_1)}_{m_{21}(X_1)} \int_{x_3} \mathbf{P}(X_3 | X_1) \underbrace{\mathbf{P}(x_4 | X_3) \mathbf{P}(x_5 | X_3)}_{m_{43}(X_3)} \underbrace{\mathbf{P}(x_5 | X_3)}_{m_{53}(X_3)}$$

$$\mathbf{P}(X_1, x_2, x_4, x_5) = \int_{x_3} \mathbf{P}(X_1) \mathbf{P}(x_2 | X_1) \mathbf{P}(X_3 | X_1) \mathbf{P}(x_4 | X_3) \mathbf{P}(x_5 | X_3)$$

$$= \mathbf{P}(X_1) \underbrace{\mathbf{P}(x_2 | X_1)}_{m_{21}(X_1)} \int_{x_3} \mathbf{P}(X_3 | X_1) \underbrace{\mathbf{P}(x_4 | X_3) \mathbf{P}(x_5 | X_3)}_{m_{43}(X_3)} \underbrace{\mathbf{P}(x_5 | X_3)}_{m_{53}(X_3)}$$

$$\begin{aligned} \mathsf{P}(X_1, x_2, x_4, x_5) &= \int_{x_3} \mathsf{P}(X_1) \mathsf{P}(x_2 | X_1) \mathsf{P}(X_3 | X_1) \mathsf{P}(x_4 | X_3) \mathsf{P}(x_5 | X_3) \\ &= \mathsf{P}(X_1) m_{21}(X_1) \int_{x_3} \mathsf{P}(X_3 | X_1) m_{43}(X_3) m_{53}(X_3) \end{aligned}$$

$$\mathbf{P}(X_1, x_2, x_4, x_5) = \int_{x_3} \mathbf{P}(X_1) \mathbf{P}(x_2 | X_1) \mathbf{P}(X_3 | X_1) \mathbf{P}(x_4 | X_3) \mathbf{P}(x_5 | X_3)$$

$$= \mathbf{P}(X_1) m_{21}(X_1) \underbrace{\int_{x_3} \mathbf{P}(X_3 | X_1) m_{43}(X_3) m_{53}(X_3)}_{m_{31}(X_1)}$$

 $\mathbf{P}(X_1, x_2, x_4, x_5) = \int_{x_3} \mathbf{P}(X_1) \mathbf{P}(x_2 | X_1) \mathbf{P}(X_3 | X_1) \mathbf{P}(x_4 | X_3) \mathbf{P}(x_5 | X_3)$ = $\mathbf{P}(X_1) m_{21}(X_1) m_{31}(X_1)$

 $\mathbf{P}(X_1, x_2, x_4, x_5) = \int_{x_3} \mathbf{P}(X_1) \mathbf{P}(x_2 | X_1) \mathbf{P}(X_3 | X_1) \mathbf{P}(x_4 | X_3) \mathbf{P}(x_5 | X_3)$ = $\mathbf{P}(X_1) m_{21}(X_1) m_{31}(X_1)$

What's needed for learning and inference

- Learn the the messages from child nodes
 - Need to express conditional probabilities
- Combine evidence from multiple children
 - Need to marginalize

Model learned from training data

Conditional probabilities: gaussian case

• A hint: what would we do for the (zero mean) Gaussian?

$$p(z) \propto \left(-z^{\top} C^{-1} z\right),$$

• Partition

$$z = \begin{bmatrix} x \\ y \end{bmatrix} \qquad C = \begin{bmatrix} C_{xx} & C_{xy} \\ C_{yx} & C_{yy} \end{bmatrix}$$

• Conditional prob. of y given x:

$$\mathbf{P}(y|x) = \mathcal{N}(C_{yx}C_{xx}^{-1}x, C_{yy} - C_{yx}C_{xx}^{-1}C_{xy})$$

• Conditional expectation of y given x:

$$\mu_{y|x} = C_{yx}C_{xx}^{-1}x$$
$$\mathbf{E}_{y|x}(a^{\top}y) = a^{\top}\mu_{y|x}$$

Conditional probabilities: Gaussian case

Complex functions linear in some feature space

• Nonlinear mean?

$$\mathbf{E}_X(a^\top X) = a^\top \mu_X$$

becomes $\mathbf{E}_X f(X) = \langle f, \mu_X \rangle_{\mathcal{F}}$

- in some feature space ${\cal F}$
- Nonlinear conditional mean?

$$\mathbf{E}_{y|x}(a^{\top}y) = a^{\top}\mu_{y|x} = a^{\top}C_{yx}C_{xx}^{-1}x$$

becomes
$$\mathbf{E}_{y|x}f(X) = \langle f, \mu_{y|x} \rangle_{\mathcal{F}} = ??$$

How do we do this with kernels?

