Kernel methods for Bayesian inference

Arthur Gretton

Gatsby Computational Neuroscience Unit

Lancaster, Nov. 2014

Motivating Example: Bayesian inference without a model

- 3600 downsampled frames of 20×20 RGB pixels $(Y_t \in [0, 1]^{1200})$
- 1800 training frames, remaining for test.
- Gaussian noise added to Y_t .

Challenges:

- No parametric model of camera dynamics (only samples)
- No parametric model of map from camera angle to image (only samples)
- Want to do filtering: Bayesian inference

ABC: an approach to Bayesian inference without a model

Bayes rule:

$$\mathbf{P}(y|x) = \frac{\mathbf{P}(x|y)\pi(y)}{\int \mathbf{P}(x|y)\pi(y)dy}$$

- $\mathbf{P}(x|y)$ is likelihood
- $\pi(y)$ is prior

ABC: an approach to Bayesian inference without a model

Bayes rule:

$$\mathbf{P}(y|x) = \frac{\mathbf{P}(x|y)\pi(y)}{\int \mathbf{P}(x|y)\pi(y)dy}$$

- $\mathbf{P}(x|y)$ is likelihood
- $\pi(y)$ is prior

One approach: Approximate Bayesian Computation (ABC)

ABC: an approach to Bayesian inference without a model

Bayes rule:

$$\mathbf{P}(y|x) = \frac{\mathbf{P}(x|y)\pi(y)}{\int \mathbf{P}(x|y)\pi(y)dy}$$

- $\mathbf{P}(x|y)$ is likelihood
- $\pi(y)$ is prior

One approach: Approximate Bayesian Computation (ABC) ABC generates a sample from $p(Y|x^*)$ as follows:

- 1. generate a sample y_t from the prior π ,
- 2. generate a sample x_t from $\mathbf{P}(X|y_t)$,
- 3. if $D(\mathbf{x}^*, x_t) < \tau$, accept $\mathbf{y} = y_t$; otherwise reject,
- 4. go to (i).

In step (3), D is a distance measure, and τ is a tolerance parameter.

Motivating example 2: simple Gaussian case

• p(x,y) is $\mathcal{N}((0,\mathbf{1}_d^T)^T,V)$ with V a randomly generated covariance

Posterior mean on x: ABC vs kernel approach

Overview

- Introduction to reproducing kernel Hilbert spaces
 - Hilbert space
 - Kernels and feature spaces
 - Reproducing property
 - Mapping probabilities to feature space

Overview

- Introduction to reproducing kernel Hilbert spaces
 - Hilbert space
 - Kernels and feature spaces
 - Reproducing property
 - Mapping probabilities to feature space

- Nonparametric Bayesian inference
 - Learning conditional probabilities: smooth regression to an RKHS
 - Kernelized Bayesian inference

Functions in a reproducing kernel Hilbert space

Kernel methods can control **smoothness** and **avoid overfitting/underfitting**.

Hilbert space

Inner product

Let \mathcal{H} be a vector space over \mathbb{R} . A function $\langle \cdot, \cdot \rangle_{\mathcal{H}} : \mathcal{H} \times \mathcal{H} \to \mathbb{R}$ is an inner product on \mathcal{H} if

- 1. Linear: $\langle \alpha_1 f_1 + \alpha_2 f_2, g \rangle_{\mathcal{H}} = \alpha_1 \langle f_1, g \rangle_{\mathcal{H}} + \alpha_2 \langle f_2, g \rangle_{\mathcal{H}}$
- 2. Symmetric: $\langle f, g \rangle_{\mathcal{H}} = \langle g, f \rangle_{\mathcal{H}}$
- 3. $\langle f, f \rangle_{\mathcal{H}} \ge 0$ and $\langle f, f \rangle_{\mathcal{H}} = 0$ if and only if f = 0.

Hilbert space

Inner product

Let \mathcal{H} be a vector space over \mathbb{R} . A function $\langle \cdot, \cdot \rangle_{\mathcal{H}} : \mathcal{H} \times \mathcal{H} \to \mathbb{R}$ is an inner product on \mathcal{H} if

1. Linear: $\langle \alpha_1 f_1 + \alpha_2 f_2, g \rangle_{\mathcal{H}} = \alpha_1 \langle f_1, g \rangle_{\mathcal{H}} + \alpha_2 \langle f_2, g \rangle_{\mathcal{H}}$

2. Symmetric:
$$\langle f, g \rangle_{\mathcal{H}} = \langle g, f \rangle_{\mathcal{H}}$$

3.
$$\langle f, f \rangle_{\mathcal{H}} \ge 0$$
 and $\langle f, f \rangle_{\mathcal{H}} = 0$ if and only if $f = 0$.

Norm induced by the inner product: $||f||_{\mathcal{H}} := \sqrt{\langle f, f \rangle_{\mathcal{H}}}$

Hilbert space

Inner product

Let \mathcal{H} be a vector space over \mathbb{R} . A function $\langle \cdot, \cdot \rangle_{\mathcal{H}} : \mathcal{H} \times \mathcal{H} \to \mathbb{R}$ is an inner product on \mathcal{H} if

1. Linear: $\langle \alpha_1 f_1 + \alpha_2 f_2, g \rangle_{\mathcal{H}} = \alpha_1 \langle f_1, g \rangle_{\mathcal{H}} + \alpha_2 \langle f_2, g \rangle_{\mathcal{H}}$

2. Symmetric:
$$\langle f, g \rangle_{\mathcal{H}} = \langle g, f \rangle_{\mathcal{H}}$$

3.
$$\langle f, f \rangle_{\mathcal{H}} \ge 0$$
 and $\langle f, f \rangle_{\mathcal{H}} = 0$ if and only if $f = 0$.

