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Testing against a probabilistic model



Statistical model criticism

MMD(P, Q) = [|f*||*> = sup,<1[Eqf — Epf]

— p(x)
— q(x)
-0.1 _ f*(x)
-0.2
-0.3

f*(z) is the witness function
Can we compute MMD with samples from @ and a model P?
Problem: usualy can’t compute E,f in closed form.
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Stein idea

To get rid of E,f in

sup [Eyf — Epf]
Ifll =<1

we define the Stein operator

[Tof](2) =

Then
EpTpf =0

subject to appropriate boundary conditions. (Oates, Girolami, Chopin, 2016)
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Stein idea: proof
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Stein idea: proof

d

BT, = [ [p;m (f(2)p(2)) | phaTde
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Stein idea: proof

B, (1,0 = [ [p;ﬁj (f(2)p(2))| ptaYda
[ | 6@ a
= [F(@)p(=)] %
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Kernel Stein Discrepancy
Stein operator

Tpf - azf + faz(log p)
Kernel Stein Discrepancy (KSD)

KSD(p7 q)'F) = 8sup Equg - Eprg
llgll=<1
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Kernel Stein Discrepancy
Stein operator

Tpf - azf + faz(log p)
Kernel Stein Discrepancy (KSD)

KSD(p,q,F)= sup E,T,g— E,F5g= sup E,Tyg
llollF<1 llgll <1
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Kernel Stein Discrepancy

Stein operator
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— p(x)
— q(x)
— &%)
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Kernel stein discrepancy
Closed-form expression for KSD: given Z, Z' ~ g, then
(Chwialkowski, Strathmann, G., ICML 2016) (Liu, Lee, Jordan ICML 2016)
KSD(p7 q)'F) = thp(Z: ZI)
where
hp(2, y) := 85 log p(z)8: log p(y)k(z, y)

+ 8y log p(y)8:k(z, y)

+ 8, log p(z)8yk(z, )

+ 0;0yk(z, )

and k is RKHS kernel for F

Only depends on kernel and 8, log p(z). Do not need to
normalize p, or sample from it.
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Statistical model criticism

Chicago crime data
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Statistical model criticism

Chicago crime data
Model is Gaussian mixture with two components.
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Statistical model criticism

Chicago crime data
Model is Gaussian mixture with two components
Stein
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Statistical model criticism

Chicago crime data
Model is Gaussian mixture with ten components.
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Statistical model criticism

Chicago crime data
Model is Gaussian mixture with ten components
Stein witness function
Code: https://github.com/karlnapf/kernel goodness of fit /5



Kernel stein discrepancy

Further applications:

m Evaluation of approximate MCMC methods.
(Chwialkowski, Strathmann, G., ICML 2016; Gorham, Mackey, ICML 2017)

What kernel to use?

m The inverse multiquadric kernel,

bz,9) = (e +lle - ul)’

for g € (—1,0).

arXiv.org > stat > arXiv:1703.01717

Statistics > Machine Learning

Measuring Sample Quality with Kernels

Jackson Gorham, Lester Mackey ICML 2017
(Submitted on 6 Mar 2017 (v1), last revised 3 Aug 2017 (this version, v6))
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Testing statistical dependence



Dependence testing

m Given: Samples from a distribution Pxy
m Goal: Are X and Y independent?

X Y

A large animal who slings slobber,
exudes a distinctive houndy odor,
and wants nothing more than to
follow his nose.

Their noses guide them
through life, and they're
never happier than when
following an interesting scent.

A responsive, interactive
pet, one that will blow in
your ear and follow you
everywhere.

Text from dogtime.com and petfinder.com
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MMD as a dependence measure?

Could we use MMD?

MMD(Pxy, Px Py, Hx)
N N —
P Q
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MMD as a dependence measure?

Could we use MMD?

MMD(Pxy, Px Py, Hx)
N N —
P Q

m We don’t have samples from @ := Px Py, only pairs
i.id.
{(zi, yi}}y "* Pxy

Solution: simulate @ with pairs (z;, y;) for 7 # 1.
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MMD as a dependence measure?

Could we use MMD?

