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Motivating Example: Bayesian inference without a model

• 3600 downsampled frames of

20× 20 RGB pixels

(Yt ∈ [0, 1]1200)

• 1800 training frames,

remaining for test.

• Gaussian noise added to Yt.

Challenges:

• No parametric model of camera dynamics (only samples)

• No parametric model of map from camera angle to image (only samples)

• Want to do filtering: Bayesian inference



ABC: an approach to Bayesian inference without a model

Bayes rule:

P(y|x) = P(x|y)π(y)∫
P(x|y)π(y)dy

• P(x|y) is likelihood
• π(y) is prior
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ABC: an approach to Bayesian inference without a model

Bayes rule:

P(y|x) = P(x|y)π(y)∫
P(x|y)π(y)dy

• P(x|y) is likelihood
• π(y) is prior

One approach: Approximate Bayesian Computation (ABC)

ABC generates a sample from p(Y |x∗) as follows:
1. generate a sample yt from the prior π,

2. generate a sample xt from P(X|yt),
3. if D(x∗, xt) < τ , accept y = yt; otherwise reject,

4. go to (i).

In step (3), D is a distance measure, and τ is a tolerance parameter.



Motivating example 2: simple Gaussian case

• p(x, y) is N ((0,1Td )
T , V ) with V a randomly generated covariance

Posterior mean on x: ABC vs kernel approach
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Overview

• Introduction to reproducing kernel Hilbert spaces

– Hilbert space

– Kernels and feature spaces

– Reproducing property

– Mapping probabilities to feature space



Overview

• Introduction to reproducing kernel Hilbert spaces

– Hilbert space

– Kernels and feature spaces

– Reproducing property

– Mapping probabilities to feature space

• Nonparametric Bayesian inference

– Learning conditional probabilities: smooth regression to an RKHS

– Kernelized Bayesian inference



Functions in a reproducing kernel Hilbert space
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Kernel methods can control smoothness and avoid

overfitting/underfitting.



Hilbert space

Inner product

Let H be a vector space over R. A function 〈·, ·〉H : H×H → R is an inner

product on H if

1. Linear: 〈α1f1 + α2f2, g〉H = α1 〈f1, g〉H + α2 〈f2, g〉H
2. Symmetric: 〈f, g〉H = 〈g, f〉H
3. 〈f, f〉H ≥ 0 and 〈f, f〉H = 0 if and only if f = 0.
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Hilbert space

Inner product

Let H be a vector space over R. A function 〈·, ·〉H : H×H → R is an inner

product on H if

1. Linear: 〈α1f1 + α2f2, g〉H = α1 〈f1, g〉H + α2 〈f2, g〉H
2. Symmetric: 〈f, g〉H = 〈g, f〉H
3. 〈f, f〉H ≥ 0 and 〈f, f〉H = 0 if and only if f = 0.

Norm induced by the inner product: ‖f‖H :=
√
〈f, f〉H

Hilbert space: Inner product space containing Cauchy sequence limits.



Kernel

Kernel: Let X be a non-empty set. A function k : X ×X → R is a kernel if

there exists an R-Hilbert space and a map ϕ : X → H such that ∀x, x′ ∈ X ,

k(x, x′) := 〈ϕx, ϕx′〉H .

• Almost no conditions on X (eg, X itself doesn’t need an inner product,

eg. documents).

• A single kernel can correspond to several possible feature vectors. A

trivial example for X := R:

ϕ(1)
x = x and ϕ(2)

x =


 x/

√
2

x/
√
2






Finite dim. RKHS with polynomial features

Example: A three dimensional space of features of points in R
2:

ϕ : R
2 → R

3

x =


 x1

x2


 7→ ϕx =




x1

x2

x1x2


 ,

with kernel

k(x, y) =




x1

x2

x1x2




⊤ 


y1

y2

y1y2




(the standard inner product in R
3 between features). Denote this feature

space by H.