Norm induced by the inner product: $||f||_{\mathcal{H}} := \sqrt{\langle f, f \rangle_{\mathcal{H}}}$

Hilbert space: Inner product space containing Cauchy sequence limits.

Kernel

Kernel: Let \mathcal{X} be a non-empty set. A function $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a kernel if there exists an \mathbb{R} -Hilbert space and a map $\varphi : \mathcal{X} \to \mathcal{H}$ such that $\forall x, x' \in \mathcal{X}$,

$$k(x, x') := \langle \varphi_x, \varphi_{x'} \rangle_{\mathcal{H}}.$$

- Almost no conditions on X (eg, X itself doesn't need an inner product, eg. documents).
- A single kernel can correspond to several possible feature vectors. A trivial example for X := R:

$$\varphi_x^{(1)} = x$$
 and $\varphi_x^{(2)} = \begin{bmatrix} x/\sqrt{2} \\ x/\sqrt{2} \end{bmatrix}$

Finite dim. RKHS with polynomial features

Example: A three dimensional space of features of points in \mathbb{R}^2 :

$$\varphi : \mathbb{R}^2 \to \mathbb{R}^3$$
$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \mapsto \varphi_x = \begin{bmatrix} x_1 \\ x_2 \\ x_1 x_2 \end{bmatrix},$$

with kernel

$$k(x,y) = \begin{bmatrix} x_1 \\ x_2 \\ x_1x_2 \end{bmatrix}^{\top} \begin{bmatrix} y_1 \\ y_2 \\ y_1y_2 \end{bmatrix}$$

(the standard inner product in \mathbb{R}^3 between features). Denote this feature space by \mathcal{H} .

Define a linear function of the inputs x_1, x_2 , and their product x_1x_2 ,

$$f(x) = f_1 x_1 + f_2 x_2 + f_3 x_1 x_2.$$

f in a space of functions mapping from $\mathcal{X} = \mathbb{R}^2$ to \mathbb{R} . Equivalent representation for f,

$$f(\cdot) = \left[\begin{array}{cc} f_1 & f_2 & f_3 \end{array} \right]^\top.$$

 $f(\cdot)$ refers to the function as an object (here as a vector in \mathbb{R}^3) $f(x) \in \mathbb{R}$ is function evaluated at a point (a real number). Define a linear function of the inputs x_1, x_2 , and their product x_1x_2 ,

$$f(x) = f_1 x_1 + f_2 x_2 + f_3 x_1 x_2.$$

f in a space of functions mapping from $\mathcal{X} = \mathbb{R}^2$ to \mathbb{R} . Equivalent representation for f,

$$f(\cdot) = \left[\begin{array}{cc} f_1 & f_2 & f_3 \end{array} \right]^\top$$

 $f(\cdot)$ refers to the function as an object (here as a vector in \mathbb{R}^3) $f(x) \in \mathbb{R}$ is function evaluated at a point (a real number).

$$f(x) = f(\cdot)^{\top} \varphi_x = \langle f(\cdot), \varphi_x \rangle_{\mathcal{H}}$$

Evaluation of f at x is an **inner product in feature space** (here standard inner product in \mathbb{R}^3)

 \mathcal{H} is a space of functions mapping \mathbb{R}^2 to \mathbb{R} .

Finite dim. RKHS with polynomial features

 φ_y is a mapping from \mathbb{R}^2 to \mathbb{R}^3 ...

...which also parametrizes a function mapping \mathbb{R}^2 to \mathbb{R} .

$$k(\cdot, y) := \left[\begin{array}{ccc} y_1 & y_2 & y_1y_2 \end{array}
ight]^{ op} = \varphi_y,$$

Given y, there is a vector $k(\cdot, y)$ in \mathcal{H} such that

$$\langle k(\cdot, y), \varphi_x \rangle_{\mathcal{H}} = ax_1 + bx_2 + cx_1x_2,$$

where $a = y_1$, $b = y_2$, and $c = y_1y_2$

Finite dim. RKHS with polynomial features

 φ_y is a mapping from \mathbb{R}^2 to \mathbb{R}^3 ...

...which also parametrizes a function mapping \mathbb{R}^2 to \mathbb{R} .

$$k(\cdot, y) := \begin{bmatrix} y_1 & y_2 & y_1y_2 \end{bmatrix}^{\top} = \varphi_y,$$

Given y, there is a vector $k(\cdot, y)$ in \mathcal{H} such that

$$\langle k(\cdot, y), \varphi_x \rangle_{\mathcal{H}} = ax_1 + bx_2 + cx_1x_2,$$

where $a = y_1$, $b = y_2$, and $c = y_1y_2$ Due to symmetry,

$$\begin{aligned} \langle k(\cdot, x), \varphi_y \rangle &= uy_1 + vy_2 + wy_1y_2 \\ &= k(x, y). \end{aligned}$$

We can write $\varphi_x = k(\cdot, x)$ and $\varphi_y = k(\cdot, y)$ without ambiguity: canonical feature map

This example illustrates the two defining features of an RKHS:

• The reproducing property:

 $\forall x \in \mathcal{X}, \forall f(\cdot) \in \mathcal{H}, \langle f(\cdot), k(\cdot, x) \rangle_{\mathcal{H}} = f(x)$

... or use shorter notation $\langle f, \varphi_x \rangle_{\mathcal{H}}$.