MMD(Pxy, Px Py, Hx)
N N —
P Q

m We don’t have samples from @ := Px Py, only pairs
i.id.
{(zi, yi}}y "* Pxy

Solution: simulate @ with pairs (z;, y;) for 7 # 1.

m What kernel k to use for the RKHS H,.?
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MMD as a dependence measure

Kernel k£ on images with feature space F,

k(™ %)

Kernel [ on captions with feature space G,

Alarge animal Aresponsive,
who slings interactive pet
slobber, .. ’ .
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MMD as a dependence measure

Kernel k£ on images with feature space F,

k(™ %)

Kernel [ on captions with feature space G,

Alarge animal Aresponsive,
who slings interactive pet
slobber, .. ’ .

Alarge
animal
who slings

slobber, ...

A responsive,
interactive
7 pet,
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MMD as a dependence measure

m Given: Samples from a distribution Pxy
m Goal: Are X and Y independent?

~ o~ oa 1
MMD?(Pxy, Px Py, H,) := —strace(K L)
n

( K, L column centered)
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MMD as a dependence measure

m Given: Samples from a distribution Pxy
m Goal: Are X and Y independent?

= ~ = 1
MMD?(Pxy, Px Py, H,) := —strace(K L)
n
K A large animal who slings L

slobber, exudes a distinctive
houndy odor, ...

D A Their noses guide them through li

..) and they're never happier than wk

following an interesting scent.

A responsive, interactive pet, one
that will blow in your ear and
) follow you everywhere.

14/52

Text from dogtime.com and petfinder.com



MMD as a dependence measure

Two questions:

m Why the product kernel? Many ways to combine kernels - why not
eg a sum?

m Is there a more interpretable way of defining this dependence
measure?
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Finding covariance with smooth transformations

Illustration: two variables with no correlation but strong dependence.

Correlation: 0.00

= o
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Finding covariance with smooth transformations

INlustration: two variables with no correlation but strong dependence.

f(X) witness

05
15 Correlation: 0.00 0
1 Sy 0.5
KX -
0.5 . “ p
: 1 2 0 2
S~ 0 A . X
. s g(Y') witness
05 s X 05
L .
e .
1 - .
15
-2 1 0 1 2,45
X
-
2 0 2
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Finding covariance with smooth transformations

INlustration: two variables with no correlation but strong dependence.

E=}

0.5
15 Correlation: 0.00 0
1 Sy 0.5
KX -
0.5 . + p
H E
>~ 0 .
0.5 .:.. . 3 0.5
e o
1 ~ 0
1.5
2 1 1 2,05

f(X) witness

0
X

g(Y') witness

0.5 A

Correlation: 0.90

0.5

STl
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Define two spaces, one for each witness

Function in F
z) =) fip(z)
J=1

Feature map

[ 1(2) /\_
-\

—~T —

p(x) =

Kernel for RKHS F on X:

k(z,z') =

T

T

T

(p(z), p(z) 7

Function in G

Z 9;95(y

Feature map

_¢1(y)/\
/ Y
oy) = |2~
TN
STy

Kernel for RKHS G on Y:

Uz, ') = ($(v), $(¥"))g
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The constrained covariance

The constrained covariance is

COCO(Pxy) =

Correlation: 0.00

NE=}

0.5

-0.5

sup

IFll7 <1
lgllg <1

f(X) witness

0
X

9(Y') witness

0.5

-0.5

cov[f(z)g(y)]

Correlation: 0.90

e

oot

18/52
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The constrained covariance

The constrained covariance is

COCO(Pxy)=  sup  cov [(ZJ?%(?E)) (Z gj¢j(y)>]
T P T AV=" =
lgllg <1
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The constrained covariance

The constrained covariance is

COCO(Pxy)=  sup  FHy (ij%‘(fﬂ)) (Z gj¢j(y)>]
Ifllz <1 =1 =1
lgllg <1

Fine print: feature mappings ¢(z) and ¢(y) assumed to have zero mean.
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The constrained covariance

The constrained covariance is

COCO(PXY) = sup Eacy <Zf]‘p](x)> (Z gj¢j(y)>]
Ifllx <1 = =
lgllg <1
Fine print: feature mappings ¢(z) and ¢(y) assumed to have zero mean.
Rewriting:
Bay[f(2)9(y)]
T
h pi(z) 9

