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Goal of this talk

Have: Two collections of samples X;Y from unknown distributions
P and Q .
Goal: Learn distinguishing features that indicate how P and Q
differ.
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Divergences

Sriperumbudur, Fukumizu, G, Schoelkopf, Lanckriet (2012)
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Overview

The Maximum mean discrepancy:

How to compute and interpret the MMD
How to train the MMD
Application to troubleshooting GANs

The ME test statistic:

Informative, linear time features for comparing distributions
How to learn these features

TL;DR: Variance matters.
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The maximum mean discrepancy

Are P and Q different?
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Maximum mean discrepancy (on sample)
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Maximum mean discrepancy (on sample)

Observe X = fx1; : : : ;xng � P

Observe Y = fy1; : : : ;yng � Q
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Maximum mean discrepancy (on sample)

Gaussian kernel on xi

Gaussian kernel on yi
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Maximum mean discrepancy (on sample)

�̂P(v) := 1
m
Pm

i=1 k(xi ; v)

v

�̂P(v): mean embedding of P

�̂Q(v): mean embedding of Q
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Maximum mean discrepancy (on sample)

v

�̂P(v): mean embedding of P

�̂Q(v): mean embedding of Q

witness(v) = �̂P(v)� �̂Q(v)| {z }
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Maximum mean discrepancy (on sample)

\MMD
2
= kwitness(v)k2

F

=
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n(n � 1)

X
i 6=j

k(xi ; xj ) +
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n(n � 1)

X
i 6=j

k(yi ; yj )

�
2
n2

X
i ;j

k(xi ; yj )
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Overview

Dogs (= P) and fish (= Q) example revisited
Each entry is one of k(dogi ;dogj ), k(dogi ;fishj ), or k(fishi ;fishj )
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Asymptotics of MMD

The MMD:

\MMD
2
=

1
n(n � 1)

X
i 6=j

k(xi ; xj ) +
1

n(n � 1)

X
i 6=j

k(yi ; yj )

�
2
n2

X
i ;j

k(xi ; yj )

but how to choose the kernel?

Perspective from statistical hypothesis testing:

� When P = Q then\MMD
2
“close to zero”.

� When P 6= Q then\MMD
2
“far from zero”

Threshold c� for\MMD
2
gives false positive rate �
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A statistical test
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P=Q

P≠ Q

False negatives

c
α
 = 1−α  quantile when P=Q

Best kernel gives lowest false negative rate (=highest power)

.... but can you train for this?
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Asymptotics of MMD

When P 6= Q , statistic is asymptotically normal,

\MMD
2
�MMD(P ;Q)p
Vn(P ;Q)

D
�! N (0; 1);

where MMD(P ;Q) is population MMD, and Vn(P ;Q) = O
�
n�1� .

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

2

4

6

8

10

12

14

MMD distribution and Gaussian fit under H1

MMD

P
ro

b
. 
d
e
n
s
it
y

 

 

Empirical PDF

Gaussian fit

16/28



Asymptotics of MMD
Where P = Q , statistic has asymptotic distribution

n\MMD
2
�

1X
l=1

�l

h
z 2
l � 2

i
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where

�i i (x 0) =
Z
X

~k(x ; x 0)| {z }
centred

 i (x )dP(x )

zl � N (0; 2) i:i:d:
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Optimizing test power

The power of our test (Pr1 denotes probability under P 6= Q):

Pr1
�
n\MMD

2
> ĉ�

�
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Optimizing test power

The power of our test (Pr1 denotes probability under P 6= Q):

Pr1
�
n\MMD

2
> ĉ�

�

! 1� �

 
c�

n
p

Vn(P ;Q)
�

MMD2(P ;Q)p
Vn(P ;Q)

!

where

� is the CDF of the standard normal distribution.

ĉ� is an estimate of c� test threshold.
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Optimizing test power

The power of our test (Pr1 denotes probability under P 6= Q):

Pr1
�
n\MMD

2
> ĉ�

�

! 1� �

 
c�

n
p

Vn(P ;Q)| {z }
O(n�3=2)

�
MMD2(P ;Q)p

Vn(P ;Q)| {z }
O(n�1=2)

!

First term asymptotically negligible!
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Optimizing test power
The power of our test (Pr1 denotes probability under P 6= Q):

Pr1
�
n\MMD

2
> ĉ�

�

! 1� �

 
c�

n
p

Vn(P ;Q)
�

MMD2(P ;Q)p
Vn(P ;Q)

!