• In particular, for any $x, y \in \mathcal{X}$,

$$k(x,y) = \langle k(\cdot,x), k(\cdot,y) \rangle_{\mathcal{H}}.$$

Note: the feature map of every point is in the feature space: $\forall x \in \mathcal{X}, \ k(\cdot, x) = \varphi_x \in \mathcal{H},$

- What do the features φ_x look like (there are infinitely many of them, and they are not unique!)
- What do these features have to do with smoothness?

Gaussian kernel,
$$k(x, x') = \exp\left(-\frac{\|x-x'\|^2}{2\sigma^2}\right)$$
,
 $\lambda_k \propto b^k \quad b < 1$
 $e_k(x) \propto \exp(-(c-a)x^2)H_k(x\sqrt{2c})$,

a, b, c are functions of σ , and H_k is kth order Hermite polynomial.

(Mercer) Let \mathcal{X} be a compact metric space, k be a continuous kernel, and μ be a finite Borel measure with supp $\{\mu\} = \mathcal{X}$. Then the convergence of

$$k(x,y) = \sum_{j} \lambda_{j} e_{j}(x) e_{j}(y)$$

is absolute and uniform $(e_j$ is the continuous element of the L^2 equivalence class \mathbf{e}_j .).

The feature map is $\varphi_x = \begin{bmatrix} \dots & \sqrt{\lambda_i} e_i(x) & \dots \end{bmatrix}$

(Mercer RKHS) (Steinwart and Christmann, Theorem 4.51) Under the assumptions of Mercer's theorem,

$$\mathcal{H} := \left\{ \sum_{i} a_i \sqrt{\lambda_i} e_i : a_i \in \ell_2 \right\}$$
(1)

is an RKHS with kernel k.

Given two functions in the RKHS

$$f(x) := \sum_{i} a_i \sqrt{\lambda_i} e_i(x), \qquad g(x) := \sum_{i} b_i \sqrt{\lambda_i} e_i(x),$$

the inner product is $\langle f, g \rangle_{\mathcal{H}} = \sum_i a_i b_i$

Proof: There are two aspects requiring care:

- 1. Is $k(x, \cdot) \in \mathcal{H}$ $\forall x \in \mathcal{X}$? Requires Mercer's theorem
- 2. Does the reproducing property hold? $\langle f, k(\cdot, x) \rangle_{\mathcal{H}} = f(x)$.

Proof: There are two aspects requiring care:

- 1. Is $k(x, \cdot) \in \mathcal{H}$ $\forall x \in \mathcal{X}$? Requires Mercer's theorem
- 2. Does the reproducing property hold? $\langle f, k(\cdot, x) \rangle_{\mathcal{H}} = f(x)$.

First part:

By the definition of \mathcal{H} , the function in \mathcal{H} indexed by x is

$$k(x,\cdot) = \sum_{i} \left(\sqrt{\lambda_i} e_i(x)\right) \left(\sqrt{\lambda_i} e_i(\cdot)\right).$$

Is this function in the RKHS? Yes, if the ℓ_2 norm of $(\sqrt{\lambda_i}e_i(x))$ is bounded. This is due to Mercer: $\forall x \in \mathcal{X}$,

$$\|k(x,\cdot)\|_{\mathcal{H}}^2 = \left\|\left(\sqrt{\lambda_i}e_i(x)\right)\right\|_{\ell_2}^2 = k(x,x) < \infty.$$

Proof (continued):

Second part:

The reproducing property holds: using the inner product definition,

$$\langle f, k(x, \cdot) \rangle_{\mathcal{H}} = \sum_{i} f_i\left(\sqrt{\lambda_i}e_i(x)\right) = f(x),$$

which is always well defined since both $f \in \ell_2$ and $k(x, \cdot) \in \ell_2$.

Example RKHS function, Gaussian kernel:

$$f(x) := \sum_{i=1}^{m} \alpha_i k(x_i, x) = \sum_{i=1}^{m} \alpha_i \left[\sum_{j=1}^{\infty} \lambda_j e_j(x_i) e_j(x) \right] = \sum_{j=1}^{\infty} f_j \left[\sqrt{\lambda_j} e_j(x) \right]$$

where $f_j = \sum_{i=1}^{m} \alpha_i \sqrt{\lambda_j} e_j(x_i).$

NOTE that this enforces smoothing: λ_j decay as e_j become rougher, f_j decay since $\|f\|_{\mathcal{H}}^2 = \sum_j f_j^2 < \infty.$

Reproducing kernel Hilbert space

 \mathcal{H} a Hilbert space of \mathbb{R} -valued functions on non-empty set \mathcal{X} . A function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a *reproducing kernel* of \mathcal{H} , and \mathcal{H} is a *reproducing kernel Hilbert space*, if

- $\forall x \in \mathcal{X}, k(\cdot, x) \in \mathcal{H},$
- $\forall x \in \mathcal{X}, \forall f \in \mathcal{H}, \langle f(\cdot), k(\cdot, x) \rangle_{\mathcal{H}} = f(x)$ (the reproducing property).

In particular, for any $x, y \in \mathcal{X}$,

$$k(x,y) = \langle k(\cdot,x), k(\cdot,y) \rangle_{\mathcal{H}}.$$
(2)

Original definition: kernel an inner product between feature maps. Then $\varphi_x = k(\cdot, x)$ a valid feature map.