Finite dim. RKHS with polynomial features

Define a linear function of the inputs x1, x2, and their product x1x2,

f(x) = f1x1 + f2x2 + f3x1x2.

f in a space of functions mapping from X = R
2 to R. Equivalent

representation for f ,

f(·) =
[
f1 f2 f3

]⊤
.

f(·) refers to the function as an object (here as a vector in R
3)

f(x) ∈ R is function evaluated at a point (a real number).



Finite dim. RKHS with polynomial features

Define a linear function of the inputs x1, x2, and their product x1x2,

f(x) = f1x1 + f2x2 + f3x1x2.

f in a space of functions mapping from X = R
2 to R. Equivalent

representation for f ,

f(·) =
[
f1 f2 f3

]⊤
.

f(·) refers to the function as an object (here as a vector in R
3)

f(x) ∈ R is function evaluated at a point (a real number).

f(x) = f(·)⊤ϕx = 〈f(·), ϕx〉H
Evaluation of f at x is an inner product in feature space (here standard

inner product in R
3)

H is a space of functions mapping R
2 to R.



Finite dim. RKHS with polynomial features

ϕy is a mapping from R
2 to R

3. . .

. . .which also parametrizes a function mapping R
2 to R.

k(·, y) :=
[
y1 y2 y1y2

]⊤
= ϕy,

Given y, there is a vector k(·, y) in H such that

〈k(·, y), ϕx〉H = ax1 + bx2 + cx1x2,

where a = y1, b = y2, and c = y1y2



Finite dim. RKHS with polynomial features

ϕy is a mapping from R
2 to R

3. . .

. . .which also parametrizes a function mapping R
2 to R.

k(·, y) :=
[
y1 y2 y1y2

]⊤
= ϕy,

Given y, there is a vector k(·, y) in H such that

〈k(·, y), ϕx〉H = ax1 + bx2 + cx1x2,

where a = y1, b = y2, and c = y1y2

Due to symmetry,

〈k(·, x), ϕy〉 = uy1 + vy2 + wy1y2

= k(x, y).

We can write ϕx = k(·, x) and ϕy = k(·, y) without ambiguity: canonical

feature map



The reproducing property

This example illustrates the two defining features of an RKHS:

• The reproducing property:

∀x ∈ X , ∀f(·) ∈ H, 〈f(·), k(·, x)〉H = f(x)

. . .or use shorter notation 〈f, ϕx〉H.
• In particular, for any x, y ∈ X ,

k(x, y) = 〈k (·, x) , k (·, y)〉H.

Note: the feature map of every point is in the feature space:

∀x ∈ X , k(·, x) = ϕx ∈ H,



Infinite dimensional feature space

Reproducing property for function with Gaussian kernel:

f(x) :=
∑m

i=1 αik(xi, x) = 〈∑m
i=1 αiϕxi , ϕx〉H .
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Infinite dimensional feature space

Reproducing property for function with Gaussian kernel:

f(x) :=
∑m

i=1 αik(xi, x) = 〈∑m
i=1 αiϕxi , ϕx〉H .

−6 −4 −2 0 2 4 6 8
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

f(
x
)

• What do the features ϕx look like (there are infinitely many of them,

and they are not unique!)

• What do these features have to do with smoothness?



Infinite dimensional feature space

Gaussian kernel, k(x, x′) = exp
(
−‖x−x′‖2

2σ2

)
,

λk ∝ bk b < 1

ek(x) ∝ exp(−(c− a)x2)Hk(x
√
2c),

a, b, c are functions of σ, and Hk is kth order Hermite polynomial.

k(x, x′)

=
∞∑

i=1

λiei(x)ei(x
′)

=
∞∑

i=1

(√
λiei(x)

)(√
λiei(x

′)
)

=
∞∑

i=1

ϕxϕx′



Infinite dimensional feature space

(Mercer) Let X be a compact metric space, k be a continous kernel, and µ

be a finite Borel measure with supp{µ} = X . Then the convergence of

k(x, y) =
∑

j

λjej(x)ej(y)

is absolute and uniform (ej is the continuous element of the L2 equivalence

class ej .).