Plan of attack

- 1. Kernelized mean
- 2. Kernelized covariance, leading to ...
- 3. . . . kernel conditional mean
- 4. Messages from observed leaves (conditional probabilities)
- 5. Marginalize over internal node variables

- \mathcal{F} RKHS from \mathcal{X} to \mathbb{R} with positive definite kernel $k(x_i, x_j)$
- $\mathcal{F} = \overline{\operatorname{span}\{k(x,\cdot)|x \in \mathcal{X}\}}$
 - Example: $f(x) = \sum_{i=1}^{m} \alpha_i k(x_i, x)$ for arbitrary $m \in \mathbb{N}, \alpha_i \in \mathbb{R},$ $x_i \in \mathcal{X}.$

• Riesz: unique representer of evaluation $\varphi_x \in \mathcal{F}$:

$$f(x) = \langle f, \varphi_x \rangle_{\mathcal{F}}$$

 $-\varphi_x$ feature map

• Riesz: unique representer of evaluation $\varphi_x \in \mathcal{F}$:

$$f(x) = \langle f, \varphi_x \rangle_{\mathcal{F}} = \langle f, \mathbf{k}(x, \cdot) \rangle_{\mathcal{F}}$$

 $-\varphi_x$ feature map

• Riesz: unique representer of evaluation $\varphi_x \in \mathcal{F}$:

$$f(x) = \langle f, \varphi_x \rangle_{\mathcal{F}} = \langle f, \mathbf{k}(x, \cdot) \rangle_{\mathcal{F}}$$

 $-\varphi_x$ feature map

• Inner product between feature maps:

$$\langle \varphi_{x_1}, \varphi_{x_2} \rangle_{\mathcal{F}} = \langle k(x_1, \cdot), k(x_2, \cdot) \rangle_{\mathcal{F}} = k(x_1, x_2)$$

• Example: $f = \sum_{i=1}^{m} \alpha_i \varphi_{x_i}$

$$f(x) = \langle f, \varphi_x \rangle_{\mathcal{F}} = \left\langle \sum_{i=1}^m \alpha_i \varphi_{x_i}, \varphi_x \right\rangle_{\mathcal{F}} = \sum_{i=1}^m \alpha_i k(x_i, x)$$

Embedding of \mathbf{P}_X to feature space

• $\mu_X \in \mathcal{F}$ such that $\forall f \in \mathcal{F}$,

 $\langle \boldsymbol{\mu}_{\boldsymbol{X}}, f \rangle = E_{\boldsymbol{X}} f.$

• What does mean embedding look like?

 $\mu_X(x) = \langle \mu_X, \varphi_x \rangle$ $= E_X k(X, x).$

Expectation of kernel!

• Empirical estimate:

$$\hat{\mu}_X(x) = \frac{1}{m} \sum_{i=1}^m k(x_i, x) \qquad x_i \sim \mathbf{P}_X$$

Embedding of \mathbf{P}_X to feature space

• $\mu_X \in \mathcal{F}$ such that $\forall f \in \mathcal{F}$,

 $\langle \boldsymbol{\mu}_{\boldsymbol{X}}, f \rangle = E_{\boldsymbol{X}} f.$

• What does mean embedding look like?

 $\mu_X(x) = \langle \mu_X, \varphi_x \rangle$ $= E_X k(X, x).$

Expectation of kernel!