=| | By || @) | [is) e20) ]| 2

Co(2)¢(v)
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The constrained covariance

The constrained covariance is

oo oo

COCO(Pxy) =  sup  Hy (ij‘l’j(x)) (Z 9j¢j(y)>]

Wlr<t LA =

lgllg <1
Fine print: feature mappings ¢(z) and ¢(y) assumed to have zero mean.
Rewriting:

Eryf(2)9(y)]
T
h p1(z) g1

=| B Byl | 00 | [4(0) tv) ]| ] o

Co()e(v)

COCO: max singular value of feature covariance C‘P(I)‘ﬁ(yl)s

52



Computing COCO in practice

Given sample {(z;, v;)}7 4 LR Pxvy, what is empirical COCO ?
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Computing COCO in practice

Given sample {(z;, v;)}7 4 LR Pxvy, what is empirical COCO ?

COCO is largest eigenvalue ymax of

L ]S ]

Fine print: kernels are computed with empirically centered features p(z) — % ?_1 o(z)
1\ -

and ¢(y) — £ 37" é(w).

AG., A. Smola., O. Bousquet, R. Herbrich, A. Belitski, M. Augath, Y. Murayama, J. Pauls, B.

Schoelkopf, and N. Logothetis, AISTATS’05
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Computing COCO in practice

Given sample {(z;, v;)}7 4 LR Pxvy, what is empirical COCO ?
COCO is largest eigenvalue ymax of

1 = .

LK 0 B 0 L B
K,L'j = k:(:z:i, :Ilj) and L-L'j = l(yi, yj).

Witness functions (singular vectors):

fle) < Y aik(z,z)  g(y) « Y Bil(%i, )
=1 =1

Fine print: kernels are computed with empirically centered features p(z) — % ?_1 o(z)
1\ -

and ¢(y) — £ 37" é(w).

AG., A. Smola., O. Bousquet, R. Herbrich, A. Belitski, M. Augath, Y. Murayama, J. Pauls, B.

Schoelkopf, and N. Logothetis, AISTATS’05
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What is a large dependence with COCQO?

Smooth density Rough density
E— 3[000000000000
7 \\ / 000000000000
2( 2l0 00000000000
A / ,oococoooooog
\\\_/,/ ) ©oc0000000 000
> 0 > /2000000 0000T
—— ©0E000000000
g /066006060600

©60000000000 .
2gopegacozecs  Density takes the form:

3000600060006

-2 0 2

x

500 samples, rough density Pxy « 1+Sln(w$) sm(wy)
4

4 -2 0 2 4 24 -2 0 2 4
X X

Which of these is the more “dependent”?
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Finding covariance with smooth transformations

Case of w = 1:

. f(X) witness
0.5 .
4 Correlation: 0.31 Correlation: 0.50 COCO: 0.09
0
0.5
2 0.5
K 2 0 2 o
0 T ox = 0
g(Y) witness e
-2
05 0.5
-4 o
-4 -2 0 2 4 -0.5 0 0.5
X 05 f(X)
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Finding covariance

Case of w = 2:

Correlation: 0.02

with smooth transformations

f(X) witness

-2

0
X

2

g(Y) witness

g(Y)

Correlation: 0.54

0.5

-0.5

COCO:

0.07
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Finding covariance with smooth transformations

Case of w = 3:

. f(X) witness
0.5 .
4 Correlation: 0.03 Correlation: 0.44 COCO: 0.04
0
0.5
2 0.5
K 2 0 2 o
>~ 0 X = 0
. . g(Y) witness e
-2 .'
: 05 0.5
-4 0
4 -2 0 2 4 M 0.5 0 0.5
X 05 f(X)
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Finding covariance with smooth transformations

Case of w = 4:

. f(X) witness
0.5 .
4 Correlation: 0.05 Correlation: 0.25 COCO: 0.02
0
0.5
2 0.5
K 2 0 2 o
>~ 0 Cox = 0
g(Y) witness e
-2
05 0.5
-4 0
-4 -2 0 2 4 -0.5 0 0.5
X 05 f(X)
-1
2 0 2
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Finding covariance with smooth transformations

Case of w =77:

. f(X) witness
0.5 .
4 Correlation: 0.01 Correlation: 0.14  COCO: 0.02
0
0.5
2 0.5
K 2 0 2 o
>~ 0 ) X b 0
g(Y) witness e
2 o5 -0.5
-4 0
-4 -2 0 2 4
X 0.5
-1
2 0 2
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Finding covariance with smooth transformations

Case of w = 0: uniform noise! (shows bias)

Correlation: 0.01

1

0.5

0

-0.5

0.5

-0.5

f(X) witness

-2

0
X

9(Y) witness

2

Correlation: 0.14  COCO: 0.02

0.5

-0.5
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Dependence largest when at “low” frequencies

m As dependence is encoded at higher frequencies, the smooth
mappings f, g achieve lower linear dependence.

m Even for independent variables, COCO will not be zero at finite
sample sizes, since some mild linear dependence will be found by f,g
(bias)

m This bias will decrease with increasing sample size.
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Can we do better than COCQO?

A second example with zero correlation.

First singular value of feature covariance Cy(z)g(y):

Correlation: 0.00

ot
o o

0.5

-0.5

fi1(X) witness

0
X

¢1(Y') witness

~ o

g1(Y)

Correlation: 0.80  COCO,: 0.11

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

Pl

K3

-1

-0.5 0 0.5
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Can we do better than COCQO?

A second example with zero correlation.

Second singular value of feature covariance Cy(z)g(y):
fo(X) witness

0.5
Correlation: 0.00 0
1 et 05
0.5 p

D N -2 0 2

S 0 R A X
O : S 92(Y') witness
0.5 “ 1
A e 05
1 05 0 05 1 0
X

05

~ o
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Can we do better than COCQO?

A second example with zero correlation.

Second singular value of feature covariance Cy(z)g(y):

fo(X) witness

0.5
Correlation: 0.00 0 Correlation: 0.37  COCO,: 0.06
1 05 050  te.
05 A p .
-2 0 2 —~ . .
P~ 0 X b 0 .-' -
05 - 1 92(Y') witness > ) .;
: . PR
A e 05 05 s Ll
-1 05 0 05 1 0 -1 -0.5 0 0.5 1
X f2(X)
0.5
-1
2 0 2
Y
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The Hilbert-Schmidt Independence Criterion

Writing the :th singular value of the feature covariance Cy(y)4(y) as
v; := COCO;(Pxy; F,G),
define Hilbert-Schmidt Independence Criterion (HSIC)

HSIC?*(Pxy; F,G) =Y _7i.
1=1

AG, O. Bousquet , A. Smola., and B. Schoelkopf, ALT2005; AG,.,K. Fukumizu,C.H. Teo., L. Song., B.
Schoelkopf., and A. Smola, NIPS 2007,.
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The Hilbert-Schmidt Independence Criterion

Writing the :th singular value of the feature covariance Cy(z)4(y) as
vi := COCO,(Pxy; F,9),

define Hilbert-Schmidt Independence Criterion (HSIC)

[e e}

HSIC*(Pxy; F,G) =Y _7;.
1=1

AG, O. Bousquet , A. Smola., and B. Schoelkopf, ALT2005; AG,.,K. Fukumizu,C.H. Teo., L. Song., B.
Schoelkopf., and A. Smola, NIPS 2007,.

HSIC is MMD with product kernel!
HSIC?*(Pxy; F,G) = MMD?(Pxy, Px Py;HL)
where k((z,y), (z',¥")) = k(z, ") l(y, ¥').
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Asymptotics of HSIC under independence

m Given sample {(z;, i }7; L Pxy, what is empirical HSIC?
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Asymptotics of HSIC under independence
m Given sample {(z;, y; }1- L Pxy, what is empirical HSIC?
m Empirical HSIC (biased)
— 1
HSIC = — trace(KL)
n

Kij = ]C(:Ez', :Ej) and Lij = l(yi yj) (K and L computed with
empirically centered features)

30/52



Asymptotics of HSIC under independence
m Given sample {(z;, y; }1- L Pxy, what is empirical HSIC?
m Empirical HSIC (biased)
— 1
HSIC = — trace(KL)
n
Kij = ]C(:Ez', :Ej) and Lij = l(yiyj) (K and L computed with
empirically centered features)

m Statistical testing: given Pxy = Px Py, what is the threshold c,
such that P(HSIC > c,) < a for small a?
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Asymptotics of HSIC under independence

m Given sample {(z;, y; }1- L Pxy, what is empirical HSIC?