The feature map is ϕx =
[
. . .

√
λiei(x) . . .

]



Infinite dimensional feature space

(Mercer RKHS)(Steinwart and Christmann, Theorem 4.51) Under the assumptions of

Mercer’s theorem,

H :=

{
∑

i

ai
√
λiei : ai ∈ ℓ2

}
(1)

is an RKHS with kernel k.

Given two functions in the RKHS

f(x) :=
∑

i

ai
√
λiei(x), g(x) :=

∑

i

bi
√
λiei(x),

the inner product is 〈f, g〉H =
∑

i aibi



Infinite dimensional feature space

Proof: There are two aspects requiring care:

1. Is k(x, ·) ∈ H ∀x ∈ X ? Requires Mercer’s theorem

2. Does the reproducing property hold? 〈f, k(·, x)〉H = f(x).



Infinite dimensional feature space

Proof: There are two aspects requiring care:

1. Is k(x, ·) ∈ H ∀x ∈ X ? Requires Mercer’s theorem

2. Does the reproducing property hold? 〈f, k(·, x)〉H = f(x).

First part:

By the definition of H, the function in H indexed by x is

k(x, ·) =
∑

i

(√
λiei(x)

)(√
λiei(·)

)
.

Is this function in the RKHS? Yes, if the ℓ2 norm of
(√
λiei(x)

)
is bounded.

This is due to Mercer: ∀x ∈ X ,

‖k(x, ·)‖2H =
∥∥∥
(√

λiei(x)
)∥∥∥

2

ℓ2
= k(x, x) <∞.



Infinite dimensional feature space

Proof (continued):

Second part:

The reproducing property holds: using the inner product definition,

〈f, k(x, ·)〉H =
∑

i

fi

(√
λiei(x)

)
= f(x),

which is always well defined since both f ∈ ℓ2 and k(x, ·) ∈ ℓ2 .



Infinite dimensional feature space

Example RKHS function, Gaussian kernel:

f(x) :=
m∑

i=1

αik(xi, x) =
m∑

i=1

αi




∞∑

j=1

λjej(xi)ej(x)


 =

∞∑

j=1

fj

[√
λjej(x)

]

where fj =
∑m

i=1 αi

√
λjej(xi).
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NOTE that this

enforces smoothing:

λj decay as ej

become rougher,

fj decay since

‖f‖2H =
∑

j f
2
j <∞.



Reproducing kernel Hilbert space

H a Hilbert space of R-valued functions on non-empty set X . A function

k : X × X → R is a reproducing kernel of H, and H is a reproducing kernel

Hilbert space, if

• ∀x ∈ X , k(·, x) ∈ H,

• ∀x ∈ X , ∀f ∈ H, 〈f(·), k(·, x)〉H = f(x) (the reproducing property).

In particular, for any x, y ∈ X ,

k(x, y) = 〈k (·, x) , k (·, y)〉H. (2)

Original definition: kernel an inner product between feature maps. Then

ϕx = k(·, x) a valid feature map.



Probabilities in feature space: the mean trick

The kernel trick

• Given x ∈ X for some set X ,

define feature map ϕx ∈ H,

ϕx =
[
. . .

√
λiei(x) . . .

]
∈ ℓ2

• For positive definite k(x, x′),

k(x, x′) = 〈ϕx, ϕx′〉H

• The kernel trick: ∀f ∈ H,

f(x) = 〈f, ϕx〉H



Probabilities in feature space: the mean trick

The kernel trick

• Given x ∈ X for some set X ,

define feature map ϕx ∈ H,

ϕx =
[
. . .

√
λiei(x) . . .

]
∈ ℓ2

• For positive definite k(x, x′),

k(x, x′) = 〈ϕx, ϕx′〉H

• The kernel trick: ∀f ∈ H,

f(x) = 〈f, ϕx〉H

The mean trick

• Given P a Borel probability

measure on X , define feature

map µP ∈ H

µP =
[
. . .

√
λiEP [ei(X)] . . .

