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Comparing two samples

m Given: Samples from unknown distributions P and Q.
m Goal: do P and @ differ?
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An example: two-sample tests

m Have: Two collections of samples X, Y from unknown distributions
P and Q.
m Goal: do P and @ differ?

13450/ > 017 |s574[7

5|9/7|574/2 M5 (3/0(7]7|5
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MNIST samples Samples from a GAN
Significant difference in GAN and MNIST?

T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, Xi Chen, NIPS 2016. 3/51



Testing goodness of fit

m Given: A model P and samples and Q).
m Goal: is P a good fit for Q7

Chicago crime data
Model is Gaussian mixture with two components.

4/51



Testing independence

m Given: Samples from a distribution Pxy
m Goal: Are X and Y independent?

X Y

A large animal who slings slobber,
exudes a distinctive houndy odor,
and wants nothing more than to
follow his nose.

Their noses guide them
through life, and they're
never happier than when
following an interesting scent.

A responsive, interactive
pet, one that will blow in
your ear and follow you
everywhere.

Text from dogtime.com and petfinder.com
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Outline: part 1

Two sample testing

m Test statistic: Maximum Mean Discrepancy (MMD)...

o ..as a difference in feature means
e ...as an integral probability metric (not just a technicality!)

m Statistical testing with the MMD
m Troubleshooting GANs with MMD
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Outline: part 2

Goodness of fit testing
m The kernel Stein discrepancy
Dependence testing

m Dependence using the MMD
m Depenence using feature covariances

m Statistical testing

7/51



Outline: part 2

Goodness of fit testing
m The kernel Stein discrepancy
Dependence testing

m Dependence using the MMD
m Depenence using feature covariances

m Statistical testing

Additional topics
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Maximum Mean Discrepancy
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Feature mean difference

m Simple example: 2 Gaussians with different means

m Answer: t-test

Two Gaussians with different means

Prob. density
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Feature mean difference

Prob. density

Two Gaussians with same means, different variance

In Gaussian case: second order features of form ¢(z) = z

Two Gaussians with different variances

Idea: look at difference in means of features of the RVs

2
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Feature mean difference

Prob. density

Two Gaussians with different variances

Two Gaussians with same means, different variance

Densities of feature X2

In Gaussian case: second order features of form ¢(z) = z

Idea: look at difference in means of features of the RVs

2

Prob. density

10/51



Feature mean difference

m Gaussian and Laplace distributions
®m Same mean and same variance

m Difference in means using higher order features.. RKHS

Gaussian and Laplace densities

0.7

Prob. density
o o o o
L £ 9 9

o
)

0.1F
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Infinitely many features using kernels

Kernels: dot products
of features

Feature map ¢(z) € F,

olz)=1[..0i(z)..] €L

For positive definite k,

k(z,2") = (p(z), o(z'))

Infinitely many features
@(z), dot product in
closed form!
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Infinitely many features using kernels

Kernels: dot products
of features

Feature map ¢(z) € F,

p(z)=[..0iz).. ] €L

For positive definite k&,

k(z,2') = (p(z), o(z'))

Infinitely many features
¢(z), dot product in
closed form!

Exponentiated quadratic kernel

k(z,a') = exp (—v ||z — 2'||%)

_901(517) /\
RN RGAVAN
pa(z) |~
—

Features: Gaussian Processes for Machine learning, Ras-
mussen and Williams, Ch. 4. 12/51




Infinitely many features of distributions

Given P a Borel probability measure on &', define feature map of
probability P,
up =1[..Eplpi(X)]...]
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Infinitely many features of distributions

Given P a Borel probability measure on &', define feature map of
probability P,
up =1[..Eplpi(X)]...]

For positive definite k(z, z’),

(kp,po)r = Ep ok(z,y)

forz ~ Pand y ~ Q.

