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Abstract

Ongoing advances in experimental technique are making commonplace simultaneous record-
ings of the activity of tens to hundreds of cortical neurons at high temporal resolution. Latent
population models, including Gaussian-process factor analysis and hidden linear dynamical
system (LDS) models, have proven effective at capturing the statistical structure of such data
sets. They can be estimated efficiently, yield useful visualisations of population activity, and
are also integral building-blocks of decoding algorithms for brain-machine interfaces (BMI).
One practical challenge, particularly to LDS models, is that when parameters are learned using
realistic volumes of data the resulting models often fail to reflect the true temporal continuity
of the dynamics, and indeed may describe a biologically-implausible unstable population dy-
namic; that is, it may predict neural activity that grows without bound. We propose a method
for learning LDS models based on expectation maximisation that constrains parameters to
yield stable systems and at the same time promotes capture of temporal structure by appropri-
ate regularisation. We show that when only little training data is available our method yields
LDS parameter estimates which provide a substantially better statistical description of the
data than alternatives, whilst guaranteeing stable dynamics. We demonstrate our methods
using both synthetic data and extracellular multi-electrode recordings from motor cortex.

1 Introduction

Modern multi-cell recording techniques (Kipke et al., 2008, Kerr and Denk, 2008) make it possible
to monitor the spiking activity of tens to hundreds of individual neurons at the same time. Such
data can provide much-needed insight into the dynamics of neural populations and the computa-
tions they perform, but only if the data are paired with statistical tools that can reliably identify
the nature and course of those processes (Yu et al. 2006, Churchland et al. 2007; see Brown
et al. 2004, Schneidman et al. 2006, Pillow et al. 2008 for other examples of statistical models of
population activity). Concretely, such statistical models can be used to gain insights into neural
population coding (Pillow et al., 2008), to relate neural population dynamics to observed behaviour
(Afshar et al., 2011), and to provide important building blocks of cortical brain-machine interfaces
(Wu et al., 2006, Santhanam et al., 2009, Wu et al., 2009).

Latent factor models (sometimes called state-space models) (Durbin et al., 2001, Brown et al.,
1998, Smith and Brown, 2003, Briggman et al., 2005, Yu et al., 2006, Wu et al., 2006, Paninski
et al., 2010) provide a flexible way to model shared variance and thus common network activity
in cortical recordings (Macke et al., 2011). In a latent factor model, the dependent structure in
the observations—here, the firing rates of a population of neurons over time—arises through the
dependence of those observations on a set of unobserved or latent state variables. As such, these
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models may loosely be thought to describe sources of common input that couple the activity of
different neurons (Kulkarni and Paninski, 2007). This stands in contrast to models in which one
measurement is taken to depend directly on another, for example by assuming a direct connection
between the observed neurons. As many multi-cell recording techniques (particularly extracellular
electrode arrays) sample a local cortical population only very sparsely, such direct connections
between measured neurons may be rare. Instead, the firing of the recorded sample of neurons is
likely to be coordinated because those neurons participate in the same network—receiving input
from, and driving, thousands of other cells which are themselves recurrently coupled. In this view,
the evolution of the latent factors serves to track the way in which the activity of this network
influences the recorded population. Indeed, the trajectory of low-dimensional state variables pro-
vides a compact visualisation of the population activity, facilitating single-trial analyses of neural
population dynamics (Churchland et al., 2007, Yu et al., 2009).

In a hidden linear dynamical system (LDS) model the latent factors form a temporal Markov
chain of Gaussian random variables, the conditional mean of each linearly dependent on the value
of the previous one, and the observations then depend on these latent state values in a similar
linear-Gaussian manner (Kalman and Bucy, 1961, Ghahramani and Hinton, 1996, Durbin et al.,
2001). One advantage to these choices is that the models can be fit efficiently to data using spectral
subspace identification (SSID) techniques (Katayama, 2005) or by likelihood maximisation, often
implemented by the Expectation Maximisation (EM) algorithm (Dempster et al., 1977, Digalakis
et al., 1993, Ghahramani and Hinton, 1996). LDS models have been used extensively in numerous
engineering and control-applications as well as in neuroscience (Cheng and Sabes, 2006, Macke
et al., 2011).

One challenge to fitting an LDS model (or, indeed, any other sort of statistical model) to neural
population recordings is that neurophysiological data tend to be noisy and relatively few. This
leads to a danger of “overfitting”: that is, the estimated parameters of a complex model might
reflect the noise in the data used for estimation, rather than their true underlying structure. For
example, a sufficiently high-order polynomial curve can exactly reproduce any measured input-
output relationship, but if the measurements were noisy we would not expect each wiggle of the
resulting curve to reflect genuine structure. The risk of overfitting might be lessened by restricting
the complexity of the model being fit. A simple model, with few degrees of freedom, must direct
those degrees of freedom to capture the most salient features of the data. A first-order polynomial
would capture just the overall linear trend of the input-output function. The hope is that such
significant features reflect genuine structure, rather than noise. Unfortunately, this strategy carries
the converse risk that the model may be insufficiently powerful to describe the essential process
that underlies the data. A straight line fit is of little value if the true function is a symmetric
parabola or absolute-value curve.

For an LDS model complexity could be controlled by the number of latent factors assumed, or,
equivalently, by the dimensionality of the latent space. A low-dimensional model may overfit less,
but may also fail to capture all the shared variance of the data. A higher-dimensional model is
more flexible, but prone to overfitting. Overfitting in a dynamical model can also lead to estimates
of the hidden dynamics which are unstable (Chui and Maciejowski, 1996): Models with unstable
dynamics can predict unrealistically large measured values—here, firing rates—and have variances
which grow progressively with time. This situation is especially problematic in the case of BMI
(Simeral et al., 2011, Wolpaw and Wolpaw, 2012). Practically, a model can usually be fit to only a
very small number of training trials, but must work well for a long period. Overfitting in general,
and instability in particular, in the estimated dynamical model may impair the robustness of a
BMI decoder.