]
∈ ℓ2

• For positive definite k(x, x′),

EP,Qk(X,Y ) = 〈µP, µQ〉H

for X ∼ P and Y ∼ Q.

• The mean trick: (we call µP a

mean/distribution embedding)

EP(f(X)) = EP [〈ϕX , f〉F ]
=: 〈µ , f〉



Feature embeddings of probabilities

The kernel trick:

f(x) = 〈f, ϕx〉H

The mean trick:

EP(f(X)) = 〈µP, f〉F
Empirical mean embedding:

µ̂P = m−1
m∑

i=1

ϕxi xi
i.i.d.∼ P

µP gives you expectations of all RKHS functions

When k characteristic, then µP unique, e.g. Gauss, Laplace, . . .



Nonparametric Bayesian inference using distribution
embeddings



Bayes again

Bayes rule:

P(y|x) = P(x|y)π(y)∫
P(x|y)π(y)dy

• P(x|y) is likelihood
• π is prior

How would this look with kernel embeddings?



Bayes again

Bayes rule:

P(y|x) = P(x|y)π(y)∫
P(x|y)π(y)dy

• P(x|y) is likelihood
• π is prior

How would this look with kernel embeddings?

Define RKHS G on Y with feature map ψy and kernel l(y, ·)

We need a conditional mean embedding: for all g ∈ G,

EY |x∗g(Y ) = 〈g, µP(y|x∗)〉G

This will be obtained by RKHS-valued ridge regression



Ridge regression and the conditional feature mean

Ridge regression from X := R
d to a finite vector output Y := R

d′ (these

could be d′ nonlinear features of y):

Define training data

X =
[
x1 . . . xm

]
∈ R

d×m Y =
[
y1 . . . ym

]
∈ R

d′×m
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Ridge regression from X := R
d to a finite vector output Y := R

d′ (these

could be d′ nonlinear features of y):

Define training data

X =
[
x1 . . . xm

]
∈ R

d×m Y =
[
y1 . . . ym

]
∈ R

d′×m

Solve

Ă = argminA∈Rd′×d

(
‖Y −AX‖2 + λ‖A‖2HS

)
,

where

‖A‖2HS = tr(A⊤A) =

min{d,d′}∑

i=1

γ2A,i



Ridge regression and the conditional feature mean

Ridge regression from X := R
d to a finite vector output Y := R

d′ (these

could be d′ nonlinear features of y):

Define training data

X =
[
x1 . . . xm

]
∈ R

d×m Y =
[
y1 . . . ym

]
∈ R

d′×m

Solve

Ă = argminA∈Rd′×d

(
‖Y −AX‖2 + λ‖A‖2HS

)
,

where

‖A‖2HS = tr(A⊤A) =

min{d,d′}∑

i=1

γ2A,i

Solution: Ă = CY X (CXX +mλI)−1



Ridge regression and the conditional feature mean

Prediction at new point x:

y∗ = Ăx

= CY X (CXX +mλI)−1 x

=
m∑

i=1

βi(x)yi

where

βi(x) = (K + λmI)−1
[
k(x1, x) . . . k(xm, x)

]⊤

and

K := X⊤X k(x1, x) = x⊤1 x



Ridge regression and the conditional feature mean

Prediction at new point x:

y∗ = Ăx

= CY X (CXX +mλI)−1 x

=
m∑

i=1

βi(x)yi

where

βi(x) = (K + λmI)−1
[
k(x1, x) . . . k(xm, x)

]⊤

and

K := X⊤X k(x1, x) = x⊤1 x

What if we do everything in kernel space?