Fine print: feature map ¢(z) must be Bochner integrable for all probability measures considered.
Always true if kernel bounded.
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The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature
means:

MMD?*(P, Q) = |lup — poll>
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The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature
means:

MMD*(P, Q) = |lup — pollx
= (up, uP) r + (L) Q) — 2 (1P, HO) £
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The maximum mean discrepancy

The maximum mean discrepancy is the distance between feature
means:

MMD*(P, Q) = ||up — poll>

= (up,ur)r+ (Lo, ko) — 2(kP, LQ) £
= Epk(X, XY+ Egk(Y, Y') — 2Ep ok(X, Y)

(a) (2) (b)

(a)= within distrib. similarity, (b)= cross-distrib. similarity.
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[Mustration of MMD

m Dogs (= P) and fish (= Q) example revisited
m Each entry is one of k(dog,,dog;), k(dog;, fish;), or k(fish;, fish;)

VR
P -~

>

»?

-
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[Mustration of MMD

The maximum mean discrepancy:

—2
MMD =n(n—_ > k(dog,, dog;) + n(n— > k(fish,, fish, )
z;éj 1#]
- E > k(dog;, fish;)
LR

*

g

dog;, dog;; )

k(fish;, dog;) ‘ fish;, fish; )

)

k(dog;, fish

.:
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MMD as an integral probability metric

Are P and @ different?

051

-0.5

Samples from P and Q

L 4

AR A 4
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0.8 1
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MMD as an integral probability metric

Are P and @ different?

051

-0.5

BRAR

Samples from P and Q

00 ¢ 00000 © 06 -
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0.4

0.6

0.8
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MMD as an integral probability metric

Integral probability metric:
Find a "well behaved function" f(z) to maximize

Epf(X) - Eqf(Y)

Smooth function
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MMD as an integral probability metric

Integral probability metric:
Find a "well behaved function" f(z) to maximize

Epf(X) - Eqf(Y)

Smooth function

0.5

-05 1

20/51



MMD as an integral probability metric

Maximum mean discrepancy: smooth function for P vs @

MMD(P, Q; F) := s [Epf(X) —Eqf(Y)]
(F = unit ball in RKHS F)
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MMD as an integral probability metric

Maximum mean discrepancy: smooth function for P vs @

MMD(P, Q; F) := s [Epf(X) —Eqf(Y)]
(F = unit ball in RKHS F)

Witness f for Gauss and Laplace densities
0.8 : : : :

s

Gauss ]

0.6

e |_aplace

Prob. density and f

Xor
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MMD as an integral probability metric

Maximum mean discrepancy: smooth function for P vs @

MMD(P, Q; F) := sup [Epf(X) — Eof(
I7lI<1

(F' = unit ball in RKHS F)

Functions are linear combinations of features:

f1
2
[(x) = ([, ¢z ;—Zfew =1 71

V)l

po(@) T~




MMD as an integral probability metric

Maximum mean discrepancy: smooth function for P vs @

MMD(P, Q; F) := e [Epf(X) —Eqf(Y)]
(F = unit ba_ill in RKHS F)

Expectations of functions are linear combinations
of expected features

Ep(f(X)) = {f,Epp(X))r = (f,uP) 5

(always true if kernel is bounded)
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MMD as an integral probability metric

Maximum mean discrepancy: smooth function for P vs @

MMD(P, Q; F) := s [Epf(X) —Eqf(Y)]
(F = unit ball in RKHS F)

For characteristic RKHS 7, MMD(P,Q; F)=0iff P = Q

Other choices for witness function class:

m Bounded continuous [pudiey, 2002]
m Bounded varation 1 (Kolmogorov metric) puiter, 1997)

m Bounded Lipschitz (Wasserstein distances) [pudiey, 2002
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Integral prob. metric vs feature difference

The MMD:

Witness f for Gauss and Laplace densities

JE—

0.6 = Gauss ||
= |_aplace

MMD(P, Q; F)

=sup [Epf(X) —Eqf(Y)]
feF

Prob. density and f
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Integral prob. metric vs feature difference

The MMD:
use

MMD(P, o:; F) EPf(X) = (MP:f)]:

=sup[Epf(X) — Eqgf(Y)]
feEF

=sup (f, up — 1Q)
feFr
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Integral prob. metric vs feature difference

The MMD:

MMD(P, Q; F)

=sup[Epf(X) — Eqgf(Y)]
fer

=sup(f, up — 1o) r
feFr
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Integral prob. metric vs feature difference

The MMD: Q
\ D)
2\ 9
MMD(P, Q; F) bé\‘b )
= sup [Epf(X) — Bof(Y)] f
feF

=sup(f, up — 1o) r
feFr
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Integral prob. metric vs feature difference