A less drastic approach to containing overfitting than restricting the dimensionality of the
model is known as regularisation. This involves adding new terms to the cost function that must
be optimised to fit the parameters. These terms bias the optimum towards particular values of the
parameters, thus effectively shaping the model class. In our polynomial example, such terms might
penalise large coefficients in high-order terms without enforcing a strictly lower-order form. If the
cost function is the parameter log-likelihood, then these extra terms in the cost function may usu-
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ally be interpreted as expressing a prior belief about the parameter values. The cost function then
changes from the likelihood to the log-posterior distribution on the parameters, and the optimum
reflects the “maximum-a-posteriori” parameter estimate. The most common form of regularisation
simply penalises large values of the parameters: a process sometimes called “shrinkage” (although
that term is also used more generally). In probabilistic terms, this corresponds to a prior belief
that parameter values are relatively small, with a prior usually centred on zero values. When
applied to the LDS model such simple zero-directed shrinkage may have unintended consequences.
In particular, small entries in the matrix governing dynamics favour short correlation timescales
in the latent space and hence also in the observation space. This might not be appropriate for the
system one is trying to model. Also, regularisation by itself does not necessarily guarantee that
the learnt dynamics will be stable (but see Van Gestel et al. 2001).

The LDS model has a long history in time-series modelling, and several fitting procedures
have been proposed to return stable parameter values. Lacy and Bernstein give two methods for
ensuring that dynamical systems fitted with subspace identification methods (Katayama, 2005)
are stable (Lacy and Bernstein, 2002, 2003). In their first method (Lacy and Bernstein, 2002),
they constrain the largest singular value of the dynamics matrix to be less than one. While this is
a sufficient condition for stability, it is not a necessary condition (see section 2.1) in the context of
SSID. Therefore, this method constrains the solution space more strongly than necessary, and may
rule out solutions that exhibit strong transients corresponding to non-normal dynamical matrices.
While the same authors (Lacy and Bernstein, 2003) have also introduced a second method which
overcomes this limitation to some extent, it has been shown to yield inferior results in practice
(Siddiqi et al., 2007). Siddiqi and colleagues introduced a new constraint-generation algorithm for
fitting stable dynamical systems with SSID methods and report that their algorithms outperform
previous approaches. However, in their work they did not include a prior on the dynamics matrix
and therefore obtain unregularised parameter estimates. Furthermore, SSID algorithms tend to
be less statistically efficient than maximum likelihood methods.

An alternative approach to containing overfitting in probabilistic models (which we do not
pursue in this paper), is to extend the probabilistic view of regularisation to the fully Bayesian
approach in which point-estimates of the parameters are replaced by consideration of the full
posterior distribution. For many latent variable models, including the latent LDS model, the
posterior cannot be found analytically but may be approximated by samples or by deterministic
methods such as variational inference (Beal, 2003). In the fully Bayesian approach there is no
fitting of the parameters as such (although sometimes hyper-parameters describing the prior are fit
by hierarchical maximum likelihood), and thus no overfitting. All possible values of the parameters
are considered in proportion to their posterior probabilities. However, existing Bayesian methods
for the LDS model (Beal, 2003) do not guarantee stability, and it is not clear how they might be
modified to do so.

A state-space model that is closely related to the LDS model is Gaussian process factor analysis
(GPFA) (Yu et al., 2009). This model can be understood as a generalisation both of factor analysis
(FA) and of the latent LDS. All three types of models describe a joint Gaussian distribution on the
observations by specifying a linear-Gaussian dependence on Gaussian-distributed latent variables.
In FA these variables are independent over time. In an LDS, they form a first-order Markov chain.
In GPFA they are described by a more general Gaussian process (GP) prior (Rasmussen, 2004). If
the covariance function, which shapes the GP prior, is chosen to be stationary the resulting GPFA
model is automatically stable. In the most common use of GPFA the different latent dimensions
are taken to be independent of one another, and to each exhibit temporal covariance that decays
according to a squared-exponential function. These choices are useful for visualisation, yielding
smooth latent trajectories, and make the model less prone to overfitting due to the compactness of
the resulting parameterisation. However, they do not provide an explicitly dynamical model. In
particular, many interesting forms of dynamics cannot be described by a group of independently-
evolving variables. The linear-Gaussian Markov chain underlying the LDS model also describes a
joint Gaussian distribution on the latent state, but its parameterisation is better able to describe
the form of underlying dynamics.
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Our objective in this paper is to show how the parameters of a stable LDS model can be
robustly estimated by regularised maximum-likelihood methods. We introduce a regularisation
term (or prior) on the dynamics matrix that discourages overfitting and which at the same time
favours smooth dynamics with long time constants unlike conventional shrinkage-based regulari-
sation. In addition, our approach ensures that the resulting dynamics are stable, thereby ruling
out biologically-implausible high firing rates and variances without sacrificing the flexibility of the
LDS to model complex dynamics. Using multi-electrode recordings from primate motor cortex,
we show that our approach does indeed yield a better statistical model of neural data. This ob-
servation holds good both for test-data likelihood and for the cross-prediction measure of model
performance introduced with GPFA (Yu et al., 2009), and persists over a range of different la-
tent dimensionalities and training set sizes. Appropriate regularisation of this sort may help to
overcome the difficulties posed by limited data to both scientific and prosthetic applications.

This paper is organised as follows. We first review linear dynamical systems and discuss
equivalent parameterisations and stability of the dynamics. We then explain how one can modify
the EM algorithm to constrain parameter fits to yield stable system dynamics, and how we use
a penalty term to bias the dynamics towards having long timescales. Subsequently, we apply our
methods to surrogate data with known ground-truth, as well as to multi-electrode recordings from
motor cortex of behaving monkeys.

2 Methods

2.1 Linear dynamical systems

This section reviews some well-known properties of LDS models (for more extensive background
see, e.g., Durbin et al. 2001, Katayama 2005) and defines the notation adopted in the paper. Let
y(t) ∈ R

q be a q-dimensional column vector of observations made at time t, and let Y denote
the q × T matrix assembled from the set of such vectors obtained at discrete times {1, . . . , T }:
Y = [y(1), . . . ,y(T )]. In the LDS model observations made at different times are not independent.
The dependence is modelled by introducing a set of latent variables x(t) ∈ R

n, one at each
observation time. These are usually of smaller dimension n < q, and may be assembled into
the n × T matrix X = [x(1), . . . ,x(T )]. The time series X is modelled as a first-order linear
autoregressive process with Gaussian innovations, and the observations y(t) are taken to depend
on a linear function of x(t) parameterised by the loading matrix C and mean value d:

x(t+ 1) = Ax(t) + ǫ(t) (1)

y(t) = Cx(t) + d+ η(t).

The matrix A is called the dynamics matrix as it parameterises the deterministic part of the
temporal evolution of X . The random variables ǫ(t), η(t) as well as the initial latent position x(1)
are taken to be Gaussian distributed:

ǫ(t) ∼ N (0, Q)

η(t) ∼ N (0, R)

x(1) ∼ N (x0, Q0).