• Empirical estimate:

$$\hat{\mu}_X(x) = \frac{1}{m} \sum_{i=1}^m k(x_i, x) \qquad x_i \sim \mathbf{P}_X$$

- ... in finite space
 - Given $f \in \mathbb{R}^d$ and $g \in \mathbb{R}^{d'}$
 - Define outer product

 fg^{\top}

• Given $u \in \mathbb{R}^d$ and $v \in \mathbb{R}^{d'}$,

$$(fg^{\top})v = (g^{\top}v)f$$

and

$$\left\langle fg^{\top}, uv^{\top} \right\rangle = \operatorname{tr}\left((fg^{\top})^{\top} (uv^{\top}) \right)$$

= $(f^{\top}u)(g^{\top}v)$

- ... in kernel space
 - Given $f \in \mathcal{F}$ and $g \in \mathcal{G}$
 - Define tensor product space

 $f\otimes g\in \mathcal{F}\otimes \mathcal{G}$

• $f \otimes g$ operator mapping $\mathcal{G} \to \mathcal{F}$: given any $v \in \mathcal{G}$,

 $f\otimes g\left(v
ight)=\left\langle g,v
ight
angle f$

• Inner product in $\mathcal{F} \otimes \mathcal{G}$:

 $\langle f \otimes g, u \otimes v \rangle_{\mathcal{F} \otimes \mathcal{G}} = \langle f, u \rangle \langle g, v \rangle$

• Covariance between $f \in \mathcal{F}$ and $g \in \mathcal{G}$ (uncentred)

$$\operatorname{cov}(f,g) = E_{XY}(fg)$$

• Covariance operator: mapping from $\mathcal{F} \otimes \mathcal{G} \to \mathbb{R}$.

$$E_{XY} fg = E_{XY} \langle f, \varphi_X \rangle \langle g, \phi_Y \rangle$$

$$= E_{XY} \langle f \otimes g, \varphi_X \otimes \phi_Y \rangle_{\mathcal{F} \otimes \mathcal{G}}$$

$$= \langle f \otimes g, E_{XY} \varphi_X \otimes \phi_Y \rangle_{\mathcal{F} \otimes \mathcal{G}}$$

$$= \langle f \otimes g, C_{XY} \rangle_{\mathcal{F} \otimes \mathcal{G}}$$

Empirical estimate:
$$= \langle f, C_{XY} g \rangle_{\mathcal{F}}$$

$$\widehat{C}_{XY} := \frac{1}{m} \sum_{i=1}^{m} \varphi_{x_i} \otimes \phi_{y_i} \qquad (x_i, y_i) \sim \mathbf{P}_{XY}$$

First singular value of C_{xy} :

• Conditional mean embedding,

$$\langle g, \mu_{Y|X=x} \rangle = E_{Y|X=x}g(Y)$$

 $\mu_{Y|X=x} := C_{YX}C_{XX}^{-1}\varphi_x$

 $[\mathrm{Song}~\mathrm{et}~\mathrm{al.},~2009]$

• Reminder: Gaussian case

$$\mu_{Y|x} = C_{YX}C_{XX}^{-1}x$$

• Function is conditional expectation of kernel:

$$\mu_{Y|X=x}(y) = \langle \mu_{Y|X=x}, \phi_y \rangle = \mathbf{E}_{Y|x}k(Y, y)$$

Messages from observed leaves

• Goal: given leaf evidence x_t and parent X_S , want $m_{ts} := \mathbf{P}(x_t | X_s)$

Messages from observed leaves

• Goal: given leaf evidence x_t and parent X_S , want $m_{ts} := \mathbf{P}(x_t | X_s)$

• Training data

$$(x_{s,1}, x_{t,1}), \ldots, (x_{s,m}, x_{t,m})$$

• Empirical leaf messages $m_{ts}(X_S)$

$$m_{ts}(X_s) = \mathbf{P}(x_t | X_s)$$
$$= \sum_{i=1}^m \beta_{ts,i} k(x_{s,i}, X_s)$$

 $\boldsymbol{\beta_{ts}} = ((K_t + \lambda I)(K_s + \lambda I))^{-1}\boldsymbol{k_t}$

Marginalize over internal nodes

• Marginalize over X_t :

$$m_{ts}(X_s) = \sum_{i=1}^{m} \beta_{ts,i} k(x_{s,i}, X_s)$$
$$\beta_{ts} = (K_s + \lambda I)^{-1} \bigodot_{u \in \Gamma_t \setminus s} K_t^{(u)} \beta_{ut}$$

• Advantages:

- Cost increase not exponential in depth unlike Gaussian Mixture Models (GMM) [Sudderth et al., 2003]
- Nonparametric model learned from data unlike GMM, Particle BP [Sudderth et al., 2003, Ihler and McAllester, 2009]

- Experiment from [Song, Gretton, and Guestrin, 2010b]
- Source document one of Danish, German, English,...
- Target document Swedish
- Data: 300 documents from European Parliament transcripts [Koehn, 2005]

Recall score: whether target document is in set of retrieved documents

Details: TF-IDF document features, stopword removal and stemming, Gaussian RBF kernel, bandwidth at median distance between feature vectors.