The MMD:

Q
\ g )

<92 s
MMD(P, Q; F) Do\‘ v
=sup[Epf(X) — Eqf(Y)]

feF f*

= ?161113 (foup — 1) r

. MP—LQ

lwp = ol e



Integral prob. metric vs feature difference

The MMD:

MMD(P, Q; F)

= sup [Epf(X) — Eqf (V)]
feF

=sup(f,ppr — LQ)r
fer

= llup — poll

Function view and feature view equivalent
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Construction of MMD witness
Construction of empirical witness function (proof: next slide!)

Observe X = {xy,...,X,} ~ P

S Ynt~ Q
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Construction of MMD witness
Construction of empirical witness function (proof: next slide!)
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Construction of MMD witness
Construction of empirical witness function (proof: next slide!)

o @®o — — VvV
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Construction of MMD witness

Construction of empirical witness function (proof: next slide!)

witness(v)
~———

23/51



Derivation of empirical witness function

Recall the witness function expression

frocpup —po
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Derivation of empirical witness function

Recall the witness function expression

frocpup —po

The empirical feature mean for P

S\I—‘

24/51



Derivation of empirical witness function
Recall the witness function expression

frocpup —po

The empirical feature mean for P

S\l—‘

The empirical witness function at v

FH(v) = e(v)z
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Derivation of empirical witness function
Recall the witness function expression

frocpup —po
The empirical feature mean for P
n

The empirical witness function at v

S\l—‘
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Derivation of empirical witness function

Recall the witness function expression

frocpup —po
The empirical feature mean for P
n

The empirical witness function at v

S\l—‘

Z (zi,v nzk Vis V)

Don’t need explicit feature coeflicients f* := { T } 24/51



Two-Sample Testing



A statistical test using MMD
The empirical MMD:

—_—2
MMD =——— Zk (i, 7;) Zk (v:,75)
z;éj 1-75]

- ﬁ Z k(zi,v;)
4]

How does this help decide whether P = Q7

26/51



A statistical test using MMD
The empirical MMD:

—_—2
MMD™ =———— Zk (z:, 7;)
z;ﬁj

- ﬁ Z k(zi,v;)
4]

Perspective from statistical hypothesis testing:

m Null hypothesis Hg when P = Q)

—2
should see MMD “close to zero”.
m Alternative hypothesis H; when P # @

2
should see MMD “far from zero”

Zk (vi,¥5)

z;ﬁj
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A statistical test using MMD
The empirical MMD:

—_—2
MMD =——— Zk (i, 7;) Zk (v:,75)
z;éj 1-75]

- ﬁ Z k(zi,v;)
4]

Perspective from statistical hypothesis testing:

m Null hypothesis Hg when P = Q)

—2
should see MMD “close to zero”.
m Alternative hypothesis H; when P # @

2
should see MMD “far from zero”

———— 2
Want Threshold ¢, for MMD to get false positive rate o
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—_—2
Behaviour of MMD when P # Q

Draw n = 200 i.i.d samples from P and @
m Laplace with different y-variance.

_—— 9
— 2 —
m /nx MMD =12 v x MMD =12
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—_— 2
Behaviour of MMD when P # @

Number of MMDs: 1

15
—_ 2
Vi x MMD™ =1.2
10
S R
(= AR
’\< 4r 0 . T
X , A ..-". .
kS ° i
. 2t Setees
e .
& 4
5|
5|
-10
2 0 2

0 0.5 1 1.5 2 2.5
— 2
Vn x MMD
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—_—2
Behaviour of MMD when P # Q

Draw n = 200 new samples from P and @

m Laplace with different y-variance.

_— 9
——— 2 _
w /7 x MMD =15 ynx MMD =15
1.
al . ..‘. .:'.:

S}
o
[N}
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—_— 2
Behaviour of MMD when P # @

2

—

Prob. of \/n x MMD

Number of MMDs: 2

_
T

o
o
:

.

0.5

1 1.5
2
Vn x MMD

2

2.5

/i x MMD’ =1.5

10

8t

6|

4

o

N

27/51



—_— 2
Behaviour of MMD when P # @

Repeat this 150 times ...