The matrix R is constrained to be diagonal so that all statistical dependence within the model
results only from the influence of the latent factors. We denote the LDS parameters by Θ =
(A,Q,x0, Q0, C,R,d). As the dynamics are linear and ǫ(t), η(t) and x(1) are normally distributed,
the variablesX,Y are jointly normal, as are all conditional and marginal distributions. This makes
inference in the LDS model tractable.

The spectrum of the matrix A determines whether or not the corresponding dynamical system
is stable. Systems with spectral radius ρ(A) < 1, i.e. those for which all eigenvalues ρi of A have an
absolute value less than 1, are (Lyapunov) stable. Unstable systems have various properties which
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might be undesirable, e.g. the expected a priori (i.e., before taking observations into account)
latent covariance Qt = E[x(t)x(t)⊤ ] − E[x(t)]E[x(t)⊤ ] diverges as t → ∞, implying that samples
from an unstable LDS will tend to grow exponentially in time. Furthermore, once conditioned on
observations over a limited range of times, both the conditional mean and variance of predicted
future values of both latents and observations will diverge. In contrast, it can be shown that
for all stable systems there exists a stationary distribution limt→∞ p(xt). This guarantees that
observation predictions do not diverge for stable systems: The predicted mean and covariance
approach finite values as time increases.

For stable systems, one can define the time constants τi of the dynamics according to the
equation τi := −1/ log(ρi), and the time-lagged covariances of the latent state variables E[x(t)x(t+
s)⊤] − E[x(t)]E[x(t + s)⊤] decay in proportion to exp(−s/τi) for s → ∞. For any LDS, the
instantaneous covariance Qt changes according to the relation Qt+1 = AQtA

⊤ + Q. Hence, the
covariance matrix Q∞ of the stationary distribution limt→∞ p(xt) solves the following discrete
time Lyapunov equation:

Q∞ = AQ∞A⊤ +Q. (2)

The converse also holds: if for all positive definite matrices Q ≻ 0 equation (2) has a positive
definite solution Q∞ ≻ 0 then A is stable.

In many applications only stable systems are of interest. For neural population recordings, it
is natural to assume that the underlying system is stable, as, for example, firing rates or other
measurements are expected to always be confined to some physiological range, and do not diverge
as a function of time. It is therefore natural to constrain the dynamics matrix to be stable during
the estimation process for this application. The set of stable n×n matrices however is not convex,
giving rise to difficulties in estimating stable matrices A (Siddiqi et al., 2007). A possible solution
to this problem is to optimise over a smaller convex subset of the stable matrices. One such
subset is the set of all matrices with singular values (SVs) less than 1 (Lacy and Bernstein, 2002)
(a constraint which we will write as σ(A) < 1). This set is convex and all matrices in it are
stable (one way to show this is to explicitly construct a positive definite solution to (2), see e.g.
(Katayama, 2005)). The SV constraint however is more conservative than the eigenvalue one.
This can be seen by the following example. Consider an upper triangular matrix with all elements
equal to 0.9. This matrix obviously has eigenvalues of 0.9 but it has SVs > 1 (for all n > 1).
This matrix is non-normal: Its dynamics are stable but they exhibit a transient expansion in some
dimensions for appropriate initial conditions.

Stationary LDSs are a subset of stable LDSs, where the distribution of the initial position x(1)
equals the stationary distribution, i.e. x0 = 0 and Q0 = Q∞ = Qt for any time t.

2.2 Maximum likelihood estimation

The LDS parameters Θ = (A,Q,x0, Q0, C,R,d) can be estimated by spectral methods (Katayama,
2005) or by maximum likelihood (ML) techniques. The ML estimator Θ∗

ML is one which maximises
the likelihood, or equivalently the log-likelihood L(Θ;Y ), function derived from the data:

Θ∗
ML = argmaxΘ L(Θ;Y ) = argmaxΘ log p(Y |Θ).

The ML parameter estimate for most latent variable models cannot be found in closed form,
and is commonly obtained by the iterative EM algorithm (Dempster et al., 1977, Ghahramani
and Hinton, 1996). This often makes ML estimation substantially slower than spectral methods.
However, ML estimates are statistically efficient, and thus make better use of the limited data
available in the neural context. We will therefore focus on ML and related techniques. We denote
the model whose parameters are estimated by likelihood-maximisation as the ML-LDS solution.

ML estimation is consistent and asymptotically efficient. However, estimating the LDS pa-
rameters Θ from limited training data might lead to various problems. On the one hand, as the
number of parameters grows quadratically with the number of latent dimensions n, modelling lim-
ited data with high latent dimensionalities may result in severe overfitting and unstable systems.
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On the other hand, LDSs with few latent dimensions, which are less prone to overfitting, might
not be expressive enough to model complex dynamics.

2.3 Enforcing stability

Real physical and biological processes cannot grow without bound, and so in many modelling
applications it is reasonable to require stability in an estimated LDS model. Indeed, the distri-
bution of the data may even be expected to be stationary on time scales that are relevant for
the application. However, even in such cases, a simple ML parameter estimate from limited data
may identify an unstable system. It is thus desirable to modify the simple ML procedure so as to
constrain the resulting model to stability.

Here we propose such a modification, based on a re-parameterisation of the LDS model. Assume
an LDS with parameters Θ = (A,Q,x0, Q0, C,R,d) which is stable, i.e. ρ(A) < 1. We note first
that for any LDS, the parameters may be transformed to effect an arbitrary, invertible, linear
mapping of the latent space without changing the resulting distribution over observables. More
explicitly, any LDS with parameters Θ̃ = (TAT−1, TQT⊤, Tx0, TQ0T

⊤, CT−1, R,d) gives rise to
the same distribution over observables as Θ, ie. p(Y |Θ) = p(Y |Θ̃), for all invertible T ∈ R

n×n.
Let Q∞ be the stationary latent covariance of the system described by parameters Θ, and let it
have the eigendecomposition Q∞ = USU⊤ where U is an orthogonal matrix and S is diagonal.
Q∞ exists by our assumption of stability, and we assume here that it is positive definite and thus
S is invertible1. By setting T := S−1/2U⊤ we obtain a new set of parameters Θ̃, for which the
stationary latent covariance Q̃∞ is the identity matrix I. This equivalence allows us to restrict
consideration of stable LDS models to only those whose stationary latent covariance matrix is the
identity without losing generality. For any such model, it follows by setting Q∞ = I in equation
(2) that