Ridge regression and the conditional feature mean

Recall our setup:

• Given training pairs:

(xi, yi) ∼ PXY

• F on X with feature map ϕx and kernel k(x, ·)
• G on Y with feature map ψy and kernel l(y, ·)

We define the covariance between feature maps:

CXX = EX (ϕX ⊗ ϕX) CXY = EXY (ϕX ⊗ ψY )

and matrices of feature mapped training data

X =
[
ϕx1 . . . ϕxm

]
Y :=

[
ψy1 . . . ψym

]



Ridge regression and the conditional feature mean

Objective: [Weston et al. (2003), Micchelli and Pontil (2005), Caponnetto and De Vito (2007), Grunewalder

et al. (2012, 2013) ]

Ă = arg min
A∈HS(F ,G)

(
EXY ‖Y −AX‖2G + λ‖A‖2HS

)
, ‖A‖2HS =

∞∑

i=1

γ2A,i

Solution same as vector case:

Ă = CY X (CXX +mλI)−1 ,

Prediction at new x using kernels:

Ăϕx =
[
ψy1 . . . ψym

]
(K + λmI)−1

[
k(x1, x) . . . k(xm, x)

]

=

m∑

i=1

βi(x)ψyi

where Kij = k(xi, xj)



Ridge regression and the conditional feature mean

How is loss ‖Y −AX‖2G relevant to conditional expectation of some

EY |xg(Y )? Define: [Song et al. (2009), Grunewalder et al. (2013)]

µY |x := Aϕx



Ridge regression and the conditional feature mean

How is loss ‖Y −AX‖2G relevant to conditional expectation of some

EY |xg(Y )? Define: [Song et al. (2009), Grunewalder et al. (2013)]

µY |x := Aϕx

We need A to have the property

EY |xg(Y ) ≈ 〈g, µY |x〉G
= 〈g,Aϕx〉G
= 〈A∗g, ϕx〉F = (A∗g)(x)



Ridge regression and the conditional feature mean

How is loss ‖Y −AX‖2G relevant to conditional expectation of some

EY |xg(Y )? Define: [Song et al. (2009), Grunewalder et al. (2013)]

µY |x := Aϕx

We need A to have the property

EY |xg(Y ) ≈ 〈g, µY |x〉G
= 〈g,Aϕx〉G
= 〈A∗g, ϕx〉F = (A∗g)(x)

Natural risk function for conditional mean

L(A,PXY ) := sup
‖g‖≤1

EX



(
EY |Xg(Y )

)
︸ ︷︷ ︸

Target

(X)− (A∗g)︸ ︷︷ ︸
Estimator

(X)




2

,



Ridge regression and the conditional feature mean

The squared loss risk provides an upper bound on the natural risk.

L(A,PXY ) ≤ EXY ‖ψY −AϕX‖2G
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The squared loss risk provides an upper bound on the natural risk.

L(A,PXY ) ≤ EXY ‖ψY −AϕX‖2G

Proof: Jensen and Cauchy Schwarz

L(A,PXY ) := sup
‖g‖≤1

EX

[(
EY |Xg(Y )

)
(X)− (A∗g) (X)

]2

≤ EXY sup
‖g‖≤1

[g(Y )− (A∗g) (X)]2
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Proof: Jensen and Cauchy Schwarz
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Ridge regression and the conditional feature mean

The squared loss risk provides an upper bound on the natural risk.

L(A,PXY ) ≤ EXY ‖ψY −AϕX‖2G

Proof: Jensen and Cauchy Schwarz

L(A,PXY ) := sup
‖g‖≤1

EX

[(
EY |Xg(Y )

)
(X)− (A∗g) (X)

]2

≤ EXY sup
‖g‖≤1

[g(Y )− (A∗g) (X)]2

= EXY sup
‖g‖≤1

〈g, ψY −AϕX〉2G

≤ EXY ‖ψY −AϕX‖2G

If we assume EY [g(Y )|X = x] ∈ F then upper bound tight (next slide).
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Proof: conditional mean obtained by ridge regression when

EY [g(Y )|X = x] ∈ F
Given a function g ∈ G. Assume EY |X [g(Y )|X = ·] ∈ F . Then

CXXEY |X [g(Y )|X = ·] = CXY g.



Conditions for ridge regression = conditional mean

Proof: conditional mean obtained by ridge regression when

EY [g(Y )|X = x] ∈ F
Given a function g ∈ G. Assume EY |X [g(Y )|X = ·] ∈ F . Then

CXXEY |X [g(Y )|X = ·] = CXY g.

