Learning features to compare distributions

Arthur Gretton

Gatsby Computational Neuroscience Unit, University College London

NIPS 2016 Workshop on Adversarial Learning, Barcelona Spain

Goal of this talk

■ Have: Two collections of samples X, Y from unknown distributions P and Q.
. Goal: Learn distinguishing features that indicate how P and Q differ.

Goal of this talk

■ Have: Two collections of samples X, Y from unknown distributions P and Q.
■ Goal: Learn distinguishing features that indicate how P and Q differ.

Divergences

Divergences

Divergences

Divergences

Divergences

Sriperumbudur, Fukumizu, G, Schoelkopf, Lanckriet (2012)

Overview

The Maximum mean discrepancy:

- How to compute and interpret the MMD
- How to train the MMD
- Application to troubleshooting GANs

The ME test statistic:

■ Informative, linear time features for comparing distributions

- How to learn these features

TL;DR: Variance matters.

The maximum mean discrepancy

Are P and Q different?

Maximum mean discrepancy (on sample)

Maximum mean discrepancy (on sample)

Observe $\mathrm{X}=\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}\right\} \sim P$

Maximum mean discrepancy (on sample)

Maximum mean discrepancy (on sample)

$$
\hat{\mu}_{P}(\mathbf{V}):=\frac{1}{m} \sum m_{i=1}^{m} k\left(\boldsymbol{x}_{i}, v\right)
$$

Maximum mean discrepancy (on sample)

Maximum mean discrepancy (on sample)

$$
\begin{aligned}
\widehat{M M D}^{2}= & \| \text { witness }(\mathbf{v}) \|_{\mathcal{F}}^{2} \\
= & \frac{1}{n(n-1)} \sum_{i \neq j} k\left(x_{i}, x_{j}\right)+\frac{1}{n(n-1)} \sum_{i \neq j} k\left(\mathrm{y}_{i}, \mathrm{y}_{j}\right) \\
& \quad-\frac{2}{n^{2}} \sum_{i, j} k\left(x_{i}, \mathrm{y}_{j}\right)
\end{aligned}
$$

Overview

■ Dogs $(=P)$ and fish ($=Q$) example revisited
\square Each entry is one of $k\left(\operatorname{dog}_{i}, \operatorname{dog}_{j}\right), k\left(\operatorname{dog}_{i}, \mathrm{fish}_{j}\right)$, or $k\left(\mathrm{fish}_{i}, \mathrm{fish}_{j}\right)$

Overview

The maximum mean discrepancy:

$$
\widehat{M M D}^{2}=\frac{1}{n(n-1)} \sum_{i \neq j} k\left(\operatorname{dog}_{i}, \operatorname{dog}_{j}\right)+\frac{1}{n(n-1)} \sum_{i \neq j} k\left(\mathrm{fish}_{i}, \mathrm{fish}_{j}\right)
$$

$$
-\frac{2}{n^{2}} \sum_{i, j} k\left(\operatorname{dog}_{i}, \mathrm{fish}_{j}\right)
$$

Asymptotics of MMD

- The MMD:

$$
\begin{gathered}
\widehat{M M D}^{2}=\frac{1}{n(n-1)} \sum_{i \neq j} k\left(x_{i}, x_{j}\right)+\frac{1}{n(n-1)} \sum_{i \neq j} k\left(\mathrm{y}_{i}, \mathrm{y}_{j}\right) \\
\quad-\frac{2}{n^{2}} \sum_{i, j} k\left(x_{i}, \mathrm{y}_{j}\right)
\end{gathered}
$$

but how to choose the kernel?

Asymptotics of MMD

- The MMD:

$$
\begin{gathered}
\widehat{M M D}^{2}=\frac{1}{n(n-1)} \sum_{i \neq j} k\left(x_{i}, x_{j}\right)+\frac{1}{n(n-1)} \sum_{i \neq j} k\left(\mathrm{y}_{i}, \mathrm{y}_{j}\right) \\
\quad-\frac{2}{n^{2}} \sum_{i, j} k\left(x_{i}, \mathrm{y}_{j}\right)
\end{gathered}
$$

but how to choose the kernel?

■ Perspective from statistical hypothesis testing:

- When $P=Q$ then $\widehat{M M D}^{2}$ "close to zero".
- When $P \neq Q$ then $\widehat{M M D}^{2}$ "far from zero"
- Threshold c_{α} for $\widehat{M M D}^{2}$ gives false positive rate α

A statistical test

A statistical test

Best kernel gives lowest false negative rate (=highest power)

A statistical test

Best kernel gives lowest false negative rate (=highest power)

Asymptotics of MMD

- When $P \neq Q$, statistic is asymptotically normal,

$$
\frac{\widehat{\mathrm{MMD}}^{2}-\operatorname{MMD}(P, Q)}{\sqrt{V_{n}(P, Q)}} \xrightarrow{D} \mathcal{N}(0,1)
$$

where $\operatorname{MMD}(P, Q)$ is population MMD, and $V_{n}(P, Q)=O\left(n^{-1}\right)$.

