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A challenge: cross-language document retrieval

Cross-language document retrieval

• Many translations from “other” to

English

• Few translations between unlike lan-

guages: Portuguese to Swedish

The problem: retrieve document in target language given
document in source language, without examples of direct
translation



Motivation and further applications

• Why use a non-parametric (kernel) algorithm?

– Complex high-dimensional/structured data (discretization fails)

– Non-Gaussian/multimodal (Gaussian BP fails)

– Density estimation/integration too expensive (Parzen window

approximations fail)

– Model learned from training data
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∫
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What’s needed for learning and inference

• Learn the the messages from child nodes

– Need to express conditional probabilities

• Combine evidence from multiple children

– Need to marginalize



“Unusual” aspect: training phase

Model learned from training data



Conditional probabilities: gaussian case

• A hint: what would we do for the (zero mean) Gaussian?

p(z) ∝
(
−z!C−1z

)
,

• Partition

z =



 x

y



 C =



 Cxx Cxy

Cyx Cyy



 .

• Conditional prob. of y given x:

P(y|x) = N (CyxC
−1
xx x,Cyy − CyxC

−1
xx Cxy)

• Conditional expectation of y given x:

µy|x = CyxC
−1
xx x

Ey|x(a
!y) = a!µy|x



Conditional probabilities: Gaussian case

Complex functions linear in some feature space

• Nonlinear mean?

EX(a!X) = a!µX

becomes EXf(X) = 〈f, µX〉F

in some feature space F

• Nonlinear conditional mean?

Ey|x(a
!y) = a!µy|x = a!CyxC

−1
xx x

becomes Ey|xf(X) = 〈f, µy|x〉F = ??



How do we do this with kernels?



Plan of attack

1. Kernelized mean

2. Kernelized covariance, leading to . . .

3. . . . kernel conditional mean

4. Messages from observed leaves (conditional probabilities)

5. Marginalize over internal node variables



RKHS definitions and properties

• F RKHS from X to R with positive definite kernel k(xi, xj)

• F = span{k(x, ·)|x ∈ X}
– Example: f(x) =

∑m
i=1 αik(xi, x) for arbitrary m ∈ N, αi ∈ R,

xi ∈ X .
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RKHS definitions and properties

• Riesz: unique representer of evaluation ϕx ∈ F :

f(x) = 〈f,ϕx〉F = 〈f, k(x, ·)〉F

– ϕx feature map

• Inner product between feature maps:

〈ϕx1 ,ϕx2〉F = 〈k(x1, ·), k(x2, ·)〉F = k(x1, x2)

• Example: f =
∑m

i=1 αiϕxi

f(x) = 〈f,ϕx〉F =

〈
m∑

i=1

αiϕxi ,ϕx

〉

F

=
m∑

i=1

αik(xi, x)



Step 1: kernelized mean

Embedding of PX to feature space

• µX ∈ F such that ∀f ∈ F ,

〈µX , f〉 = EXf.

• What does mean embedding

look like?

µX(x) = 〈µX ,ϕx〉

= EXk(X,x).

Expectation of kernel!

• Empirical estimate:

µ̂X(x) =
1

m

m∑

i=1

k(xi, x) xi ∼ PX
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Step 2: kernelized covariance

. . . in finite space

• Given f ∈ Rd and g ∈ Rd′

• Define outer product

fg!

• Given u ∈ Rd and v ∈ Rd′ ,

(fg!)v = (g!v)f

and
〈
fg!, uv!

〉
= tr

(
(fg!)!(uv!)

)

= (f!u)(g!v)

. . . in kernel space

• Given f ∈ F and g ∈ G

• Define tensor product space

f ⊗ g ∈ F ⊗ G

• f ⊗ g operator mapping

G → F : given any v ∈ G,

f ⊗ g (v) = 〈g, v〉 f

• Inner product in F ⊗ G:

〈f ⊗ g, u⊗ v〉F⊗G = 〈f, u〉 〈g, v〉



Step 2: kernelized covariance

• Covariance between f ∈ F and g ∈ G (uncentred)

cov(f, g) = EXY (fg)

• Covariance operator: mapping from F ⊗ G → R.