Probabilities in feature space: the mean trick

The kernel trick

• Given $x \in \mathcal{X}$ for some set \mathcal{X} , define feature map $\varphi_x \in \mathcal{H}$,

$$\varphi_x = \left[\dots \sqrt{\lambda_i} e_i(x) \dots \right] \in \ell_2$$

• For positive definite k(x, x'),

$$k(x, x') = \langle \varphi_x, \varphi_{x'} \rangle_{\mathcal{H}}$$

• The kernel trick: $\forall f \in \mathcal{H}$,

$$f(x) = \langle f, \varphi_x \rangle_{\mathcal{H}}$$

Probabilities in feature space: the mean trick

The kernel trick

• Given $x \in \mathcal{X}$ for some set \mathcal{X} , define feature map $\varphi_x \in \mathcal{H}$,

$$\varphi_{\boldsymbol{x}} = \left[\dots \sqrt{\lambda_i} e_i(\boldsymbol{x}) \dots \right] \in \ell_2$$

• For positive definite k(x, x'),

$$k(x, x') = \langle \varphi_x, \varphi_{x'} \rangle_{\mathcal{H}}$$

• The kernel trick: $\forall f \in \mathcal{H}$,

$$f(x) = \langle f, \varphi_x \rangle_{\mathcal{H}}$$

The mean trick

• Given \mathbf{P} a Borel probability measure on \mathcal{X} , define feature map $\mu_{\mathbf{P}} \in \mathcal{H}$

$$\mu_{\mathbf{P}} = \left[\dots \sqrt{\lambda_i} \mathbf{E}_{\mathbf{P}} \left[e_i(X) \right] \dots \right] \in \ell_2$$

• For positive definite k(x, x'),

 $\mathbf{E}_{\mathbf{P},\mathbf{Q}}k(X,Y) = \langle \mu_{\mathbf{P}}, \mu_{\mathbf{Q}} \rangle_{\mathcal{H}}$

for $X \sim \mathbf{P}$ and $Y \sim \mathbf{Q}$.

• The mean trick: (we call $\mu_{\mathbf{P}}$ a mean/distribution embedding)

$$\mathbf{E}_{\mathbf{P}}(f(X)) = \mathbf{E}_{\mathbf{P}}\left[\langle \varphi_X, f \rangle_{\mathcal{F}}\right]$$

Feature embeddings of probabilities

The kernel trick:

$$f(x) = \langle f, \varphi_x \rangle_{\mathcal{H}}$$

The mean trick:

$$\mathbf{E}_{\mathbf{P}}(f(X)) = \langle \boldsymbol{\mu}_{\mathbf{P}}, f \rangle_{\mathcal{F}}$$

Empirical mean embedding:

$$\widehat{\mu}_{\mathbf{P}} = m^{-1} \sum_{i=1}^{m} \varphi_{x_i} \qquad x_i \stackrel{\text{i.i.d.}}{\sim} \mathbf{P}$$

 $\mu_{\mathbf{P}}$ gives you expectations of all RKHS functions

When k characteristic, then $\mu_{\mathbf{P}}$ unique, e.g. Gauss, Laplace, ...

Nonparametric Bayesian inference using distribution embeddings

Bayes again

Bayes rule:

$$\mathbf{P}(y|x) = \frac{\mathbf{P}(x|y)\pi(y)}{\int \mathbf{P}(x|y)\pi(y)dy}$$

- $\mathbf{P}(x|y)$ is likelihood
- π is prior

How would this look with kernel embeddings?

Bayes again

Bayes rule:

$$\mathbf{P}(y|x) = \frac{\mathbf{P}(x|y)\pi(y)}{\int \mathbf{P}(x|y)\pi(y)dy}$$

- $\mathbf{P}(x|y)$ is likelihood
- π is prior

How would this look with kernel embeddings?

Define RKHS \mathcal{G} on \mathcal{Y} with feature map ψ_y and kernel $l(y, \cdot)$

We need a conditional mean embedding: for all $g \in \mathcal{G}$,

$$\mathbf{E}_{Y|x^*}g(Y) = \langle g, \boldsymbol{\mu}_{\mathsf{P}(y|x^*)} \rangle_{\mathcal{G}}$$

This will be obtained by RKHS-valued ridge regression

Ridge regression and the conditional feature mean

Ridge regression from $\mathcal{X} := \mathbb{R}^d$ to a finite *vector* output $\mathcal{Y} := \mathbb{R}^{d'}$ (these could be d' nonlinear features of y):

Define training data

$$X = \left[\begin{array}{ccc} x_1 & \dots & x_m \end{array} \right] \in \mathbb{R}^{d \times m} \qquad \qquad Y = \left[\begin{array}{ccc} y_1 & \dots & y_m \end{array} \right] \in \mathbb{R}^{d' \times m}$$
Ridge regression from $\mathcal{X} := \mathbb{R}^d$ to a finite *vector* output $\mathcal{Y} := \mathbb{R}^{d'}$ (these could be d' nonlinear features of y):

Define training data

$$X = \left[\begin{array}{ccc} x_1 & \dots & x_m \end{array} \right] \in \mathbb{R}^{d \times m} \qquad \qquad Y = \left[\begin{array}{ccc} y_1 & \dots & y_m \end{array} \right] \in \mathbb{R}^{d' \times m}$$

Solve

$$\breve{A} = \operatorname{arg\,min}_{A \in \mathbb{R}^{d' \times d}} \left(\|Y - AX\|^2 + \lambda \|A\|_{\mathrm{H}S}^2 \right),$$

where

$$||A||_{\mathrm{H}S}^2 = \mathrm{tr}(A^{\top}A) = \sum_{i=1}^{\min\{d,d'\}} \gamma_{A,i}^2$$

Ridge regression from $\mathcal{X} := \mathbb{R}^d$ to a finite *vector* output $\mathcal{Y} := \mathbb{R}^{d'}$ (these could be d' nonlinear features of y):