Q = I−AA⊤. (3)

Thus the family of stable LDS models can be parameterised by the smaller tuple of parameters
(A,x0, Q0, C,R,d) provided that I − AA⊤ ≻ 0, with the corresponding conventional parame-
terisation given by Θ = (A, I − AA⊤,x0, Q0, C,R,d). This smaller set of parameters may be
estimated by maximising the likelihood function L((A, I − AA⊤,x0, Q0, C,R,d);Y ) with respect
to (A,x0, Q0, C,R,d). This maximisation can be achieved (in a local sense) by the EM algorithm.
The E-step, which requires finding the posterior p(X |Y,Θ) proceeds just as for an unconstrained
LDS with Q set to I − AA⊤. Similarly, the optimisations of all parameters except for A in the
M-step also remain unchanged. The optimisation for A, however, is no longer simply quadratic
in A, as it is in the standard LDS M-step. Instead, it must be optimised numerically, by gradient
ascent (see Appendix for details). We refer to the model with parameters found by maximisation
of this reparameterised likelihood as a stable- or S-LDS.

By definition, stability represents a constraint on the eigenvalues of A. However, once the
system has been transformed to set Q∞ = I, the stability constraint translates to a constraint on
the singular values si of A as:

I−AA⊤ ≻ 0 ⇔ 0 ≤ si < 1 , ∀i = 1, . . . , n,

that is, the matrix on the left hand side is positive definite whenever all singular values of A are
smaller than one. It is worth noticing that this constraint need not be enforced explicitly in the
optimisation of the M-step, as the cost function for A now contains terms of the form

−
1

2
log |I−AA⊤| = −

1

2

n
∑

i=1

log(1− s2i ).

1It is sufficient to assume positive definite innovations covariance Q ≻ 0. Under this assumption Q∞ is also

positive definite.
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These terms arise as I − AA⊤ is the covariance of the innovation noise. They effectively act as
log-barrier functions (see Boyd and Vandenberghe 2004) restricting the optimisation to stay within
the set with σ(A) < 1, and therefore ensure that the constraint I−AA⊤ ≻ 0 is always guaranteed
to hold.

At first glance, this equivalence between the singular-value constraint on A and stability of
the LDS might seem to contradict the earlier discussion of SSID, where the requirement for unit-
bounded singular values was said to be overly constraining (Lacy and Bernstein, 2002). This
apparent discrepancy emerges from the different approaches to parameter estimation taken in the
two methods. SSID begins by finding the subspace spanned by the latent process, and implicitly
identifies the loading matrix C by spectral methods. The dynamics matrix is then found in a
second step, with C fixed at this value. With C fixed, constraining A to have unit-bounded
singular values is indeed overly restrictive. By contrast, in each M-step of the EM algorithm, the
matrices A and C (along with other parameters) are estimated together. Now, as the singular
value constraint is enforced on A, the unconstrained C adjusts to fit any stable LDS without loss
of generality. (See the Appendix for a more detailed discussion of this point.) Thus the singular
value constraint is less restrictive in the context of ML estimation than it is for SSID.

2.4 Regularisation

One common way to address concerns about overfitting from limited data is to add regularisation
terms to the objective function L(Θ;Y ), often equivalent to finding the maximum a posteriori
(MAP) parameter values under a suitable choice of prior distribution on the parameters. Here,
we consider forms of regularisation appropriate to stable LDS models.

The M-step update to find a new dynamics matrix A for an unconstrained LDS resembles the
solution to a linear regression problem. As such, it is tempting to adopt the standard approach of
“ridge regression” (also referred to as “shrinkage” or “weight decay”) which penalises large entries
in the matrix. Generalising slightly, we might introduce an Lp penalty term and minimise the
function:

Ec(p)(Θ) = −L(Θ;Y ) +
1

p
λA

∑

ij

|Aij |
p. (4)

With the usual ridge choice of p = 2, this minimisation corresponds to finding the MAP estimate
under an independent zero-mean Gaussian prior on each element of A. We call a model with
stable parameterisation, and with parameters found using such regularisation a “conventionally
regularised, stable LDS” (cRS-LDS).

For an LDS model constrained to be stable by equation 3, shrinkage in the matrix A is effec-
tively accompanied by inflation of the elements of Q. Even without this coupling, shrinkage in A
leaves the innovations process to dominate the variance of the latent state and results in a latent
dynamical process with short correlation times τi—a point that is illustrated in the experiments
below. Such a tendency may be at odds with a prior belief that the latent dynamics underlying
the measured data should evolve smoothly (Turner and Sahani, 2007).

To incorporate the prior belief that the dynamics will be temporally smooth, we introduce a
Gaussian prior on A:

p(A) =

n
∏

i=1

n
∏

j=1

N (Aij | δij , λ
−1
A ), (5)

where Konecker’s delta δij denotes the elements of the identity matrix I. This prior is equivalent
to an L2 penalty term on the elements of A − I. The prior discourages deviations of A from the
identity matrix which describes constant dynamics. Thus we can interpret this prior as penalising
deviations of the dynamics from constancy, rather than from independence. Furthermore, the
coupling of equation 3 now results in a simultaneous penalty on the variance of the innovations
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process. As the experiments below confirm, this prior favours longer time constants in the un-
derlying dynamics. A system learned with this smoothness prior and stability constraints will be
called a “regularised, stable LDS” (RS-LDS).

We also explored the possible benefits of additionally regularising the loading matrix C by
introducing a standard Gaussian prior:

p(C) =

q
∏

i=1

n
∏

j=1

N (Cij | 0, λ−1
C ). (6)

This prior biases all elements of C towards 0. To yield sensible results the scale of the latent process
has to be fixed: Otherwise, in an unconstrained LDS, shrinkage in C could be compensated by
equivalent inflation in A,Q,Q0,x0 without affecting the implied distribution over the observations.
This would render the regulariser effectively futile, as it would only bias the system to pick a
particular one of several parameterisations of the same underlying system (and, in fact, could lead
to numerical instabilities).