Asymptotics of MMD

Where $P=Q$, statistic has asymptotic distribution

$$
n \widehat{\mathrm{MMD}}^{2} \sim \sum_{l=1}^{\infty} \lambda_{l}\left[z_{l}^{2}-2\right]
$$

where

$$
\begin{aligned}
\lambda_{i} \psi_{i}\left(x^{\prime}\right) & =\int_{\mathcal{X}} \underbrace{\tilde{k}\left(x, x^{\prime}\right)}_{\text {centred }} \psi_{i}(x) d P(x) \\
z_{l} & \sim \mathcal{N}(0,2) \quad \text { i.i.d. }
\end{aligned}
$$

Optimizing test power

The power of our test $\left(\operatorname{Pr}_{1}\right.$ denotes probability under $\left.P \neq Q\right)$:

$$
\operatorname{Pr}_{1}\left(n \widehat{\mathrm{MMD}}^{2}>\hat{c}_{\alpha}\right)
$$

Optimizing test power

The power of our test $\left(\operatorname{Pr}_{1}\right.$ denotes probability under $\left.P \neq Q\right)$:

$$
\begin{aligned}
& \operatorname{Pr}_{1}\left(n \widehat{\mathrm{MMD}}^{2}>\hat{c}_{\alpha}\right) \\
& \rightarrow 1-\Phi\left(\frac{c_{\alpha}}{n \sqrt{V_{n}(P, Q)}}-\frac{\operatorname{MMD}^{2}(P, Q)}{\sqrt{V_{n}(P, Q)}}\right)
\end{aligned}
$$

where
$■ \Phi$ is the CDF of the standard normal distribution.
$\square \hat{c}_{\alpha}$ is an estimate of c_{α} test threshold.

Optimizing test power

The power of our test $\left(\operatorname{Pr}_{1}\right.$ denotes probability under $\left.P \neq Q\right)$:

$$
\begin{aligned}
& \operatorname{Pr}_{1}\left(n \widehat{\mathrm{MMD}}^{2}>\hat{c}_{\alpha}\right) \\
& \rightarrow 1-\Phi(\underbrace{\frac{c_{\alpha}}{n \sqrt{V_{n}(P, Q)}}}_{O\left(n^{-3 / 2}\right)}-\underbrace{\left.\frac{\operatorname{MMD}^{2}(P, Q)}{\sqrt{V_{n}(P, Q)}}\right)}_{O\left(n^{-1 / 2}\right)}
\end{aligned}
$$

First term asymptotically negligible!

Optimizing test power

The power of our test $\left(\operatorname{Pr}_{1}\right.$ denotes probability under $\left.P \neq Q\right)$:

$$
\begin{aligned}
& \operatorname{Pr}_{1}\left(n \widehat{\mathrm{MMD}}^{2}>\hat{c}_{\alpha}\right) \\
& \rightarrow 1-\Phi\left(\frac{c_{\alpha}}{n \sqrt{V_{n}(P, Q)}}-\frac{\operatorname{MMD}^{2}(P, Q)}{\sqrt{V_{n}(P, Q)}}\right)
\end{aligned}
$$

To maximize test power, maximize

$$
\frac{\operatorname{MMD}^{2}(P, Q)}{\sqrt{V_{n}(P, Q)}}
$$

(Sutherland, Tung, Strathmann, De, Ramdas, Smola, G., in review for ICLR 2017) Code: github.com/dougalsutherland/opt-mmd

Troubleshooting for generative adversarial networks

1	8	4	5	0
5				
5	9	7	5	4
8				
9	8	5	0	7
2	2	4	0	7

MNIST samples

| 3 | 0 | 7 | 5 | 4 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 5 | 3 | 0 | 5 | 7 | 5 |
| 5 | 2 | 4 | 9 | 4 | 5 |
| 0 | 4 | 1 | 0 | 8 | 1 |

Samples from a GAN

Troubleshooting for generative adversarial networks

MNIST samples

| 3 | 0 | 7 | 5 | 4 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 5 | 3 | 0 | 5 | 7 | 5 |
| 5 | 2 | 4 | 9 | 4 | 5 |
| 0 | 4 | 1 | 0 | 8 | 1 |

Samples from a GAN

■ Power for optimzed ARD kernel: 1.00 at $\alpha=0.01$

- Power for optimized RBF kernel: 0.57 at $\alpha=0.01$

Benchmarking generative adversarial networks

The ME statistic and test

Distinguishing Feature(s)

Distinguishing Feature(s)

Take square of witness (only worry about amplitude)

Distinguishing Feature(s)

■ New test statistic: witness ${ }^{2}$ at a single \mathbf{v}^{*};
■ Linear time in number n of samples
■but how to choose best feature v^{*} ?