Define training data

$$X = \left[\begin{array}{ccc} x_1 & \dots & x_m \end{array} \right] \in \mathbb{R}^{d \times m} \qquad \qquad Y = \left[\begin{array}{ccc} y_1 & \dots & y_m \end{array} \right] \in \mathbb{R}^{d' \times m}$$

Solve

$$\breve{A} = \operatorname{arg\,min}_{A \in \mathbb{R}^{d' \times d}} \left(\|Y - AX\|^2 + \lambda \|A\|_{\mathrm{HS}}^2 \right),$$

where

$$||A||_{\mathrm{HS}}^2 = \mathrm{tr}(A^{\top}A) = \sum_{i=1}^{\min\{d,d'\}} \gamma_{A,i}^2$$

Solution: $\breve{A} = C_{YX} \left(C_{XX} + m\lambda I \right)^{-1}$

Prediction at new point \boldsymbol{x} :

$$y^* = \breve{A} x$$

= $C_{YX} (C_{XX} + m\lambda I)^{-1} x$
= $\sum_{i=1}^m \beta_i(x) y_i$

where

$$\boldsymbol{\beta}_{\boldsymbol{i}}(\boldsymbol{x}) = (K + \lambda m I)^{-1} \begin{bmatrix} k(x_1, \boldsymbol{x}) & \dots & k(x_m, \boldsymbol{x}) \end{bmatrix}^{\top}$$

and

$$K := X^{\top} X \qquad \qquad k(x_1, \boldsymbol{x}) = x_1^{\top} \boldsymbol{x}$$

Prediction at new point x:

$$y^* = \check{A}x$$

= $C_{YX} (C_{XX} + m\lambda I)^{-1} x$
= $\sum_{i=1}^m \beta_i(x) y_i$

where

$$\boldsymbol{\beta}_{\boldsymbol{i}}(\boldsymbol{x}) = (K + \lambda m I)^{-1} \begin{bmatrix} k(x_1, \boldsymbol{x}) & \dots & k(x_m, \boldsymbol{x}) \end{bmatrix}^{\top}$$

and

$$K := X^{\top} X \qquad \qquad k(x_1, \boldsymbol{x}) = x_1^{\top} \boldsymbol{x}$$

What if we do everything in kernel space?

Recall our setup:

• Given training *pairs*:

 $(x_i, y_i) \sim \mathbf{P}_{XY}$

- \mathcal{F} on \mathcal{X} with feature map φ_x and kernel $k(x, \cdot)$
- \mathcal{G} on \mathcal{Y} with feature map ψ_y and kernel $l(y, \cdot)$

We define the covariance between feature maps:

$$C_{XX} = \mathbf{E}_X \ (\varphi_X \otimes \varphi_X) \qquad C_{XY} = \mathbf{E}_{XY} \ (\varphi_X \otimes \psi_Y)$$

and matrices of feature mapped training data

$$X = \left[\begin{array}{ccc} \varphi_{x_1} & \dots & \varphi_{x_m} \end{array} \right] \quad Y := \left[\begin{array}{ccc} \psi_{y_1} & \dots & \psi_{y_m} \end{array} \right]$$

Objective: [Weston et al. (2003), Micchelli and Pontil (2005), Caponnetto and De Vito (2007), Grunewalder et al. (2012, 2013)]

$$\breve{A} = \arg\min_{A \in \mathrm{HS}(\mathcal{F},\mathcal{G})} \left(\mathbf{E}_{XY} \| Y - AX \|_{\mathcal{G}}^{2} + \lambda \| A \|_{\mathrm{HS}}^{2} \right), \qquad \|A\|_{\mathrm{HS}}^{2} = \sum_{i=1}^{\infty} \gamma_{A,i}^{2}$$

Solution same as vector case:

$$\breve{A} = C_{YX} \left(C_{XX} + m\lambda I \right)^{-1},$$

Prediction at new x using kernels:

$$\breve{A}\varphi_x = \begin{bmatrix} \psi_{y_1} & \dots & \psi_{y_m} \end{bmatrix} (K + \lambda mI)^{-1} \begin{bmatrix} k(x_1, \boldsymbol{x}) & \dots & k(x_m, \boldsymbol{x}) \end{bmatrix} \\
= \sum_{i=1}^m \beta_i(\boldsymbol{x}) \psi_{y_i}$$

where $K_{ij} = k(x_i, x_j)$

How is loss $||Y - AX||_{\mathcal{G}}^2$ relevant to conditional expectation of some $\mathbf{E}_{Y|x}g(Y)$? Define: [Song et al. (2009), Grunewalder et al. (2013)]

$$\mu_{Y|x} := A\varphi_x$$

How is loss $||Y - AX||_{\mathcal{G}}^2$ relevant to conditional expectation of some $\mathbf{E}_{Y|x}g(Y)$? Define: [Song et al. (2009), Grunewalder et al. (2013)]

$$\mu_{Y|x} := A\varphi_x$$

We need A to have the property

$$\begin{aligned} \mathbf{E}_{Y|x} \mathbf{g}(Y) &\approx \langle \mathbf{g}, \boldsymbol{\mu}_{Y|x} \rangle_{\mathcal{G}} \\ &= \langle \mathbf{g}, A \varphi_x \rangle_{\mathcal{G}} \\ &= \langle A^* \mathbf{g}, \varphi_x \rangle_{\mathcal{F}} = (A^* \mathbf{g})(x) \end{aligned}$$