1

2

Prob. of /n x MMD

5

-
T

o
o
T

Number of MMDs: 150

0 0.5 1 15 2 2.5
— 2
Vi x MMD
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—_— 2
Behaviour of MMD when P # @

Repeat this 300 times ...

1

2

Prob. of /n x MMD

5

-
T

o
o
T

Number of MMDs: 300

0 0.5 1 15 2 2.5
— 2
Vi x MMD
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—_— 2
Behaviour of MMD when P # @

Repeat this 3000 times ...

1

2

Prob. of /n x MMD

5

-
T

o
o
T

Number of MMDs: 3000

0 0.5 1 15 2 2.5
— 2
Vi x MMD
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— 2
Asymptotics of MMD when P # Q
When P # @, statistic is asymptotically normal,
MMD~ — MMD(P, Q) p

— N(0,1),
where variance V,(P, Q)= O (n™1) .
MMD density U_nder Hl Two Laplace distributions with different variances
1 -
15 T T . T T T —Px
[ =rpirical PDF —Q,
e Giaussian fit =
S g
= o
(= .| :
= @ 05
X
% 6 -4 2 0 2 4 6
. 05¢ X
k5
s}
0

0 0.5 1 15 2 2.5 3 3.5
—_— 2
Vi x MMD 20/51



—2
Behaviour of MMD when P = Q

What happens when P and @ are the same?
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— 2
Behaviour of MMD when P = @
m Case of P = Q = N(0,1)

Number of MMDs: 10

0.7

0.6

2

051

—

Prob. of n x MMD

0.4r

031

0.2r

0.1r
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—_— 2
Behaviour of MMD when P = @
m Case of P = Q = N(0,1)
Number of MMDs: 20

—

Prob. of n x MM D

31/51



—_— 2
Behaviour of MMD when P = @
m Case of P = Q = N(0,1)
Number of MMDs: 50

—

Prob. of n x MM D
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—_— 2
Behaviour of MMD when P = @
m Case of P = Q = N(0,1)
Number of MMDs: 100

—

Prob. of n x MM D
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—_— 2
Behaviour of MMD when P = @
m Case of P = Q = N(0,1)
Number of MMDs:

1000

—

Prob. of n x MM D
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—_— 2
Asymptotics of MMD when P = Q)

Where P = @, statistic has asymptotic distribution

77,1\—/I’1\HD2 ~ i)‘l {zf — 2]

=1
) where
MMD density under H,
T e | )= [ He @
™ : -Empirical PDF centred

Prob. of n x MM D
o
~

2~ N(0,2) iid.

o
o

n x MMD’
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A statistical test

A summary of the asymptotics:

0.7 T

0.6

2
o
o
T

Prob. of n x MMD
a 5

o
o
T

0.1+

33/51



A statistical test

Test construction: (G., Borgwardt, Rasch, Schoelkopf, and Smola, JMLR 2012)

07 :
—_—P =
0.6 - ' —_—P £ Q|

[a\

(Cq 05 ]
= oal ]
X
IS
5 03F ]
,g ¢o =1 — a quantile when P = Q
02 B
R~ false negatives

0.1F
0
-2 1 0 1 2 3 4 5 6

33/51



How do we get test threshold c,?

Original empirical MMD for dogs and fish:

X =[P ™ P ... ]

Y =2, M ... |

MMD = ln =) ;k(zﬂzj)
n(nl ) > k()
i
S DIICED




How do we get test threshold c,?

Permuted dog and fish samples (merdogs):
K= (4 e ]
Y

[ Pat. H...]
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How do we get test threshold c,?
Permuted dog and fish samples (merdogs):

X [\'Q—%\') " W e ]
Y

MMD” —(n_lgk %)

+7n(n_1);k(s7 %)

2 o i .
—ﬁzk(@ﬁj) ! | I!
1,7
rlI_ll

. . 'f'l 1" L=
Permutation simulates Al mmin il

P:Q | II_II _I-l-




Demonstration of permutation estimate of null

m Null distribution estimated from 500 permutations

m P=Q=N(0,1)

MMD density under H,

N P ermutation estimate
(2

-

X

I

[y

5

ey

2

&

nx MMD’
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Demonstration of permutation estimate of null

m Null distribution estimated from 500 permutations

m P=Q=N(0,1)