EXY fg = EXY 〈f,ϕX〉 〈g,φY 〉

= EXY 〈f ⊗ g,ϕX ⊗ φY 〉F⊗G

= 〈f ⊗ g, EXY ϕX ⊗ φY 〉F⊗G

= 〈f ⊗ g, CXY 〉F⊗G

= 〈f, CXY g〉F• Empirical estimate:

ĈXY :=
1

m

m∑

i=1

ϕxi ⊗ φyi (xi, yi) ∼ PXY



Step 2: kernelized covariance

First singular value of Cxy:

sup
‖f‖≤1,‖g‖≤1

〈f, Cxyg〉F = sup
‖f‖≤1,‖g‖≤1

cov(f, g)
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Step 2: kernelized covariance

Second singular value of Cxy:
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Step 3: kernelized conditional mean

• Conditional mean embedding,

〈
g, µY |X=x

〉
= EY |X=xg(Y )

µY |X=x := CY XC−1
XXϕx

[Song et al., 2009]
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• Reminder: Gaussian case

µY |x = CY XC−1
XXx

• Function is conditional expectation of kernel:

µY |X=x(y) = 〈µY |X=x,φy〉 = EY |xk(Y, y)



Messages from observed leaves

• Goal: given leaf evidence xt and parent XS , want mts := P(xt|Xs)



Messages from observed leaves

• Goal: given leaf evidence xt and parent XS , want mts := P(xt|Xs)

• Training data

(xs,1, xt,1), . . . , (xs,m, xt,m)

• Empirical leaf messages mts(XS)

mts(Xs) = P(xt|Xs)

=
m∑

i=1

βts,ik(xs,i, Xs)

βts = ((Kt + λI)(Ks + λI))−1kt



Marginalize over internal nodes

• Marginalize over Xt:

mts(Xs) =
m∑

i=1

βts,ik(xs,i, Xs)

βts = (Ks + λI)−1
⊙

u∈Γt\s

K(u)
t βut

• Advantages:

– Cost increase not exponential in depth

unlike Gaussian Mixture Models (GMM) [Sudderth et al., 2003]

– Nonparametric model learned from data

unlike GMM, Particle BP [Sudderth et al., 2003, Ihler and McAllester, 2009]



Cross-language document retrieval

• Experiment from [Song, Gretton, and Guestrin, 2010b]

• Source document one of Danish, German, English,. . .

• Target document Swedish

• Data: 300 documents from European Parliament transcripts [Koehn, 2005]



Cross-language document retrieval
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bandwidth at median distance between feature vectors.
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Cross-language document retrieval
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• Bilingual topic model with 50 topics for each edge [Mimno et al., 2009]

• Compare topic distribution of query in target domain with topic

distributions of all target documents



Cross-language document retrieval
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Normalized document length [Gale and Church, 1991]

• Chain length irrelevant



Cross-language document retrieval
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Nonparametric tree graphical model,
evidence at multiple leaves



Loopy belief propagation

• Pairwise MRF

P(X) =
1

Z

∏

(s,t)∈E

Ψst(Xs, Xt)
∏

s∈V
Ψs(Xs),

• Ψs(Xs) node potentials, Ψst(Xs, Xt) edge

potentials, and Z normalization.

• Loopy BP [Yedidia et al., 2001]:

Iterate

mts(Xs) =

∫

Xt

Ψst(Xs, Xt)Ψt(Xt)
∏

u∈Γt\s
mut(Xt) dXt



Locally consistent BP

• Locally consistent BP [Wainwright et al., 2003]

Ψs(Xs) = P(Xs), Ψ(Xs, Xt) = P(Xs, Xt)P(Xt)
−1P(Xt)

−1,

P(Xs) and P(Xs, Xt) empirical distributions



Locally consistent BP

• Locally consistent BP [Wainwright et al., 2003]

Ψs(Xs) = P(Xs), Ψ(Xs, Xt) = P(Xs, Xt)P(Xt)
−1P(Xt)

−1,

P(Xs) and P(Xs, Xt) empirical distributions

• Fixed point, P(Xs) and P(Xs, Xt), at empirical marginals,

P(Xs) = P(Xs)
∏

u∈Γs
mus(Xs),

P(Xs, Xt) = P(Xs, Xt)

(∏
u∈Γs\t

mus(Xs)

)(∏
u∈Γt\s

mut(Xt)

)
.



Locally consistent BP

• Locally consistent BP [Wainwright et al., 2003]

Ψs(Xs) = P(Xs), Ψ(Xs, Xt) = P(Xs, Xt)P(Xt)
−1P(Xt)

−1,

P(Xs) and P(Xs, Xt) empirical distributions

• Fixed point, P(Xs) and P(Xs, Xt), at empirical marginals,

P(Xs) = P(Xs)
∏

u∈Γs
mus(Xs),

P(Xs, Xt) = P(Xs, Xt)

(∏
u∈Γs\t

mus(Xs)

)(∏
u∈Γt\s

mut(Xt)

)
.

• BP update: can be kernelized [Song, Gretton, Bickson, Low, and Guestrin, 2010a]

mts(Xs) =

∫

Xt

P(Xt|Xs)
∏

u∈Γt\s
mut(Xt) dXt

= EXt|Xs

[∏
u∈Γt\s

mut(Xt) dXt

]
.