How is loss $||Y - AX||_{\mathcal{G}}^2$ relevant to conditional expectation of some $\mathbf{E}_{Y|x}g(Y)$? Define: [Song et al. (2009), Grunewalder et al. (2013)]

$$\mu_{Y|x} := A\varphi_x$$

We need A to have the property

$$\begin{split} \mathbf{E}_{Y|x} \mathbf{g}(Y) &\approx \langle \mathbf{g}, \boldsymbol{\mu}_{Y|x} \rangle_{\mathcal{G}} \\ &= \langle \mathbf{g}, A \varphi_x \rangle_{\mathcal{G}} \\ &= \langle A^* \mathbf{g}, \varphi_x \rangle_{\mathcal{F}} = (A^* \mathbf{g})(x) \end{split}$$

Natural risk function for conditional mean

$$\mathcal{L}(A, \mathbf{P}_{XY}) := \sup_{\|\boldsymbol{g}\| \le 1} \mathbf{E}_X \left[\underbrace{\left(\mathbf{E}_{Y|X} \boldsymbol{g}(Y) \right)}_{\text{Target}} (X) - \underbrace{\left(A^* \boldsymbol{g} \right)}_{\text{Estimator}} (X) \right]^2,$$

The squared loss risk provides an upper bound on the natural risk.

$$\mathcal{L}(A, \mathbf{P}_{XY}) \le \mathbf{E}_{XY} \|\psi_Y - A\varphi_X\|_{\mathcal{G}}^2$$

The squared loss risk provides an upper bound on the natural risk.

$$\mathcal{L}(A, \mathbf{P}_{XY}) \le \mathbf{E}_{XY} \|\psi_Y - A\varphi_X\|_{\mathcal{G}}^2$$

$$\mathcal{L}(A, \mathbf{P}_{XY}) := \sup_{\|g\| \le 1} \mathbf{E}_X \left[\left(\mathbf{E}_{Y|X} g(Y) \right) (X) - (A^* g) (X) \right]^2$$
$$\leq \mathbf{E}_{XY} \sup_{\|g\| \le 1} \left[g(Y) - (A^* g) (X) \right]^2$$

The squared loss risk provides an upper bound on the natural risk.

$$\mathcal{L}(A, \mathbf{P}_{XY}) \le \mathbf{E}_{XY} \|\psi_Y - A\varphi_X\|_{\mathcal{G}}^2$$

$$\begin{aligned} \mathcal{L}(A, \mathbf{P}_{XY}) &:= \sup_{\|g\| \le 1} \mathbf{E}_X \left[\left(\mathbf{E}_{Y|X} g(Y) \right) (X) - \left(A^* g \right) (X) \right]^2 \\ &\leq \mathbf{E}_{XY} \sup_{\|g\| \le 1} \left[g(Y) - \left(A^* g \right) (X) \right]^2 \\ &= \mathbf{E}_{XY} \sup_{\|g\| \le 1} \left[\langle g, \psi_Y \rangle_{\mathcal{G}} - \langle A^* g, \varphi_X \rangle_{\mathcal{F}} \right]^2 \end{aligned}$$

The squared loss risk provides an upper bound on the natural risk.

$$\mathcal{L}(A, \mathbf{P}_{XY}) \le \mathbf{E}_{XY} \|\psi_Y - A\varphi_X\|_{\mathcal{G}}^2$$

$$\mathcal{L}(A, \mathbf{P}_{XY}) := \sup_{\|g\| \le 1} \mathbf{E}_X \left[\left(\mathbf{E}_{Y|X} g(Y) \right) (X) - (A^*g) (X) \right]^2$$
$$\leq \mathbf{E}_{XY} \sup_{\|g\| \le 1} \left[g(Y) - (A^*g) (X) \right]^2$$
$$= \mathbf{E}_{XY} \sup_{\|g\| \le 1} \left[\langle g, \psi_Y \rangle_{\mathcal{G}} - \langle g, A\varphi_X \rangle_{\mathcal{G}} \right]^2$$

The squared loss risk provides an upper bound on the natural risk.

$$\mathcal{L}(A, \mathbf{P}_{XY}) \le \mathbf{E}_{XY} \|\psi_Y - A\varphi_X\|_{\mathcal{G}}^2$$

$$\mathcal{L}(A, \mathbf{P}_{XY}) := \sup_{\|g\| \le 1} \mathbf{E}_X \left[\left(\mathbf{E}_{Y|X} g(Y) \right) (X) - (A^*g) (X) \right]^2$$
$$\leq \mathbf{E}_{XY} \sup_{\|g\| \le 1} \left[g(Y) - (A^*g) (X) \right]^2$$
$$= \mathbf{E}_{XY} \sup_{\|g\| \le 1} \langle g, \psi_Y - A\varphi_X \rangle_{\mathcal{G}}^2$$

The squared loss risk provides an upper bound on the natural risk.

$$\mathcal{L}(A, \mathbf{P}_{XY}) \le \mathbf{E}_{XY} \|\psi_Y - A\varphi_X\|_{\mathcal{G}}^2$$

$$\mathcal{L}(A, \mathbf{P}_{XY}) := \sup_{\|g\| \le 1} \mathbf{E}_X \left[\left(\mathbf{E}_{Y|X} g(Y) \right) (X) - (A^*g) (X) \right]^2$$
$$\leq \mathbf{E}_{XY} \sup_{\|g\| \le 1} \left[g(Y) - (A^*g) (X) \right]^2$$
$$= \mathbf{E}_{XY} \sup_{\|g\| \le 1} \langle g, \psi_Y - A\varphi_X \rangle_{\mathcal{G}}^2$$
$$\leq \mathbf{E}_{XY} \|\psi_Y - A\varphi_X\|_{\mathcal{G}}^2$$