m Empirical HSIC (biased)
— 1
HSIC = — trace(KL)
n

Kij = ]C(:Ez', :Ej) and Lij = l(yi yj) (K and L computed with
empirically centered features)

m Statistical testing: given Pxy = Px Py, what is the threshold c,
such that P(HSIC > c,) < a for small a?

m Asymptotics of H/SI\C when Pxy = PxPy:

—

o
D ..
nHSIC = Az, z ~ N(0,1)iid.
=1
where \3i(z) = f hijori(2)dFi q,ry  Pajer = % Z(w'q'r) ktwltu + Keuwlow — 2kt i

(tyu,v,w)
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A statistical test

m Given Pxy = Px Py, what is the threshold ¢, such that
P(HSIC > c¢4) < o for small o (prob. of false positive)?
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A statistical test

m Given Pxy = Px Py, what is the threshold ¢, such that
P(HSIC > c¢4) < o for small o (prob. of false positive)?

m Original time series:

m Permutation:

X1
Y,

X1

Yo

Xa X5 Xe X7 Xg Xg X1
Yy Vs Y Y7 Yg Yo Yig

X X5 Xe X7 Xg Xg X1
Yy Yg Vs V1 Y Yo
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A statistical test

m Given Pxy = Px Py, what is the threshold ¢, such that
P(HSIC > c¢4) < o for small o (prob. of false positive)?

m Original time series:

X1 Xy Xe X7 Xg Xo X10

Y; Y, Ys Y7 Yg Yy Yig
m Permutation:

X1 Xa X5 Xo X7 Xg Xo X10

Y7 Yg Y4 Yg Yl Y6 YlO

m Null distribution via permutation
Compute HSIC for {z;, Yr(;) };=, for random permutation 7 of indices
{1,...,n}. This gives HSIC for independent variables.
Repeat for many different permutations, get empirical CDF
Threshold ¢, is 1 — a quantile of empirical CDF 31/52



Application: dependence detection across languages

Testing task: detect dependence between English and French text

X Y

Honourable senators, | have a Honorables sénateurs, ma question
question for the Leader of the s’adresse au leader du
Government in the Senate gouvernement au Sénat

Les ordres de gouvernements
provinciaux et municipaux
subissent de fortes pressions

No doubt there is great pressure
on provincial and municipal

governments

In fact, we have increased Au contraire, nous avons augmenté
federal investments for early le financement fédéral pour le
childhood development. développement des jeunes

Text from the aligned hansards of the 36" parliament of canada,
ttps://www.si ! 32/52




Application: dependence detection across languages

Testing task: detect dependence between English and French text

k-spectrum kernel, k£ = 10, sample size n = 10

X

Y

Honourable senators, |
have a question for the
Leader of the Government
in the Senate

No doubt there is great
pressure on provincial and
municipal governments

In fact, we have increased
federal investments for
early childhood
development.

(K and L column centered)

Honorables sénateurs, ma
question s’adresse au leader
du gouvernement au Sénat

Les ordres de gouvernements
provinciaux et municipaux
subissent de fortes pressions

Au contraire, nous avons
augmenté

le financement fédéral pour le ="
développement des jeunes

f L

1
ﬁtrace(K L)
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Application:Dependence detection across languages

Results (for oo = 0.05)

m k-spectrum kernel: average Type II error O

m Bag of words kernel: average Type II error 0.18

Settings: Five line extracts, averaged over 300 repetitions, for
“Agriculture” transcripts. Similar results for Fisheries and
Immigration transcripts.
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Testing higher order interactions



Detecting higher order interaction

How to detect V-structures with pairwise weak individual
dependence?
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Detecting higher order interaction

How to detect V-structures with pairwise weak individual
dependence?

catalyst

reaction
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Detecting higher order interaction

How to detect V-structures with pairwise weak individual
dependence?