In our framework, it is easy to set the scale of x(t) by the above choice of Q∞ = I (or
equivalently Q = I − AA⊤) and by setting x0 = 0, Q0 = I, i.e. by constraining the system to
be stationary. Thus, a further advantage of this particular stability constraint is that it sets
the absolute scale of the latent process, and therefore makes it possible to define priors over the
observation matrix C. We determine the regularisation parameter λA by cross-validation. In
experiments where we also regularise C we avoid joint cross-validation of the two parameters
λA, λC by setting

λC =
1

q

q
∑

i=1

(var(Yi,:))
1/2λA, (7)

where var(Yi,:) is the empirical variance of dimension i of the data. Hence, λC is set to λA scaled
by the average standard deviation of the data. The relation (7) is motivated by the following
heuristics. In each M-step, both A and C are found by solving regression problems. Amaps a signal
xt with (asymptotically) unit variance onto a signal xt+1 which also has (asymptotically) unit
variance. By contrast, C maps a unit variance signal onto Y whose components have the variances
var(Yi,:). Thus, the expected scale of the weights in C should be on the order of var(Yi,:)

1/2 times
the expected scale of A. This is the relative scale set by equation (7). Furthermore, this choice of
regulariser also ensures that the impact of regularisation is independent of the absolute scale of
measurement of Y—a rescaling of all elements of Y would lead to a rescaling of λC and thus the
relative contribution of the likelihood and the prior would remain unchanged.

In summary, we estimate the parameters of a stationary LDS with parameters Θ = (A,Q,x0, Q0, C,R,d)
under the constraint Q = I−AA⊤ ≻ 0 using a constrained EM algorithm. For the parameters R
and d (whose number does not scale with the latent dimensionality n) we use maximum likelihood
estimates, while we use MAP estimates for the dynamics matrix A and we have investigated both
ML and MAP estimates of C. The systems are abbreviated as RS-LDS and cRS-LDS depending on
the prior over A. Unless stated otherwise, all experiments were carried out with L2-regularisation.

3 Results

3.1 Experiments with artificial data

We sought first to contrast the results of learning within the stability-constrained parameterisation
(S-LDS) to those of näıve ML estimation. We sampled a time series of 100 time steps from a stable,
stationary LDS model with n = 5 latent dimensions and q = 10 observed dimensions (for details see
sections 5). The dynamics matrix A0 of the ground truth LDS had a spectral radius ρ(A0) = 0.95.
Figure 1A shows 3 out of the 10 dimensions of the training data.

8



Using these samples as data, we estimated LDS parameters both by standard ML and ML
with stability constraints as proposed in section 2.3. As mentioned above, unconstrained ML
estimation of LDS parameters from small data sets may sometimes lead to unstable settings of the
parameters. This is observed here. ML learning on the sampled training data yielded parameters
ΘML that included an unstable dynamics matrix AML with ρ(AML) = 1.007. We also trained an
unregularised but stable LDS as described in section 2.3 on the same data and denote the resulting
parameters as ΘS. The matrix AS was stable with ρ(AS) = 0.998.

Figure 1B, C shows example trajectories generated in the observation space by sampling
from an LDS model with parameters ΘML (panel B) and ΘS (panel C). Although the spectral
radius of AML seems only slightly greater than 1, samples from the corresponding LDS model
grow substantially within only 200 time steps, illustrating the exponential growth in variance.
By contrast, samples from the LDS model with ΘS stay close to the origin, showing that the
corresponding stationary marginal distribution has finite mean and covariance. Indeed, the sample
trajectory exhibits roughly the same variance as the training data; this is due to the fact that ΘS

was learned under stability and stationarity constraints.

A second numerical experiment on synthetic data explored the effects of adding a regularisation
term (or, equivalently, a prior over the dynamics matrix) to the likelihood objective function. We
repeatedly generated both a training data set and a separate test data set by sampling from a
stationary LDS model with n = 5, q = 10 (see section 5 for details). The dynamics matrix of the
generative model was chosen such that its spectrum had absolute values close to one and small
imaginary parts (Figure 2A green crosses). For each run, we estimated LDS parameters from
the training data both using standard ML estimation (ML-LDS), using our regularised, stable
algorithm (RS-LDS) as well as using the conventionally regularised estimation (cRS-LDS).

Insight into the behaviour of the different parameter estimates can be gained by studying the
spectra of the resulting dynamics matrices, shown in Figure 2A (pooled over 40 runs). For little
training data (2 trials, upper row), the eigenvalues in the ML-LDS spectrum (left column, blue
circles) are often substantially smaller than the generative values (green crosses). They also show
considerable scatter, sometimes approaching or crossing the unit circle, thus leading to instability
as in Fig. 1. The introduction of a prior penalising deviations from the identity matrix drives
the eigenvalues of the matrix found by RS-LDS (with a fixed regularisation parameter λA = 103)
towards unity on the real line, whilst the stability constraint ensures that they all remain within
the unit circle. The effects of these manipulations can be seen in the resulting spectra (Figure 2B,
middle column, red circles). This results in estimates of eigenvalues that lie closer to 1 than ML
estimates, with less downward bias and less scatter. However, a slight undershoot in the estimates
of the larger imaginary parts is also evident. By contrast, the prior of cRS-LDS (right column,
regularisation parameter λA = 103) drives the eigenvalues towards 0 (black circles). Thus the
form of the prior is crucial. When the data are generated by a model with smooth dynamics, a
prior favouring shorter timescales is unhelpful. With more training data (10 trials, lower row)
all algorithms identify matrices with more accurate eigenvalue spectra, although the mismatched
prior of cRS-LDS leads to slower convergence.

This pattern of results in the eigenvalue spectrum is also reflected in the fit of the corresponding
models to test data. Figure 2B shows the log-ratio between the likelihoods evaluated on the test
data of the parameters estimated by the different algorithms and the true generative parameters as
a function of the size of the training data set. Log-likelihood ratios that approach 0 reveal estimated
parameters that provide as good a model of the test data as do the generative parameter values:
that is, these parameters define a model that generalises well to new data. Smaller log-likelihood
ratios suggest that the parameters have overfit the training data, capturing idiosyncratic features
of those data and thus providing a poorer model of new data that do not share those features.
We found that with increasing training data the likelihoods of models fit by both ML-LDS and
RS-LDS converged to the likelihood of the generative parameters (bringing the log-ratios to 0).
This convergence is theoretically expected and reflects both the consistency of ML estimates
and the fact that MAP estimates under a fixed prior approach ML values as the number of
available training data increase. Furthermore these results verify the robustness of the gradient-
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based EM algorithm employed for RS-LDS estimation. For small training sets, the regularised
RS-LDS approach yielded better models on test data than did the unregularised ML-LDS. This
benefit shows the advantage of choosing an identity-centred prior when the true parameter values
correspond to a smoothly evolving LDS model. This gain in generalisation, due to the reasonable
accordance of the generative parameters with the RS-LDS prior, is also reflected in the tighter
match of the ground truth eigenvalues and those identified by RS-LDS as shown in Figure 2A.