The squared loss risk provides an upper bound on the natural risk.

$$\mathcal{L}(A, \mathbf{P}_{XY}) \le \mathbf{E}_{XY} \|\psi_Y - A\varphi_X\|_{\mathcal{G}}^2$$

Proof: Jensen and Cauchy Schwarz

$$\mathcal{L}(A, \mathbf{P}_{XY}) := \sup_{\|g\| \le 1} \mathbf{E}_X \left[\left(\mathbf{E}_{Y|X} g(Y) \right) (X) - (A^*g) (X) \right]^2$$
$$\leq \mathbf{E}_{XY} \sup_{\|g\| \le 1} \left[g(Y) - (A^*g) (X) \right]^2$$
$$= \mathbf{E}_{XY} \sup_{\|g\| \le 1} \langle g, \psi_Y - A\varphi_X \rangle_{\mathcal{G}}^2$$
$$\leq \mathbf{E}_{XY} \|\psi_Y - A\varphi_X\|_{\mathcal{G}}^2$$

If we assume $\mathbf{E}_Y[g(Y)|X=x] \in \mathcal{F}$ then upper bound tight (next slide).

Conditions for ridge regression = conditional mean

Proof: conditional mean obtained by ridge regression when $\mathbf{E}_{Y}[g(Y)|X = x] \in \mathcal{F}$ Given a function $g \in \mathcal{G}$. Assume $E_{Y|X}[g(Y)|X = \cdot] \in \mathcal{F}$. Then

$$C_{XX}E_{Y|X}\left[g(Y)|X=\cdot\right]=C_{XY}g.$$

Conditions for ridge regression = conditional mean

Proof: conditional mean obtained by ridge regression when $\mathbf{E}_{Y}[g(Y)|X = x] \in \mathcal{F}$ Given a function $g \in \mathcal{G}$. Assume $E_{Y|X}[g(Y)|X = \cdot] \in \mathcal{F}$. Then

$$C_{XX}E_{Y|X}\left[g(Y)|X=\cdot\right]=C_{XY}g.$$

Proof: [Fukumizu et al., 2004]

For all $f \in \mathcal{F}$, by definition of C_{XX} ,

$$\langle f, C_{XX} E_{Y|X} [g(Y)|X = \cdot] \rangle_{\mathcal{F}}$$

= cov $(f, E_{Y|X} [g(Y)|X = \cdot])$
= $E_X (f(X) E_{Y|X} [g(Y)|X])$
= $E_{XY} (f(X)g(Y))$
= $\langle f, C_{XY}g \rangle$,

by definition of C_{XY} .

Kernel Bayes' law

- Prior: $Y \sim \pi(y)$
- Likelihood: $(X|y) \sim \mathbf{P}(x|y)$ with some joint $\mathbf{P}(x,y)$

Kernel Bayes' law

- Prior: $Y \sim \pi(y)$
- Likelihood: $(X|y) \sim \mathbf{P}(x|y)$ with some joint $\mathbf{P}(x,y)$
- Joint distribution: $\mathbf{Q}(x, y) = \mathbf{P}(x|y)\pi(y)$

Warning: $\mathbf{Q} \neq \mathbf{P}$, change of measure from $\mathbf{P}(y)$ to $\pi(y)$

• Marginal for *x*:

$$\mathbf{Q}(x) := \int \mathbf{P}(x|y)\pi(y)dy.$$

• Bayes' law:

$$\mathbf{Q}(y|x) = rac{\mathbf{P}(x|y)\pi(y)}{\mathbf{Q}(x)}$$

• Posterior embedding via the usual conditional update,

$$\mu_{\mathbf{Q}(y|x)} = C_{\mathbf{Q}(y,x)} C_{\mathbf{Q}(x,x)}^{-1} \phi_x.$$

• Posterior embedding via the usual conditional update,

$$\boldsymbol{\mu}_{\mathbf{Q}(y|x)} = C_{\mathbf{Q}(y,x)} C_{\mathbf{Q}(x,x)}^{-1} \phi_x.$$

- Given mean embedding of prior: $\mu_{\pi}(y)$
- Define marginal covariance:

$$C_{\mathbf{Q}(x,x)} = \int \left(\varphi_{x} \otimes \varphi_{x}\right) \, \mathbf{P}(x|y) \pi(y) dx = C_{(xx)y} C_{yy}^{-1} \mu_{\pi(y)}$$

• Define cross-covariance:

$$C_{\mathbf{Q}(y,x)} = \int \left(\phi_{y} \otimes \varphi_{x} \right) \, \mathbf{P}(x|y) \pi(y) dx = C_{(yx)y} C_{yy}^{-1} \mu_{\pi(y)}.$$

Kernel Bayes' law: consistency result

- How to compute posterior expectation from data?
- Given samples: $\{(x_i, y_i)\}_{i=1}^n$ from \mathbf{P}_{xy} , $\{(u_j)\}_{j=1}^n$ from prior π .
- Want to compute $\mathbf{E}[g(Y)|X = x]$ for g in \mathcal{G}
- For any $x \in \mathcal{X}$,

$$\left|\mathbf{g}_{y}^{T}\boldsymbol{R}_{\boldsymbol{Y}|\boldsymbol{X}}\mathbf{k}_{X}(x) - \mathbf{E}[f(\boldsymbol{Y})|\boldsymbol{X}=\boldsymbol{x}]\right| = O_{p}(n^{-\frac{4}{27}}), \quad (n \to \infty),$$

where

$$- \mathbf{g}_y = (g(y_1), \dots, g(y_n))^T \in \mathbb{R}^n.$$

$$- \mathbf{k}_X(x) = (k(x_1, x), \dots, k(x_n, x))^T \in \mathbb{R}^n$$

- $R_{Y|X}$ learned from the samples, contains the u_j

Smoothness assumptions:

• $\pi/p_Y \in \mathcal{R}(C_{YY}^{1/2})$, where p_Y p.d.f. of \mathbf{P}_Y ,

•
$$E[g(Y)|X = \cdot] \in \mathcal{R}(C^2_{\mathbf{Q}(xx)}).$$

Experiment: Kernel Bayes' law vs EKF

Experiment: Kernel Bayes' law vs EKF

- Compare with extended Kalman filter (EKF) on camera orientation task
- 3600 downsampled frames of 20×20 RGB pixels $(Y_t \in [0, 1]^{1200})$
- 1800 training frames, remaining for test.
- Gaussian noise added to Y_t .

Experiment: Kernel Bayes' law vs EKF

- Compare with extended Kalman filter (EKF) on camera orientation task
- 3600 downsampled frames of 20×20 RGB pixels $(Y_t \in [0, 1]^{1200})$
- 1800 training frames, remaining for test.
- Gaussian noise added to Y_t .

Average MSE and standard errors (10 runs)

	KBR (Gauss)	KBR (Tr)	Kalman (9 dim.)	Kalman (Quat.)
$\sigma^2 = 10^{-4}$	0.210 ± 0.015	0.146 ± 0.003	1.980 ± 0.083	0.557 ± 0.023
$\sigma^2 = 10^{-3}$	0.222 ± 0.009	0.210 ± 0.008	1.935 ± 0.064	0.541 ± 0.022

Overview

- Introduction to reproducing kernel Hilbert spaces
 - Hilbert space
 - Kernels and feature spaces
 - Reproducing property
- Nonparametric Bayesian inference
 - Mapping probabilities to feature space
 - Learning conditional probabilities: smooth regression to an RKHS
 - Kernelized Bayesian inference

Co-authors

• From UCL:

- Luca Baldasssarre
- Steffen Grunewalder
- Guy Lever
- Sam Patterson
- Massimiliano Pontil

• External:

- Kenji Fukumizu, ISM
- Bernhard Schoelkopf, MPI
- Alex Smola, Google/CMU
- Le Song, Georgia Tech
- Bharath Sriperumbudur,
 Penn. State

Questions?

Selected references

Characteristic kernels and mean embeddings:

- Smola, A., Gretton, A., Song, L., Schoelkopf, B. (2007). A hilbert space embedding for distributions. ALT.
- Sriperumbudur, B., Gretton, A., Fukumizu, K., Schoelkopf, B., Lanckriet, G. (2010). Hilbert space embeddings and metrics on probability measures. JMLR.
- Gretton, A., Borgwardt, K., Rasch, M., Schoelkopf, B., Smola, A. (2012). A kernel two- sample test. JMLR.
- Sejdinovic, D., Sriperumbudur, B., Gretton, A., Fukumizu, K. (2013). Equivalence of distance-based and rkhs-based statistics in hypothesis testing. Annals of Statistics.

Two-sample, independence, conditional independence tests:

- Gretton, A., Fukumizu, K., Teo, C., Song, L., Schoelkopf, B., Smola, A. (2008). A kernel statistical test of independence. NIPS
- Fukumizu, K., Gretton, A., Sun, X., Schoelkopf, B. (2008). Kernel measures of conditional dependence.
- Gretton, A., Fukumizu, K., Harchaoui, Z., Sriperumbudur, B. (2009). A fast, consistent kernel two-sample test. NIPS.
- Gretton, A., Borgwardt, K., Rasch, M., Schoelkopf, B., Smola, A. (2012). A kernel two- sample test. JMLR

Selected references (continued)

Conditional mean embedding, RKHS-valued regression:

- Weston, J., Chapelle, O., Elisseeff, A., Schölkopf, B., and Vapnik, V., (2003). Kernel Dependency Estimation, NIPS.
- Micchelli, C., and Pontil, M., (2005). On Learning Vector-Valued Functions. Neural Computation.
- Caponnetto, A., and De Vito, E. (2007). Optimal Rates for the Regularized Least-Squares Algorithm. Foundations of Computational Mathematics.
- Song, L., and Huang, J., and Smola, A., Fukumizu, K., (2009). Hilbert Space Embeddings of Conditional Distributions. ICML.
- Grunewalder, S., Lever, G., Baldassarre, L., Patterson, S., Gretton, A., Pontil, M. (2012). Conditional mean embeddings as regressors. ICML.
- Grunewalder, S., Gretton, A., Shawe-Taylor, J. (2013). Smooth operators. ICML.

Kernel Bayes rule:

- Song, L., Fukumizu, K., Gretton, A. (2013). Kernel embeddings of conditional distributions: A unified kernel framework for nonparametric inference in graphical models. IEEE Signal Processing Magazine.
- Fukumizu, K., Song, L., Gretton, A. (2013). Kernel Bayes rule: Bayesian inference with positive definite kernels, JMLR

References

- K. Fukumizu, F. R. Bach, and M. I. Jordan. Dimensionality reduction for supervised learning with reproducing kernel Hilbert spaces. *Journal of Machine Learning Research*, 5:73–99, 2004.
- L. Song, J. Huang, A. J. Smola, and K. Fukumizu. Hilbert space embeddings of conditional distributions. In *Proceedings of the International Conference on Machine Learning*, 2009.