XULY,YULZXUZ

X1vs Y1 Y1vs Z1
' “ e . . e “

X1vs Z1 X1*Y1 vs Z1
. )

5 To0 0 ii.d.

;é.-.::' = X,Y =" N(0,1)
«?!&‘ T mZ X, Y~ sign(XY)Emp(%)
cl.;.

Fine print: Faithfulness violated here!
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V-structure discovery

Assume X 1l Y has been established.
V-structure can then be detected by:

m Consistent CI test: Ho : X 1L Y|Z [Fukumizu et al. 2008, Zhang et al. 2011]
m Factorisation test: Ho: (X, Y) 1 Z Vv (X,Z2) L Y Vv (Y,Z2) 1L X
(multiple standard two-variable tests)

How well do these work?
37/52



Detecting higher order interaction

Generalise earlier example to p dimensions

XULY,YULZXUZ

X1vs Y1 Y1vs Z1
e S . . O .

e Kz = X, Y " N(0,1)

52 e
m 7| X,Y ~ sign(XY)Ewp(%)

.1.d.
n X2:p; Y2:p; ZQ:p S N(O, Ip—l)

Fine print: Faithfulness violated here!

38/52



V-structure discovery

Null acceptance rate (Type Il error)

CI test for X 1l Y|Z from Zhang et al. (2011), and a factorisation

test, n = 500

0.8 1

0.6

0.4

@£

02 - )l

V-structure discovery: Dataset A

————— 2var: Factor

—8— C: X1Y|Z

1 3 5 7 9 11

Dimension

13 15 17 19

39,/52



Lancaster interaction measure

Lancaster interaction measure of (Xi,..., Xp) ~ P is a signed
measure AP that vanishes whenever P can be factorised non-trivially.

D=2: ALpszy—PXpy
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Lancaster interaction measure

Lancaster interaction measure of (Xi,..., Xp) ~ P is a signed
measure AP that vanishes whenever P can be factorised non-trivially.

D=2: ALpszy—PXpy
D=3: ApLP = Pxyz — PxPyz — PyPxz — Pz Pxy +2Px Py Py
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Lancaster interaction measure

Lancaster interaction measure of (Xj,..., Xp) ~ P is a signed
measure AP that vanishes whenever P can be factorised non-trivially.

D=2: ALP:.ny—PXpy
AP =
Pxyz —PxPyz —PyPxz — Py Pxy +2Px Py Py

4 b o o
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Lancaster interaction measure

Lancaster interaction measure of (Xi,..., Xp) ~ P is a signed
measure AP that vanishes whenever P can be factorised non-trivially.

D=2: ALpszy—PXpy
D=3: ApLP = Pxyz — PxPyz — PyPxz — Pz Pxy +2Px Py Py

© O OO ORONO
sr=o O O, ©

+xvz =Ptz =P = TR,

Case of Px 1l Pyy
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Lancaster interaction measure

Lancaster interaction measure of (Xi,..., Xp) ~ P is a signed
measure AP that vanishes whenever P can be factorised non-trivially.

D=2: ALP:P)(y—PXpY
D=3: ApLP = Pxyz — PxPyz — PyPxz — Pz Pxy +2Px Py Py

(X, V)L ZV(X,2)ILY v (Y,Z)1LX = ALP=0.

...s0 what might be missed?
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Lancaster interaction measure

Lancaster interaction measure of (Xi,..., Xp) ~ P is a signed
measure AP that vanishes whenever P can be factorised non-trivially.

D=2: ALP = Pxy — PxPy
D=3: ALP:nyz—PXpyz—Pypxz—Pszy+2PXpyPZ

ALP=0» (X,Y)I ZV (X,2) 1LY V(Y,Z)1LX

Example:
P(v ) )_02 P(O’O,l)_ P( ,)_01 P].O, =0
P(0,1,0)=0.1 | P(0,1,1) = P(1,1,0)=0.1 | P(1,1,1) =