Of course, this advantage of the RS-LDS prior depends crucially on the nature of the true
generative process. For data sets which do not show high levels of temporal continuity, for which
there is a mismatch between the RS-LDS prior and the data, no benefit is to be expected from
RS-LDS estimates and other priors (e.g. those of cRS-LDS) might be more useful.

3.2 Application to multi-electrode recordings

The numerical experiments on artificial data have shown that the RS-LDS estimation approach
yields stable and smooth dynamical system parameters, which generalise more accurately than do
either näıve ML or ML with conventional, shrinkage-based regularisation. Does RS-LDS estimation
also lead to better models of real data?

We fit LDS parameters to data collected during the execution of delayed reaches, using ex-
tracellular electrode arrays implanted in primate motor and premotor cortices. These data were
collected by Churchland et al. (2006), who generously made them available for this study. The
data used here included 105 units recorded for 56 trials, each 2.02 s long. Data acquisition and
pre-processing are outlined briefly in the Appendix. We assessed how well models with the differ-
ent parameters captured the statistical structure of the recorded neural population activity. To
do so, we used two different cross-validated measures: the likelihood, expressed as the logarithm
of its ratio with respect to that of a baseline model, and a firing-rate cross-prediction performance
measure introduced by Yu et al. (2009) (details in the Appendix). The latter measure quantifies
the ability of a model to predict the activity of one held-out unit given the activity of all the other
units. As we are interested primarily in the generalisation performance of the models, performance
was always measured on test data—i.e., data which had not been used to estimate the parameters.

Figure 3 shows both performance measures for a variety of parameter estimation methods
and models, as a function of the latent dimensionality n, using a small data set of 10 trials. We
found that when models had more than 5 latent dimensions the RS-LDS parameters outperformed
the ML ones by a significant margin in terms of both test likelihood and cross-prediction perfor-
mance. Furthermore, these higher-dimensional models also outperformed the more restrictive
lower-dimensional ones, so the benefits obtained by RS-LDS estimation in this regime contribute
crucially to building more accurate models of the shared variance in the neural data.

Interestingly, the precise value of the regularisation parameter λA had little effect on RS-
LDS performance. Figure 3 shows performance both with a fixed value of λA = 103, as well as
that obtained when the regularisation parameter was determined by cross-validation separately
for each latent dimensionality, n. The two are barely different. We found this robustness to be
generally true for the data studied here. The value λA = 103 was effective across different latent
dimensionalities and cross-validation splits.

We also investigated the performance of a stable LDS model with parameters estimated under
regularisation of both A and C. The results show only a modest increase in performance when C
was also regularised. This indicates that for the data at hand it is more important to regularise
the dynamics matrix A, than to regularise the elements of C. In general, the number of degrees of
freedom in A grows quadratically with n, whilst the number of elements of C only grows linearly
with n. Hence, one would expect regularisation of A to be more important for larger latent
dimensionalities. We also established that jointly cross-validating λA and λC does not increase
performance noticeably in comparison to using the fixed relation given by eq. (7) (data not shown).

The results also show that conventional shrinkage-based regularisation of the dynamics matrix
(cRS-LDS) yields similar (or perhaps slightly inferior) results to unregularised ML on the real
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neural data. This similarity is unsurprising, as cross-validation favours very small regularisation
strengths λA for the shrinkage prior, making the regularised cost function essentially equivalent
to the likelihood. (The residual and inconsistent small differences in test likelihood seem to
result from an interaction between the stability-constraining reparameterisation of cRS-LDS and
the parameter settings chosen to initialise EM.) The fact that the shrinkage prior confers no
gain in quality of fit suggests that it is a poor match to the neural data, and that these data
are better modelled by parameters that capture smoothness. This hypothesis is supported by
inspection of the spectra of the estimated dynamics matrices (Figure 4A, showing eigenvalues of
A for n = 15 pooled over four cross-validation folds for ML-LDS and RS-LDS with λA = 103). RS-
LDS, which offers the better statistical description of the data as assessed by test likelihood and
cross-prediction performance has eigenvalues with absolute values close to 1 and small imaginary
parts describing smooth temporal dynamics. By contrast, a considerable fraction of eigenvalues
for the ML-estimated dynamics matrix have absolute values close to zero or have relatively large
imaginary parts yielding temporally uncorrelated dynamics or fast oscillations respectively. These
features appear not to improve the generalisation of the model.

This relative lack of smoothness in the ML-LDS models is also visible in the trajectories of
Figure 4B. Shown are three latent dimensions of the smoothed latent trajectories E[x(t)|Y,Θ]
which are most likely for one 2.02 s trial of test data (the model was fit with n = 15 latent
dimensions, with the top three orthonormalised projections shown, see Appendix). Trajectories
such as these are often used for visualisation and are helpful for analyzing single trial effects (see
Yu et al. 2009) in neural population recordings. The smoother trajectories of RS-LDS are also
more accurate. They are derived from models with higher likelihood on the data, and make more
accurate firing rate cross-predictions than trajectories derived from alternative models Figure 3.
Furthermore, smoother trajectories may be preferable for visualisation as they allow the observer
to focus on the structure exhibited by the data on behavioral time scales, without being distracted
by rapid, possibly noisy, fluctuations.

Regularisation is most effective when parameters must be estimated from relatively little train-
ing data. As more data become available, the ML parameter estimates overfit less severely, and—
asymptotically—become statistically efficient. This phenomenon was visible in Figure 2A for an
artificial data set. In order to determine the range of training set sizes where regularisation is
beneficial we studied the performance of the different fitting approaches as a function of the train-
ing data size. The results are shown in Figure 5. RS-LDS with n = 20 and a fixed regularisation
parameter λA = 103 outperformed ML-LDS with n = 10, 15, 20 for training sets consisting of 5 up
to 30 trials; the complete dataset had 56 trials.