MMD density under H,

P ermutation estimate

2
b
e}

—

Prob. of n x MMD'
o
~

o
(V)

nx MMD’

Use 1 — a quantile of permutation distribution for
test threshold c, 36/51




How to choose the best kernel



Optimizing kernel for test power
The power of our test (Pr; denotes probability under P # Q):

/\2
Prq (nMMD > &a)
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Optimizing kernel for test power

The power of our test (Pr; denotes probability under P # Q):

/\2
Pr; (nMMD > &a)

5 <nMMD2(P, Q) Car >
vV Vn(Pa Q) V Vn(Pi Q)

where

m & is the CDF of the standard normal distribution.

m C, 1s an estimate of ¢, test threshold.
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Optimizing kernel for test power

The power of our test (Pr; denotes probability under P # Q):

—2
Pr; (nMMD > ?:a)

(MMD2(P, Q) Ca
vV Vn(P, Q)J ny/ Vo(P, Q)
O(n1/2) O(nfl/z)

Variance under H; decreases as v/ V,(P, Q) ~ O(n~1/?)

For large n, second term negligible!

38/51



Optimizing kernel for test power

The power of our test (Pr; denotes probability under P # Q):

/\2
Prq (nMMD > &a)

s (MMDZ(P, Q) Ca )

VVa(P,Q) 1/ Vu(P, Q)

To maximize test power, maximize
MMD?(P, Q)
Vn(P, Q)

(Sutherland, Tung, Strathmann, De, Ramdas, Smola, G., ICLR 2017)
Code: github.com/dougalsutherland /opt-mmd
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Graphical illustration

B Reminder: maximising test power same as minimizing false negatives

07 :
—_—P =
0.6 - —_—P £ Q|

[a\)

(C: 05 ]
= oal ]
X
IS
5 03F ]
,g ¢o =1 — a quantile when P = @
02t B
R~ false negatives

0.1
0 T
-2 1 0 1 2 3 4 5 6
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Troubleshooting for generative adversarial networks

13450/ > 07|57 4[7
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MNIST samples Samples from a GAN



Troubleshooting for generative adversarial networks

1345|105
5197|548

3017|5419
5130|578

SEICICIENE
01y1118.81/

9185078
4240095

MNIST samples Samples from a GAN

m Power for optimzed ARD
kernel: 1.00 at « = 0.01

m Power for optimized RBF
kernel: 0.57 at o = 0.01

40/51
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Troubleshooting generative adversarial networks

108

[ dataset images
770 GAN samples

-
Jw-
| |

more like dataset —
MMD? = 0. 0001 41/51




MMD for GAN critic

Can you use MMD as a critic to train GANs?

Can you train convolutional features as input to the MMD critic?
From ICML 2015:

Generative Moment Matching Networks

Yujia Li! YUJIALI@CS.TORONTO.EDU
Kevin Swersky! KSWERSKY @CS.TORONTO.EDU
Richard Zemel'?

ZEMEL @CS.TORONTO.EDU
! Department of Computer Science, University of Toronto, Toronto, ON, CANADA

2Canadian Institute for Advanced Research, Toronto, ON, CANADA

From UAI 2015:

Training generative neural networks via Maximum Mean Discrepancy
optimization

Gintare Karolina Dziugaite

Daniel M. Roy
University of Cambridge

Zoubin Ghahramani
University of Toronto

University of Cambridge
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MMD for GAN critic: 2017 update

arXiv.org > stat > arXiv:1701.07875

Wasserstein

arXiv.org > cs > ankiv:1704.00028
Statistics > Machine Learning

Staistics > Machine Learning
Computer Science > Learning
Wasserstein GAN  (CuL2017

Wasserstein Tr:
Martin Arjovsky, Soumith Chintala, Léon Bottou

Improved Training of Wasserstein GANs

g of Boltzmann Machines
Ishaan Guraar

Grégoire Montavon, Klaus-Robert Maller, Marco Cuturi
(ubmited on 71 2015
Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, Aaron Courville

NIPS 2016
(Submited on 31 Mar 2017 (1) lat revised 29 May 2017 (this version, v2)