Proof : [Fukumizu et al., 2004]

For all f ∈ F , by definition of CXX ,

〈
f, CXXEY |X [g(Y )|X = ·]

〉
F

= cov
(
f,EY |X [g(Y )|X = ·]

)

= EX

(
f(X) EY |X [g(Y )|X]

)

= EXY (f(X)g(Y ))

= 〈f, CXY g〉 ,

by definition of CXY .
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• Likelihood: (X|y) ∼ P(x|y) with some joint P(x, y)



Kernel Bayes’ law

• Prior: Y ∼ π(y)

• Likelihood: (X|y) ∼ P(x|y) with some joint P(x, y)

• Joint distribution: Q(x, y) = P(x|y)π(y)

Warning: Q 6= P, change of measure from P(y) to π(y)

• Marginal for x:

Q(x) :=

∫
P(x|y)π(y)dy.

• Bayes’ law:

Q(y|x) = P(x|y)π(y)
Q(x)



Kernel Bayes’ law

• Posterior embedding via the usual conditional update,

µQ(y|x) = CQ(y,x)C
−1
Q(x,x)φx.



Kernel Bayes’ law

• Posterior embedding via the usual conditional update,

µQ(y|x) = CQ(y,x)C
−1
Q(x,x)φx.

• Given mean embedding of prior: µπ(y)

• Define marginal covariance:

CQ(x,x) =

∫
(ϕx ⊗ ϕx) P(x|y)π(y)dx = C(xx)yC

−1
yy µπ(y)

• Define cross-covariance:

CQ(y,x) =

∫
(φy ⊗ ϕx) P(x|y)π(y)dx = C(yx)yC

−1
yy µπ(y).



Kernel Bayes’ law: consistency result

• How to compute posterior expectation from data?

• Given samples: {(xi, yi)}ni=1 from Pxy, {(uj)}nj=1 from prior π.

• Want to compute E[g(Y )|X = x] for g in G
• For any x ∈ X ,

∣∣gT
y RY |XkX(x)−E[f(Y )|X = x]

∣∣ = Op(n
− 4

27 ), (n→ ∞),

where

– gy = (g(y1), . . . , g(yn))
T ∈ R

n.

– kX(x) = (k(x1, x), . . . , k(xn, x))
T ∈ R

n

– RY |X learned from the samples, contains the uj

Smoothness assumptions:

• π/pY ∈ R(C
1/2
Y Y ), where pY p.d.f. of PY ,

• E[g(Y )|X = ·] ∈ R(C2
Q(xx)

).
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Experiment: Kernel Bayes’ law vs EKF

• Compare with extended Kalman

filter (EKF) on camera

orientation task

• 3600 downsampled frames of

20× 20 RGB pixels

(Yt ∈ [0, 1]1200)

• 1800 training frames, remaining

for test.

• Gaussian noise added to Yt.



Experiment: Kernel Bayes’ law vs EKF

• Compare with extended Kalman

filter (EKF) on camera

orientation task

• 3600 downsampled frames of

20× 20 RGB pixels

(Yt ∈ [0, 1]1200)

• 1800 training frames, remaining

for test.

• Gaussian noise added to Yt.

Average MSE and standard errors (10 runs)

KBR (Gauss) KBR (Tr) Kalman (9 dim.) Kalman (Quat.)

σ2 = 10−4 0.210± 0.015 0.146± 0.003 1.980± 0.083 0.557± 0.023

σ2 = 10−3 0.222± 0.009 0.210± 0.008 1.935± 0.064 0.541± 0.022



Overview

• Introduction to reproducing kernel Hilbert spaces

– Hilbert space

– Kernels and feature spaces

– Reproducing property

• Nonparametric Bayesian inference

– Mapping probabilities to feature space

– Learning conditional probabilities: smooth regression to an RKHS

– Kernelized Bayesian inference
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Questions?
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