In addition to L2-regularisation we investigated the use of L1-regularisation of A as well as
of both A and C (and all combinations of L1 and L2). L1-regularisation, related to LASSO
regression, often leads to estimated parameters which are sparse in the sense that many estimated
matrix elements are exactly 0 (or 1, for the diagonal elements of the identity-regularised Amatrix).
We found that L2-regularisation performed better than L1-regularisation on the data considered
here, for all latent dimensionalities and training set sizes—although not by a large margin. Thus,
there was little evidence that sparsity was a helpful prior in LDS models of neural data. In
another experiment we added the constraint that the matrix A be diagonal to both ML and
RS-LDS estimates. The resulting parameters performed more poorly than the ML parameters
with optimal latent dimensionality, and worse than RS-LDS for all dimensionalities. These results
held for all the training set sizes we investigated. This indicates that although the RS-LDS gains
performance by penalising large off-diagonal elements of A, some non-zero values off the diagonal
are essential to describe the structure of the latent dynamics underlying neural populations.

Figure 3B also shows the cross-prediction performance of GPFA and of LDS models with
parameters learned by the stable subspace identification (SSID) algorithm introduced by Siddiqi
et al. (2007). For the latter we report for each dimensionality the performance obtained by
choosing the optimal size of the Hankel matrix. Both methods perform substantially worse than
RS-LDS for all dimensionalities. It needs to be emphasised, however, that the trial structure of the
multi-electrode recordings analysed here is unsuitable for SSID algorithms, which assume a single
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continuous time series instead of multiple trials. Furthermore, iterative, EM-based algorithms
are much slower than SSID algorithms. We did not include either GPFA or SSID in Figure
3A as their likelihoods were substantially lower than those of the ML parameters for all model
dimensionalities.

4 Discussion

In this study we have proposed two enhancements to parameter estimation in the standard LDS
model, and tested the value of both in building models of neural population data. These enhance-
ments reparameterise the innovations term of the LDS model so as to constrain it to remain stable,
and provide a natural regularisation scheme that promotes smoothness within the latent dynamics.
Both enhancements improved the quality of fit on the motor cortical data we studied—judged both
by test-data likelihood and by leave-one-neuron-out cross-prediction—over näıve ML estimation,
conventional shrinkage-based regularisation, as well as stable SSID-based methods (Siddiqi et al.,
2007). The gain in performance extended across models of various latent dimensionalities and was
robust to the exact choice of the regularisation parameter. As might be expected, the benefit of
regularisation was largest when the least data were used to estimate parameter values. However,
the gains extended, albeit weakly, to larger data sets as well, and at no point did the RS-LDS
approach perform more poorly than any of the alternatives we evaluated.

Latent factor models of neural population firing seek to capture the shared population-level
activity in a low-dimensional set of latent variables. To the extent that the concerted action
of the population has the greatest impact on downstream processing, we might expect these
latent variables to reflect the essence of the computational action of the population. The relative
advantage in goodness-of-fit seen with smoothness-based regularisation over both conventional
shrinkage and näıve ML suggests that this shared element of motor cortical population activity does
indeed evolve smoothly during the preparation and execution of instructed reaching movements.
The most successful RS-LDS-estimated models exhibited long time scales stretching from several
hundred milliseconds up to seconds, with relatively little shared variance at shorter timescales.
Findings such as these hint at an underlying robust organisation of computation within neural
populations, where short-time local fluctuations in firing are smoothed away across the population,
leading to a more robust computational strategy.

Appropriate regularisation schemes may also prove helpful for offline or online decoding of arm
or hand trajectories from motor cortex recordings. State-of-the-art decoding performance is often
achieved by decoders that are trained for specific experimental conditions (Gilja et al., 2011) and
which often have to be re-trained for every session due to non-stationarity of the data on long
time scales on the order of hours or days (Gilja et al., 2011). This limits the amount of available
training data and renders appropriate regularisation worthwhile. However, it remains to be seen
if the methods described here will benefit decoding performance in practical a BMI setting.

A linear autoregressive process with Gaussian noise, such as the process governing the latent
variable of an LDS model, is a special case of a Gaussian process (GP). Thus, the LDS latent
model is related to Gaussian process factor analysis (GPFA), which is a state space model with an
independent general GP prior on each latent variable trajectory (Yu et al., 2009). GPFA requires
the specification of a covariance function that parameterises the evolution of the latent variables.
This function is most often taken to be squared-exponential, a choice which yields particularly
smooth latent variable trajectories. The alternative choice of a stationary absolute-exponential
function (also known as the Ornstein-Uhlenbeck or OU covariance function) would yield a GP prior
that corresponded precisely to a restricted stationary LDS in which both the dynamics matrix A
and the innovations covariance Q were diagonal. This restriction reflects the assumption of GPFA
that the different latent dimensions evolve independently under the prior.

Thus, the stable LDS model can be seen as both a restriction and a generalisation of GPFA,
which constrains the latent dynamics to be stable and Markovian (as with the OU covariance func-
tion) but allows for coupling between the latent dimensions via off-diagonal elements of the dy-
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namics matrix. We showed that this parameterisation when combined with a suitable regulariser,
yielded better performance than both GPFA with squared-exponential covariance functions, and
an LDS model with diagonal dynamics matrix (equivalent to GPFA with an OU covariance func-
tion). At the same time, the latent trajectories obtained are smooth, by contrast to those found
using ML estimation in an LDS. Thus, the current model arguably combines the advantages of
squared-exponential GPFA (namely, stable and smooth dynamics) with those of linear dynamical
systems (namely, a richer set of dynamics, as well as training time which is linear in the length of
the trials).

To our knowledge, the stability-constraining reparameterisation developed here has not been
discussed previously in the context of ML-estimation of multi-dimensional LDS models. However,
a similar parameterisation of a univariate LDS has been previously been exploited to build a
probabilistic formulation of Slow Features Analysis (Turner and Sahani, 2007).

The algorithm for learning stable, regularised LDSs proposed here also has some shortcomings.
Although the performance turned out not to be very sensitive to fining tuning of the regularisation
parameter, its order of magnitude still needs to be set, for example by cross-validation. In principle,
one might seek to build a hierarchical model in which the distribution on the parameters could
itself be learnt from data. This Bayesian approach was taken for the general LDS model by Beal
(2003). However, it is not straightforward to incorporate the stability constraint into this model,
and this remains a subject for future research.

Another disadvantage of our algorithm for estimating stable LDS model parameters is that it
is computationally more expensive than standard ML estimation. Under the proposed stability
constraints, the M-step of the EM algorithm used for parameter estimation cannot be solved in
closed form and we therefore resorted to gradient-based numerical optimisation methods, increas-
ing the computational cost of parameter learning. In practice, we observed a run-time increase
of the M-step roughly by a factor of 3. This leads only to a modest increase of total run-time
compared to standard ML estimation, as the complexity of the E-step remains unchanged.