Distinguishing Feature(s)

Distinguishing Feature(s)

Distinguishing Feature(s)

Sample size $n=50$

Distinguishing Feature(s)

Sample size $n=500$

Distinguishing Feature(s)

$$
\begin{array}{ll}
\text { - } & P(\mathbf{x}) \\
\text { - } & Q(\mathbf{y}) \\
\text { witness }^{2}(\mathbf{v})
\end{array}
$$

Population witness ${ }^{2}$ function

Distinguishing Feature(s)

Variance of witness function

$■$ Variance at $\mathbf{v}=$ variance of X at $\mathbf{v}+$ variance of Y at \mathbf{v}. - ME Statistic: $\hat{\lambda}_{n}(\mathrm{v}):=n \frac{\text { watrness }^{2}(\mathrm{v})}{\text { variance of } \mathrm{v}}$.

Variance of witness function

■ Variance at $\mathbf{v}=$ variance of X at $\mathbf{v}+$ variance of Y at \mathbf{v}.
■ ME Statistic: $\hat{\lambda}_{n}(\mathbf{v}):=n \frac{\text { witness }^{2}(\mathbf{v})}{\text { variance of } \mathbf{v}}$.

Variance of witness function

\square Variance at $\mathbf{v}=$ variance of X at $\mathbf{v}+$ variance of Y at \mathbf{v}.
■ ME Statistic: $\hat{\lambda}_{n}(\mathbf{v}):=n \frac{\text { witness }^{2}(\mathbf{v})}{\text { variance of } \mathbf{v}}$.

Variance of witness function

■ Variance at $\mathbf{v}=$ variance of X at $\mathbf{v}+$ variance of Y at \mathbf{v}.
■ ME Statistic: $\hat{\lambda}_{n}(\mathbf{v}):=n \frac{\text { witness }^{2}(\mathbf{v})}{\text { variance of } \mathbf{v}}$.

Variance of witness function

\square Variance at $\mathbf{v}=$ variance of X at $\mathbf{v}+$ variance of Y at \mathbf{v}.
■ ME Statistic: $\hat{\lambda}_{n}(\mathbf{v}):=n \frac{\text { witness }^{2}(\mathbf{v})}{\text { variance of } \mathbf{v}}$.

Variance of witness function

■ Variance at $\mathbf{v}=$ variance of X at $\mathbf{v}+$ variance of Y at \mathbf{v}.
■ ME Statistic: $\hat{\lambda}_{n}(\mathbf{v}):=n \frac{\text { witness }^{2}(\mathbf{v})}{\text { variance of } \mathbf{v}}$.

Variance of witness function

■ Variance at $\mathbf{v}=$ variance of X at $\mathbf{v}+$ variance of Y at \mathbf{v}.
■ ME Statistic: $\hat{\lambda}_{n}(\mathbf{v}):=n \frac{\text { witness }^{2}(\mathbf{v})}{\text { variance of } \mathbf{v}}$.

■ Improve performance using multiple locations $\left\{\mathbf{v}_{j}^{*}\right\}_{j=1}^{J}$

Distinguishing Positive/Negative Emotions

happy

neutral surprised

afraid

angry disgusted

■ 35 females and 35 males (Lundqvist et al., 1998).

■ $48 \times 34=1632$ dimensions.
Pixel features.
■ Sample size: 402.

Distinguishing Positive/Negative Emotions

Distinguishing Positive/Negative Emotions

\square Random feature
\square Proposed
happy neutral surprised

■ The proposed test achieves maximum test power in time $O(n)$.

- Informative features: differences at the nose, and smile lines.

Distinguishing Positive/Negative Emotions

happy neutral surprised
\square Random feature
\square Proposed
\square MMD (quadratic time)

■ The proposed test achieves maximum test power in time $O(n)$.

- Informative features: differences at the nose, and smile lines.

Distinguishing Positive/Negative Emotions

Learned feature

■ The proposed test achieves maximum test power in time $O(n)$.

- Informative features: differences at the nose, and smile lines.

Distinguishing Positive/Negative Emotions

Learned feature
■ The proposed test achieves maximum test power in time $O(n)$.

- Informative features: differences at the nose, and smile lines.