/
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MMD for GAN critic: 2017 update

arXivorg > stat > arkivi1507.01972

W rstei
asserstein
:

rg > cs > arXiv:1704.00021

Statistics > Machine Learning
Statistics > Machine Learning

Caier ST Towring] Wasserstein Training of Boltzmann Machines
Wasserstein GAN  1CML2017 - . Grégoire Montavon, Klaus-Robert Maller, Marco Cuturi
Improved Training of Wasserstein GANs (Submitted on 7Ju1 2015) NIPS 2016
Martin Arjovsky, Soumith Chintala, Léon Bottou

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, Aaron Courvill
wmmu last revised 29 May 2017 (his version, v2)

arXiv.org > cs > arXiv:1705.08584
‘Search or Article ID inside arXiv _All papers Broaden your
(el | Advanced search)

Computer Science > Learning

MMD GAN: Towards Deeper Understanding of
Moment Matching Network

Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang, Barnabis
Pécz0s

(submitted on 24 May 2017)

arXiv.org > ¢s > arXiv:1705.10743
Broaden you
(tep | Advanced search)
Computer Science > Learning

The Cramer Distance as a Solution to
Biased Wasserstein Gradients

Marc G. Bellemare, Ivo Danihelka, Will Dabney, Shakir Mohamed,
Balaji Lakshminarayanan, Stephan Hoyer, Rémi Munos

(Submitted on 30 May 2017) 43/51
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MMD for GAN critic: 2017 update

arXivorg > stat > arkivi1507.01972

W rstei
asserstein

9 > cs > ankiv:1704.00028

arxi

Statistics > Machine Learning
Statistics > Machine Learning

Caier ST Towring] Wasserstein Training of Boltzmann Machines
Wasserstein GAN  1CML2017 - . Grégoire Montavon, Klaus-Robert Maller, Marco Cuturi

Improved Training of Wasserstein GANs (Submitted on 7101 2015) NIPS 2016
Martin Arjovsky, Soumith Chintala, Léon Bottou

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, Aaron Courvill
wmmu last evised 29 May 2017 this version, v2)

arXiv.org > cs > arXiv:1705.08584
‘Search or Article ID inside arXiv _All papers Broaden your
(el | Advanced search)

Cor iter Sci Lear
Computer Science > Learning mputer Science > Learning

McGan: Mean and Covariance Feature
Matching GAN ICML 2017

Youssef Mroueh, Tom Sercu, Vaibhava Goel

arXiv.org > cs > arXiv:1705.09675

Computer Science > Learning

Fisher GAN

Youssef Mroueh, Tom Sercu

MMD GAN: Towards Deeper Understanding of
Moment Matching Network

Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang, Barnabas
P6cz0s
(Submitted on 24 May 2017)

ubmitted on 26 May 2017 (1), lat revised 1 Aug 2017 (his vrsion, v2
prywo— Brosdenyo] (Submited on 26 May 2017 v, ed 1 ug 2017 2

Computer Science > Learning

The Cramer Distance as a Solution to
iased Wasserstein Gradients

Marc G. Bellemare, Ivo Danihelka, Will Dabney, Shakir Mohamed,
Balaji Lakshminarayanan, Stephan Hoyer, Rémi Munos

“Other”

arXiv.org > cs > arXivi1706.09549

pu > Learning

(Submitted on 30 May 2017) Distributional Adversarial Networks

Chengtao Li, David Avarez-Melis, Keyulu Xu, Stefanie Jegelka, Suvrit Sra
(Submited on 29 Jun 2017 (v, last revised 9 ul 2017 i version, v3).




MMD for GAN critic: 2017 update
Wasserstein

19 > cs > ankiv:1704.00028

arXiv.org > stat > arXiv:1507.01972

Statistics > Machine Learning

arXiv.org > stat > ar
ing of Boltzmann Machines

arxi

Computer Science > Learning Wasserstein Tr
Crégireontavon, Kaus-RabertMalr, Marco Cutur
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An adaptive, linear time distribution
metric
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Reminder: witness function for MMD

-~

[",U,p(V): mean embedding of P

fo(v): mean embedding of @

witness(v) = ap(v) — fg(v)
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Distinguishing Feature(s)

witness®(v)