40/52



A kernel test statistic using Lancaster Measure

Construct a test by estimating ||u (ALP)H%K , where k = k ® I ® m:

|we(Pxyz — Pxy Pz — - )|3,. =
(bePxyz, b Pxvz)ey, — 2{ePxvz, b Pxy Pz)q -
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A kernel test statistic using Lancaster Measure

| v\ | Pxyz | Pxy Pz | PxzPy ‘ PyzPx | Px Py Pz
Pxyz (KoLoM), (KoM, , (KoM)L), , (Mo L)K), , tr(K+ oLy o My)
Pxy Pz (KoL) Myy (MKL), 4 (KLM), (KL) 4+ My
PxzPy (KoM), Ly (KML), (KM) Ly
PyzPx (LoM), , Kyy (LM) Ky
PxPyPz Kyt byt My

Table: V-statistic estimators of (uxv, uxv')q, (without terms Px Py Pz). H
is centering matrix J — n~!
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A kernel test statistic using Lancaster Measure

| v\v'

| Pxyz

Pxy Pz

PxzPy PyzPx Px Py Pz
Pxyz (KoLoM), (KoM, , (KoM)L), , (Mo L)K), , tr(K+ oLy o My)
Pxy Pz (KoL) Myy (MKL), 4 (KLM), (KL) 4+ My
PxzPy (KoM), Ly (KML), (KM) Ly
PyzPx (LoM), , Kyy (LM) Ky
PxPyPz Kyt byt My

Table: V-statistic estimators of (uxv, uxv')q, (without terms Px Py Pyz).

is centering matrix J — n~!

H
Lancaster interaction statistic: b. sejdinovic, AG, W. Bergsma, NIPS13
1
42/52

I (ALP)II3, =

Empirical joint central moment in the feature space




V-structure discovery

V-structure discovery: Dataset A

1~
5
o . . . . . . . I .
= 0‘8—--:-- . .
]
5 : ‘ S
B ooel oo [
]
I :
8 0.4F .- R IR
= X . : ) 1 ) —+—— 2var: Factor
T
3 X . . . —+—— A : Factor
g 02F e -
:ru —a5— Cl X1 Y|Z
E]
=

0 d & 4 } . . " n N n n

1 3 5 7 9 11 13 15 17 19
Dimension

Lancaster test, CI test for X 1L Y'|Z from Zhang et al. (2011), and a
factorisation test, n = 500 43/52



Interaction for D > 4

m Interaction measure valid for all D:

(Streitberg, 1990)

AgP = Z D=t (|7 — 1)1 P

For a partition m, J, associates to the
joint the corresponding factorisation,
e.g., Jizj2jaP = Px, x, Px, Px,.
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Interaction for D > 4

m Interaction measure valid for all D: —
(Streitberg, 1990) Ny - Vs
D=1 (x| — 1)1 Nl =N
AgP = Z (|m| = 1)1 J P NG
vl ®Vay
>V
o For a partition 7, J, associates to the N R\
joint the corresponding factorisation, R\ N
e.g., J13‘2‘4P = -PXIXSPX2PX4- Chweo o

L
— =
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Interaction for D > 4

m Interaction measure valid for all D: Bell numbers growth

B1e+19-

(Streitberg, 1990) H
:';1e+14

[}

AgP = § (—)"= (|| = 1)1 P £
E1e+09-

[

Qo

5
51e+04'

For a partition m, J, associates to the 3

b4

joint the corresponding factorisation,
e.g., Jizj2jaP = Px, x, Px, Px,.

135709 ﬁ‘g151719212325
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Part 4: Advanced topics



Advanced topics

m testing on time series
m testing for conditional dependence

m regression and conditional mean embedding
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Measures of divergence
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Measures of divergence

6\‘.esfd pI'Ob. met’.'-qp

Dy (P,Q)
= sup |[Ex.pg(X) —Ey.qg(Y)|
gEH
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Measures of divergence

6\‘.esfd pI'Ob. met’.'-qp

wasserstein

Dy (P,Q)
= sup |[Ex.pg(X) —Ey.qg(Y)|
gEH
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Measures of divergence

¢tesra| pI'Ob. met’.'-q’

wasserstein

Dy (P,Q)
= sup |[Ex.pg(X) —Ey.qg(Y)|
gEH
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Measures of divergence

¢tesra| pI'Ob. met’.'-q’

wasserstein

Dy (P,Q)
= sup |[Ex.pg(X) —Ey.qg(Y)|
gEH

Sriperumbudur, Fukumizu, G, Schoelkopf, Lanckriet (2012)
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