To maximize test power, maximize

MMD2(P ;Q)p
Vn(P ;Q)

(Sutherland, Tung, Strathmann, De, Ramdas, Smola, G., in review for ICLR 2017)
Code: github.com/dougalsutherland/opt-mmd
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Troubleshooting for generative adversarial networks

MNIST samples Samples from a GAN
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Troubleshooting for generative adversarial networks

MNIST samples Samples from a GAN

ARD map

Power for optimzed ARD
kernel: 1.00 at � = 0:01

Power for optimized RBF
kernel: 0.57 at � = 0:01
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Benchmarking generative adversarial networks

20/28



The ME statistic and test
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Distinguishing Feature(s)

v

�̂P(v): mean embedding of P

�̂Q(v): mean embedding of Q

witness(v) = �̂P(v)� �̂Q(v)| {z }
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Distinguishing Feature(s)

witness2(v)

Take square of witness (only worry about
amplitude)
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Distinguishing Feature(s)

New test statistic: witness2 at a single v�;
Linear time in number n of samples
....but how to choose best feature v�?
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Distinguishing Feature(s)

Best feature =
v� that maximizes witness2(v)??

v�
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Distinguishing Feature(s)

Sample size n = 3

witness2(v)
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Distinguishing Feature(s)

Sample size n = 50
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Distinguishing Feature(s)

Sample size n = 500
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Distinguishing Feature(s)

P(x)

Q(y)

witness2(v)

Population witness2 function

24/28



Distinguishing Feature(s)

P(x)

Q(y)

witness2(v)

v�? v�?
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Variance of witness function

Variance at v = variance of X at v + variance of Y at v.
ME Statistic: �̂n(v) := n witness2(v)

variance of v .

Best location is v� that maximizes �̂n .
Improve performance using multiple locations fv�j g

J
j=1
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Variance of witness function

Variance at v = variance of X at v + variance of Y at v.
ME Statistic: �̂n(v) := n witness2(v)

variance of v .

v ¤

^̧
n(v)
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Distinguishing Positive/Negative Emotions

+ :

happy neutral surprised

� :

afraid angry disgusted

35 females and 35 males
(Lundqvist et al., 1998).

48� 34 = 1632 dimensions.
Pixel features.

Sample size: 402.

The proposed test achieves maximum test power in time O(n).

Informative features: differences at the nose, and smile lines.

26/28



Distinguishing Positive/Negative Emotions

+ :
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The proposed test achieves maximum test power in time O(n).
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Distinguishing Positive/Negative Emotions
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Distinguishing Positive/Negative Emotions

+ :

happy neutral surprised

� :

afraid angry disgusted

Learned feature

The proposed test achieves maximum test power in time O(n).
Informative features: differences at the nose, and smile lines.

Code: https://github.com/wittawatj/interpretable-test
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Final thoughts

Witness function approaches:
Diversity of samples:

� MMD test uses pairwise similarities between all samples
� ME test uses similarities to J reference features

Disjoint support of generator/data distributions
� Witness function is smooth

Other discriminator heuristics:
Diversity of samples by minibatch heuristic (add as feature distances
to neighbour samples) Salimans et al. (2016)

Disjoint support treated by adding noise to “blur” images Arjovsky and
Bottou (2016), Sønderby et al (2016)

27/28



Co-authors

Students and postdocs:
Kacper Chwialkowski (at Voleon)

Wittawat Jitkrittum

Heiko Strathmann

Dougal Sutherland

Collaborators
Kenji Fukumizu

Krikamol Muandet

Bernhard Schoelkopf

Bharath Sriperumbudur

Zoltan Szabo

Questions?

28/28



Testing against a probabilistic model
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Statistical model criticism

MMD(P ;Q) = kf �k2 = supkf kF�1[EQ f � Epf ]
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f �(x ) is the witness function
Can we compute MMD with samples from Q and a model P?
Problem: usualy can’t compute Epf in closed form.
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Stein idea

To get rid of Epf in
sup

kf kF�1
[Eq f � Epf ]

we define the Stein operator

Tpf = @x f + f (@x log p)

Then
EPTP f = 0

subject to appropriate boundary conditions. (Oates, Girolami, Chopin, 2016)
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Maximum Stein Discrepancy
Stein operator

Tpf = @x f + f @x (log p)

Maximum Stein Discrepancy (MSD)

MSD(p; q ;F) = sup
kgkF�1

EqTpg � EpTpg
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Maximum stein discrepancy
Closed-form expression for MSD: given Z ;Z 0 � q , then (Chwialkowski,
Strathmann, G., 2016) (Liu, Lee, Jordan 2016)

MSD(p; q ;F) = Eqhp(Z ;Z 0)

where

hp(x ; y) := @x log p(x )@x log p(y)k(x ; y)

+ @y log p(y)@xk(x ; y)

+ @x log p(x )@yk(x ; y)

+ @x@yk(x ; y)

and k is RKHS kernel for F

Only depends on kernel and @x log p(x ). Do not need to
normalize p, or sample from it.
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Statistical model criticism
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Test the hypothesis that a Gaussian process model, learned from
data ?, is a good fit for the test data (example from Lloyd and Ghahramani,
2015)

Code: https://github.com/karlnapf/kernel_goodness_of_fit
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Statistical model criticism
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Test the hypothesis that a Gaussian process model, learned from
data ?, is a good fit for the test data
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