Recall score: whether target document is in set of retrieved documents

Details: TF-IDF document features, stopword removal and stemming, Gaussian RBF kernel, bandwidth at median distance between feature vectors.

Recall score: whether target document is in set of retrieved documents

Details: TF-IDF document features, stopword removal and stemming, Gaussian RBF kernel, bandwidth at median distance between feature vectors.

Recall score: whether target document is in set of retrieved documents

Details: TF-IDF document features, stopword removal and stemming, Gaussian RBF kernel, bandwidth at median distance between feature vectors.

Recall score: whether target document is in set of retrieved documents

- Bilingual topic model with 50 topics for each edge [Mimno et al., 2009]
- Compare topic distribution of query in target domain with topic distributions of all target documents

Recall score: whether target document is in set of retrieved documents

Normalized document length [Gale and Church, 1991]

• Chain length irrelevant

Nonparametric tree graphical model, evidence at multiple leaves

Loopy belief propagation

• Pairwise MRF

$$\mathbf{P}(X) = \frac{1}{Z} \prod_{(s,t)\in\mathcal{E}} \Psi_{st}(X_s, X_t) \prod_{s\in\mathcal{V}} \Psi_s(X_s),$$

• $\Psi_s(X_s)$ node potentials, $\Psi_{st}(X_s, X_t)$ edge potentials, and Z normalization.

• Loopy BP [Yedidia et al., 2001]: Iterate

$$m_{ts}(X_s) = \int_{X_t} \Psi_{st}(X_s, X_t) \Psi_t(X_t) \prod_{u \in \Gamma_t \setminus s} m_{ut}(X_t) \, dX_t$$

Locally consistent BP

• Locally consistent BP [Wainwright et al., 2003]

$$\Psi_s(X_s) = \mathbf{P}(X_s), \qquad \Psi(X_s, X_t) = \mathbf{P}(X_s, X_t)\mathbf{P}(X_t)^{-1}\mathbf{P}(X_t)^{-1},$$

 $\mathbf{P}(X_s)$ and $\mathbf{P}(X_s, X_t)$ empirical distributions

Locally consistent BP

• Locally consistent BP [Wainwright et al., 2003]

 $\Psi_s(X_s) = \mathbf{P}(X_s), \qquad \Psi(X_s, X_t) = \mathbf{P}(X_s, X_t)\mathbf{P}(X_t)^{-1}\mathbf{P}(X_t)^{-1},$

 $\mathbf{P}(X_s)$ and $\mathbf{P}(X_s, X_t)$ empirical distributions

• Fixed point, $\mathbf{P}(X_s)$ and $\mathbf{P}(X_s, X_t)$, at empirical marginals,

$$\mathbf{P}(X_s) = \mathbf{P}(X_s) \prod_{u \in \Gamma_s} m_{us}(X_s),$$
$$\mathbf{P}(X_s, X_t) = \mathbf{P}(X_s, X_t) \left(\prod_{u \in \Gamma_s \setminus t} m_{us}(X_s) \right) \left(\prod_{u \in \Gamma_t \setminus s} m_{ut}(X_t) \right).$$

Locally consistent BP

• Locally consistent BP [Wainwright et al., 2003]

 $\Psi_s(X_s) = \mathbf{P}(X_s), \qquad \Psi(X_s, X_t) = \mathbf{P}(X_s, X_t)\mathbf{P}(X_t)^{-1}\mathbf{P}(X_t)^{-1},$

 $\mathbf{P}(X_s)$ and $\mathbf{P}(X_s, X_t)$ empirical distributions

• Fixed point, $\mathbf{P}(X_s)$ and $\mathbf{P}(X_s, X_t)$, at empirical marginals,

$$\mathbf{P}(X_s) = \mathbf{P}(X_s) \prod_{u \in \Gamma_s} m_{us}(X_s),$$
$$\mathbf{P}(X_s, X_t) = \mathbf{P}(X_s, X_t) \left(\prod_{u \in \Gamma_s \setminus t} m_{us}(X_s) \right) \left(\prod_{u \in \Gamma_t \setminus s} m_{ut}(X_t) \right).$$