Code: https://github.com/wittawatj/interpretable-test

Final thoughts

Witness function approaches:

- Diversity of samples:
- MMD test uses pairwise similarities between all samples
- ME test uses similarities to J reference features

■ Disjoint support of generator/data distributions

- Witness function is smooth

Other discriminator heuristics:

- Diversity of samples by minibatch heuristic (add as feature distances to neighbour samples) Salimans et al. (2016)
■ Disjoint support treated by adding noise to "blur" images Arjovsky and Bottou (2016), Sønderby et al (2016)

Co-authors

Students and postdocs:

■ Kacper Chwialkowski (at Voleon)

- Wittawat Jitkrittum

■ Heiko Strathmann
■ Dougal Sutherland

Collaborators

Questions?

■ Kenji Fukumizu
■ Krikamol Muandet
■ Bernhard Schoelkopf
■ Bharath Sriperumbudur

- Zoltan Szabo

Testing against a probabilistic model

Statistical model criticism

$f^{*}(x)$ is the witness function
Can we compute MMD with samples from Q and a model P ?
Problem: usualy can't compute $E_{p} f$ in closed form.

Stein idea

To get rid of $E_{p} f$ in

$$
\sup _{\|f\|_{\mathcal{F} \leq 1}}\left[E_{q} f-E_{p} f\right]
$$

we define the Stein operator

$$
T_{p} f=\partial_{x} f+f\left(\partial_{x} \log p\right)
$$

Then

$$
E_{P} T_{P} f=0
$$

subject to appropriate boundary conditions. (Oates, Girolami, Chopin, 2016)

Maximum Stein Discrepancy

Stein operator

$$
T_{p} f=\partial_{x} f+f \partial_{x}(\log p)
$$

Maximum Stein Discrepancy (MSD)

$$
M S D(p, q, \mathcal{F})=\sup _{\|g\|_{\mathcal{F} \leq 1}} E_{q} T_{p} g-E_{p} T_{p} g
$$

Maximum Stein Discrepancy

Stein operator

$$
T_{p} f=\partial_{x} f+f \partial_{x}(\log p)
$$

Maximum Stein Discrepancy (MSD)

$$
M S D(p, q, \mathcal{F})=\sup _{\|g\|_{\mathcal{F}} \leq 1} E_{q} T_{p} g-E_{p} T_{p g}
$$

Maximum Stein Discrepancy

Stein operator

$$
T_{p} f=\partial_{x} f+f \partial_{x}(\log p)
$$

Maximum Stein Discrepancy (MSD)

$$
M S D(p, q, \mathcal{F})=\sup _{\|g\|_{\mathcal{F} \leq 1}} E_{q} T_{p} g-E_{p} T_{p g}=\sup _{\|g\|_{\mathcal{F} \leq 1}} E_{q} T_{p} g
$$

Maximum Stein Discrepancy

Stein operator

$$
T_{p} f=\partial_{x} f+f \partial_{x}(\log p)
$$

Maximum Stein Discrepancy (MSD)

$$
M S D(p, q, \mathcal{F})=\sup _{\|g\|_{\mathcal{F} \leq 1}} E_{q} T_{p} g-E_{p} T_{p g}=\sup _{\|g\|_{\mathcal{F}} \leq 1} E_{q} T_{p} g
$$

Maximum Stein Discrepancy

Stein operator

$$
T_{p} f=\partial_{x} f+f \partial_{x}(\log p)
$$

Maximum Stein Discrepancy (MSD)

$$
M S D(p, q, \mathcal{F})=\sup _{\|g\|_{\mathcal{F}} \leq 1} E_{q} T_{p} g-E_{p} T_{p g}=\sup _{\|g\|_{\mathcal{F}} \leq 1} E_{q} T_{p} g
$$

$$
\begin{aligned}
& -p(x) \\
& -q(x) \\
& -g^{*}(x)
\end{aligned}
$$

Maximum stein discrepancy

Closed-form expression for MSD: given $Z, Z^{\prime} \sim q$, then (Chwialkowski, Strathmann, G., 2016) (Liu, Lee, Jordan 2016)

$$
\operatorname{MSD}(p, q, \mathcal{F})=E_{q} h_{p}\left(Z, Z^{\prime}\right)
$$

where

$$
\begin{aligned}
h_{p}(x, y) & :=\partial_{x} \log p(x) \partial_{x} \log p(y) k(x, y) \\
& +\partial_{y} \log p(y) \partial_{x} k(x, y) \\
& +\partial_{x} \log p(x) \partial_{y} k(x, y) \\
& +\partial_{x} \partial_{y} k(x, y)
\end{aligned}
$$

and k is RKHS kernel for \mathcal{F}
Only depends on kernel and $\partial_{x} \log p(x)$. Do not need to normalize p, or sample from it.

Statistical model criticism

Test the hypothesis that a Gaussian process model, learned from data \star, is a good fit for the test data (example from Lloyd and Ghahramani, 2015)

Code: https://github.com/karlnapf/kernel_goodness_of_fit

Statistical model criticism

Test the hypothesis that a Gaussian process model, learned from data \star, is a good fit for the test data