(

o ®@oe = = VvV

Take square of witness (only worry about
amplitude)
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Distinguishing Feature(s)

o @o = = VvV

m New test statistic: witness?® at a single v*;
m Linear time in number n of samples

m ....but how to choose best feature v*?
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Distinguishing Feature(s)

Y = A\

Best feature =
v* that maximizes witness®(
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Distinguishing Feature(s)

/\Witnessz (v)

Sample size n = 3
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Distinguishing Feature(s)

Sample size n = 50

¢ 1 ] A%
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Distinguishing Feature(s)

Sample size n = 500

D A%
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Distinguishing Feature(s)

— Px)
— Qy)

—  witness?(v)

[\

Population witness® function
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Distinguishing Feature(s)

— P(x)

— Q)
—  witness?(v)

7 v*?

A
+ 4
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Variance of witness function

m Variance at v = variance of X at v + variance of Y at v.
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m Variance at v = variance of X a2t v + variance of Y at v.
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variance of v’
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—  witness?(v)
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Variance of witness function

m Variance at v = variance of X a2t v + variance of Y at v.
» ME Statistic: A, (v) = n-itness(v)

variance of v’
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Variance of witness function

m Variance at v = variance of X a2t v + variance of Y at v.
» ME Statistic: A, (v) = n-itness(v)

variance of v’

Jitkrittum, Szabo, Chwialkowski, G., NIPS 2016

- )A‘n(v)

m Best location is v* that maximizes A,. V

m Improve performance using multiple locations {v; ]‘7:1 48/51



Properties of the ME Test

m Can use J features V = {vi,...,vs}.
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m Can use J features V = {v1,...,v,s}.
m Under Hy: P = Q, asymptotically A,(V) follows x?(J) for any V.
Rejection threshold is T, = (1 — a)-quantile of x2(J).
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Properties of the ME Test

m Can use J features V = {v1,...,v,s}.
m Under Hy: P = Q, asymptotically A,(V) follows x?(J) for any V.
Rejection threshold is T = (1 — a)-quantile of x*(J).

m Under H; : P # Q, it follows Py, (A,) (unknown).
But, asymptotically A, — co. Consistent test.

m Test power = probability of rejecting Hy when H; is true.

0 20 40 60 80 100
sz

Theorem: Under Hi, optimization of V (by maximizing A,) increases

the (lower bound of) test power.
49/51

m Runtime: O(n) for both testing and optimization.



Distinguishing Positive/ Negative Emotions

w

rsaao«aﬁ

4 @ a \M m 35 females and 35 males

happy  neutral surprised (Lundqvist et al., 1998).

m 48 x 34 = 1632 dimensions.

Pixel features.

/ i m Sample size: 402.

afraid angry disgusted
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Distinguishing Positive/ Negative Emotions

v "B 4

71 Random feature
- e ra 6 .

—I—@\y\ﬂ

happy  neutral surprised T 1.0

& -~ w |

= 0.5
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afraid angry disgusted
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Distinguishing Positive/ Negative Emotions

v "B 4

- Q - ' @ 6 771 Random feature

a \m I Proposed

happy  neutral surprised
pLop

5 0.5

@ S8 Sl

afraid angry disgusted

m The proposed test achieves maximum test power in time O(n).
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Distinguishing Positive/ Negative Emotions

v "B 4

- Q - ' @ 6 771 Random feature

a I Proposed
\ﬂ I MMD (quadratic time)

happy  neutral surprised
pLop

5 0.5

O ow = o
eS8 S

afraid angry disgusted

m The proposed test achieves maximum test power in time O(n).
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Distinguishing Positive/Negative Emotions

\CV} (et Laat

+
(
[@)
e

happy  neutral surprised

-, e e T-
/o ot 4};
— \?f u’ St g

afraid angry disgusted

Learned feature

m The proposed test achieves maximum test power in time O(n).
m Informative features: differences at the nose, and smile lines.
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Distinguishing Positive/Negative Emotions

happy  neutral surprised

x

& 4 . |

o o
& = &

afraid angry disgusted

Learned feature

m The proposed test achieves maximum test power in time O(n).

m Informative features: differences at the nose, and smile lines.
Jitkrittum, Szabo, Chwialkowski, G., NIPS 2016

Code: https://github.com/wittawatj/interpretable-test
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