• BP update: can be kernelized [Song, Gretton, Bickson, Low, and Guestrin, 2010a]

$$m_{ts}(X_s) = \int_{\mathcal{X}_t} \mathbf{P}(X_t | X_s) \prod_{u \in \Gamma_{t \setminus s}} m_{ut}(X_t) \ dX_t$$
$$= \mathbf{E}_{X_t | X_s} \left[\prod_{u \in \Gamma_{t \setminus s}} m_{ut}(X_t) \ dX_t \right].$$

• 3D depth reconstruction from 2D image features.

 $\left[\text{Song, Gretton, Bickson, Low, and Guestrin, 2010a} \right]$

- 274 images taken on the Stanford campus [Saxena et al., 2007]
- Patches: 107 by 86, depth map using 3D laser scanners
- Patch represented by 273 dimensional feature vector:
 - local features (color and texture)
 - relative features (from adjacent patches)

- Templatized model
 - Depth $y_i \in \mathbb{R}$ hidden var. for each image patch, in 2D grid
 - Depth linked to image features $x_i \in \mathbb{R}^{273}$
 - Potentials $\Psi(y_i, x_i)$ between features and depth unknown, as are $\Psi(y_i, y_k)$
- Kernels: Gaussian RBF on depth, linear on features
- Low rank QR approximation to make inference tractable

- Templatized model
 - Depth $y_i \in \mathbb{R}$ hidden var. for each image patch, in 2D grid
 - Depth linked to image features $x_i \in \mathbb{R}^{273}$
 - Potentials $\Psi(y_i, x_i)$ between features and depth unknown, as are $\Psi(y_i, y_k)$
- Kernels: Gaussian RBF on depth, linear on features
- Low rank QR approximation to make inference tractable
- Competing methods:
 - Discrete BP
 - Gaussian mixture BP [Sudderth et al., 2003]
 - Particle BP [Ihler and McAllester, 2009]
 - Conditional density learned using [Sugiyama et al., 2010]

Results

- BP run for 10 iterations
- Leave-one-out error reported

Conclusions

- Kernel nonparametric message passing:
 - Exact inference on trees
 - Loopy BP on pairwise MRFs
- Advantages:
 - Complex high-dimensional/structured data
 - Non-Gaussian/multimodal
 - Density estimation/integration too expensive
 - Don't need models, just need observations!
- Experiments
 - Best performance (on all experiments)
 - Much faster than competing nonparametric methods

Questions?

Photo credit: Yann LeCun

Bibliography

References

- K. Fukumizu, F. R. Bach, and M. I. Jordan. Dimensionality reduction for supervised learning with reproducing kernel Hilbert spaces. J. Mach. Learn. Res., 5:73–99, 2004.
- W. A. Gale and K. W. Church. A program for aligning sentences in bilingual corpora. In *Meeting of the* Association for Computational Linguistics, pages 177–184, 1991.
- A. Ihler and D. McAllester. Particle belief propagation. In AISTATS, 2009.
- P. Koehn. Europarl: A parallel corpus for statistical machine translation. In *Machine Translation Summit X*, pages 79–86, 2005.
- D. Mimno, H. Wallach, J. Naradowsky, D. Smith, and A. McCallum. Polylingual topic models. In Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, pages 880–889, Singapore, August 2009. ACL.
- Ashutosh Saxena, Sung H. Chung, and Andrew Y. Ng. 3-d depth reconstruction from a single still image. International Journal on Computer Vision, 76(1):53-69, 2007.
- L. Song, A. Gretton, D. Bickson, Y. Low, and C. Guestrin. Kernel belief propagation. In Submitted, 2010a.
- L. Song, A. Gretton, and C. Guestrin. Nonparametric tree graphical models. In 13th Workshop on Artificial Intelligence and Statistics, volume 9 of JMLR workshop and conference proceedings, pages 765-772, 2010b.
- Le Song, Jonathan Huang, Alex Smola, and Kenji Fukumizu. Hilbert space embeddings of conditional distributions. In Proc. Intl. Conf. Machine Learning, 2009.