Application: depth from 2D images

• 3D depth reconstruction from 2D image features.

[Song, Gretton, Bickson, Low, and Guestrin, 2010a]

• 274 images taken on the Stanford campus [Saxena et al., 2007]

• Patches: 107 by 86, depth map using 3D laser scanners

• Patch represented by 273 dimensional feature vector:

– local features (color and texture)

– relative features (from adjacent patches)



Application: depth from 2D images

• Templatized model

– Depth yi ∈ R hidden var. for each image patch, in 2D grid

– Depth linked to image features xi ∈ R273

– Potentials Ψ(yi, xi) between features and depth unknown, as are

Ψ(yi, yk)

• Kernels: Gaussian RBF on depth, linear on features

• Low rank QR approximation to make inference tractable



Application: depth from 2D images

• Templatized model

– Depth yi ∈ R hidden var. for each image patch, in 2D grid

– Depth linked to image features xi ∈ R273

– Potentials Ψ(yi, xi) between features and depth unknown, as are

Ψ(yi, yk)

• Kernels: Gaussian RBF on depth, linear on features

• Low rank QR approximation to make inference tractable

• Competing methods:

– Discrete BP

– Gaussian mixture BP [Sudderth et al., 2003]

– Particle BP [Ihler and McAllester, 2009]

– Conditional density learned using [Sugiyama et al., 2010]



Application: depth from 2D images

Results

• BP run for 10 iterations

• Leave-one-out error reported
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Conclusions

• Kernel nonparametric message passing:

– Exact inference on trees

– Loopy BP on pairwise MRFs

• Advantages:

– Complex high-dimensional/structured data

– Non-Gaussian/multimodal

– Density estimation/integration too expensive

– Don’t need models, just need observations!

• Experiments

– Best performance (on all experiments)

– Much faster than competing nonparametric methods



Questions?

Photo credit: Yann LeCun
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Step 3: kernelized conditional mean

Given a function g ∈ G. Assume EY |X [g(Y )|X = ·] ∈ F . Then

CXXEY |X [g(Y )|X = ·] = CXY g.

Proof : [Fukumizu et al., 2004]

For all f ∈ F , by definition of CXX ,

〈
f, CXXEY |X [g(Y )|X = ·]

〉
F

= cov
(
f,EY |X [g(Y )|X = ·]

)

= EX
(
f(X) EY |X [g(Y )|X]

)

= EXY (f(X)g(Y ))

= 〈f, CXY g〉 ,

by definition of CXY .



Step 3: kernelized conditional mean

• Conditional mean embedding,

〈
g, µY |X=x

〉
G = EY |X=xg(Y )

∀g ∈ G [Song et al., 2009]

• Expression for this:

EY |X=xg(Y )

=
〈
EY |X [g(Y )|X = ·] ,ϕx

〉
F

=
〈
C−1
XXCXY g,ϕx

〉
F

=
〈
g, CY XC−1

XXϕx
〉
G

=
〈
g, µY |X=x

〉
G



Step 3: kernelized conditional mean

• Conditional mean embedding,

〈
g, µY |X=x

〉
= EY |X=xg(Y ).

∀g ∈ G, ∀g ∈ G [Song et al., 2009]
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• Expression for this:

EY |X=xg(Y )

=
〈
EY |X [g(Y )|X = ·] ,ϕx

〉

=
〈
C−1
XXCXY g,ϕx

〉

=
〈
g, CY XC−1

XXϕx
〉

=
〈
g, µY |X=x

〉

µY |X=x := CY XC−1
XXϕx.

Function is conditional

expectation of kernel:

µY |X=x(y) = 〈µY |X=x,φy〉

= EY |xl(Y, y)



Messages from leaf nodes

• Goal: given leaf evidence xt and parent XS , want mts := P(xt|Xs)

• Assume mts an RKHS function,

mst(xt|xs) := P(xt|xs) ∝
P(xs|xt)
P(xt)

∈ Gs



Messages from leaf nodes

• Goal: given leaf evidence xt and parent XS , want mts := P(xt|Xs)

• Assume mts an RKHS function,

mts := P(xt|xs) ∝
P(xt|xs)
P(xt)

Proof: [Song, Gretton, and Guestrin, 2010b]

µxs|xt
=

∫
P(xs|xt)φxsdxs

=

∫
P(xt|xs)
P(xt)

P(xs)φxsdxs

= Exs [mtsφxs ]

= Exs [〈mts,φxs〉φxs ]

= Exs [φxs ⊗ φxs ]mts

= Cssmts