Given a function $g \in \mathcal{G}$. Assume $E_{Y|X}[g(Y)|X = \cdot] \in \mathcal{F}$. Then

$$C_{XX}E_{Y|X}[g(Y)|X=\cdot]=C_{XY}g.$$

Given a function $g \in \mathcal{G}$. Assume $E_{Y|X}[g(Y)|X = \cdot] \in \mathcal{F}$. Then

$$C_{XX}E_{Y|X}\left[g(Y)|X=\cdot\right]=C_{XY}g.$$

Proof: [Fukumizu et al., 2004]

For all $f \in \mathcal{F}$, by definition of C_{XX} ,

$$\langle f, C_{XX} E_{Y|X} [g(Y)|X = \cdot] \rangle_{\mathcal{F}}$$

= cov $(f, E_{Y|X} [g(Y)|X = \cdot])$
= $E_X (f(X) E_{Y|X} [g(Y)|X])$
= $E_{XY} (f(X)g(Y))$
= $\langle f, C_{XY}g \rangle$,

by definition of C_{XY} .

• Conditional mean embedding,

$$\left\langle g, \mu_{Y|X=x} \right\rangle_{\mathcal{G}} = E_{Y|X=x}g(Y)$$

 $orall g \in \mathcal{G}$ [Song et al., 2009]

• Expression for this:

$$E_{Y|X=x}g(Y)$$

$$= \langle E_{Y|X} [g(Y)|X = \cdot], \varphi_x \rangle_{\mathcal{F}}$$

$$= \langle C_{XX}^{-1} C_{XY} g, \varphi_x \rangle_{\mathcal{F}}$$

$$= \langle g, C_{YX} C_{XX}^{-1} \varphi_x \rangle_{\mathcal{G}}$$

$$= \langle g, \mu_{Y|X=x} \rangle_{\mathcal{G}}$$

• Conditional mean embedding,

$$\langle g, \mu_{Y|X=x} \rangle = E_{Y|X=x}g(Y).$$

 $\forall g \in \mathcal{G}, \, \forall g \in \mathcal{G}$ [Song et al., 2009]

• Expression for this:

$$E_{Y|X=x}g(Y)$$

$$= \langle E_{Y|X} [g(Y)|X = \cdot], \varphi_x$$

$$= \langle C_{XX}^{-1} C_{XY} g, \varphi_x \rangle$$

$$= \langle g, C_{YX} C_{XX}^{-1} \varphi_x \rangle$$

$$= \langle g, \mu_{Y|X=x} \rangle$$

 $\mu_{Y|X=x} := C_{YX}C_{XX}^{-1}\varphi_x.$ Function is conditional expectation of kernel:

$$\begin{aligned} \mu_{Y|X=x}(y) &= \langle \mu_{Y|X=x}, \phi_y \rangle \\ &= \mathbf{E}_{Y|x} l(Y, y) \end{aligned}$$

Messages from leaf nodes

- Goal: given leaf evidence x_t and parent X_S , want $m_{ts} := \mathsf{P}(x_t | X_s)$
- Assume m_{ts} an RKHS function,

$$m_{st}(x_t|x_s) := \mathsf{P}(x_t|x_s) \propto \frac{\mathsf{P}(x_s|x_t)}{\mathsf{P}(x_t)} \in \mathcal{G}_s$$

Messages from leaf nodes

- Goal: given leaf evidence x_t and parent X_S , want $m_{ts} := \mathsf{P}(x_t|X_s)$
- Assume m_{ts} an RKHS function,

$$m_{ts} := \mathbf{P}(x_t | x_s) \propto \frac{\mathbf{P}(x_t | x_s)}{\mathbf{P}(x_t)}$$

Proof: [Song, Gretton, and Guestrin, 2010b]

$$\mu_{x_s|x_t} = \int \mathbf{P}(x_s|x_t)\phi_{x_s}dx_s$$

$$= \int \frac{\mathbf{P}(x_t|x_s)}{\mathbf{P}(x_t)}\mathbf{P}(x_s)\phi_{x_s}dx_s$$

$$= \mathbf{E}_{x_s} [m_{ts}\phi_{x_s}]$$

$$= \mathbf{E}_{x_s} [\langle m_{ts}, \phi_{x_s} \rangle \phi_{x_s}]$$

$$= \mathbf{E}_{x_s} [\langle m_{ts}, \phi_{x_s} \rangle \phi_{x_s}]$$

$$= C_{ss}m_{ts}$$