The reparameterisation discussed here applies to any latent linear dynamical system with
Gaussian innovations. Although our model also assumed that the observations depended on these
dynamical factors linearly, and with Gaussian noise, this assumption was not essential to ensuring
stability. Thus, a similar approach could be taken with Poisson or other point-process observation
models (Smith and Brown, 2003, Kulkarni and Paninski, 2007, Macke et al., 2011). Similarly,
it could also be generalised to the case of switching linear dynamical systems (Bar-Shalom and
Li, 1998, Petreska et al., 2011) if each such system were expected to be separately stable. Thus,
our approach is applicable to a wide range of powerful and flexible models of neural population
dynamics.
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D. R. Kipke, W. Shain, G. Buzsáki, E. Fetz, J. M. Henderson, J. F. Hetke, and G. Schalk. Advanced
neurotechnologies for chronic neural interfaces: new horizons and clinical opportunities. J
Neurosci, 28(46):11830–11838, 2008.

J. E. Kulkarni and L. Paninski. Common-input models for multiple neural spike-train data.
Network, 18(4):375–407, 2007.

S. L. Lacy and D. S. Bernstein. Subspace identification with guaranteed stability using constrained
optimization. In Proc. American Control Conference, 2002.

14



S. L. Lacy and D. S. Bernstein. Subspace identification with guaranteed stability using constrained
optimization. IEEE Trans Autom Contr, 48(7):1259–1263, 2003.

J. H. Macke, L. Buesing, J. P. Cunningham, B. M. Yu, K. V. Shenoy, and M. Sahani. Empirical
models of spiking in neural populations. In Advances in Neural Information Processing Systems,
volume 24. Curran Associates, Inc., 2011.

L. Paninski, Y. Ahmadian, D. Ferreira, S. Koyama, K. Rahnama Rad, M. Vidne, J. Vogelstein,
and W. Wu. A new look at state-space models for neural data. Journal of Computational
Neuroscience, 29:107–126, 2010.

B. Petreska, B. M. Yu, J. P. Cunningham, G. Santhanam, S. I. Ryu, K. V. Shenoy, and M. Sahani.
Dynamical segmentation of single trials from population neural data. In Advances in Neural
Information Processing Systems, volume 24. Curran Associates, Inc., 2011.

J. W. Pillow, J. Shlens, L. Paninski, A. Sher, A. M. Litke, E. J. Chichilnisky, and E. P. Simoncelli.
Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature,
454(7207):995–999, 2008.

C. E. Rasmussen. Gaussian processes in machine learning. Advanced Lectures on Machine Learn-
ing, 3176:63–71, 2004.

G. Santhanam, B. M. Yu, V. Gilja, S. I. Ryu, A. Afshar, M. Sahani, and K. V. Shenoy. Factor-
analysis methods for higher-performance neural prostheses. J Neurophysiol, 102:1315–1330,
2009.

E. Schneidman, M. J. Berry, R. Segev, and W. Bialek. Weak pairwise correlations imply strongly
correlated network states in a neural population. Nature, 440(7087):1007–12, 2006.

S. Siddiqi, B. Boots, and G. J. Gordon. A constraint generation approach to learning stable linear
dynamical systems. In Proceedings of Advances in Neural Information Processing Systems 20
(NIPS-07), 2007.

J. D. Simeral, S. P. Kim, M. J. Black, J. P. Donoghue, and L. R. Hochberg. Neural
control of cursor trajectory and click by a human with tetraplegia 1000 days after im-
plant of an intracortical microelectrode array. J Neural Eng, 8(2):025027, 2011. URL
http://stacks.iop.org/1741-2552/8/i=2/a=025027.

A. C. Smith and E. N. Brown. Estimating a state-space model from point process observations.
Neural Comput, 15(5):965–991, 2003.

R. E. Turner and M. Sahani. A maximum-likelihood interpretation for slow feature analysis.
Neural Comput, 19(4):1022–1038, 2007.

T. Van Gestel, J. A. K. Suykens, P. Van Dooren, and B. De Moor. Identification of stable models
in subspace identification by using regularization. IEEE Trans Autom Contr, 46(9):1416 –1420,
2001.

J. Wolpaw and E. Wolpaw. Brain-Computer Interfaces: Principles and Practice. Oxford Univ
Press, 2012.

W. Wu, Y. Gao, E. Bienenstock, J. P. Donoghue, and M. J. Black. Bayesian Population Decoding
of Motor Cortical Activity Using a Kalman Filter. Neural Comput, 18:80–118, 2006.

W. Wu, J. E. Kulkarni, N. G. Hatsopoulos, and L. Paninski. Neural decoding of hand motion
using a linear state-space model with hidden states. IEEE Trans Neural Syst Rehabil Eng, 17
(4):370–378, 2009.

15



B. M. Yu, A. Afshar, G. Santhanam, S. I. Ryu, K. Shenoy, and M. Sahani. Extracting dynamical
structure embedded in neural activity. In Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances
in Neural Information Processing Systems 18, pages 1545–1552. MIT Press, Cambridge, MA,
2006.

B. M. Yu, J. P. Cunningham, G. Santhanam, S. I. Ryu, K. V. Shenoy, and M. Sahani. Gaussian-
process factor analysis for low-dimensional single-trial analysis of neural population activity. J
Neurophysiol, 102(1):614–635, 2009.

16



5 Appendix

Initialisation of LDS parameters. The parameter d was initialised with the empirical mean
of Y . We investigated two different initialisations for the remaining LDS parameters. In the
first method, we performed principal components analysis (PCA) on Y and defined C̃ to be the
orthogonal mapping of the data to the first n PCs. We defined a Gaussian “pseudo-posterior” by
setting its mean to C̃ ·Y and its covariance matrix to 0. The LDS parameters were then initialised
by an M-step based on this “pseudo-posterior”. In the second method we initialised A,Q,C,R
using subspace identification (SSID). If applicable, x0 was sampled from N (0, I) and the diagonal
elements of Q0 were drawn independently and uniformly on the interval [1, 2].

For the experiments with artificial datasets, we initialised all parameters with SSID as this
resulted in much better performance compared to the PCA initialisation. For the experiments
with the multi-electrode recordings, we chose to initialise the parameters for unregularised ML-
LDS with SSID and for RS-LDS with PCA. These choices resulted in the best performance of the
respective models.

The M-step for stable, regularised LDS. We describe only those parts of the M-step for RS-
LDS that differ from the corresponding standard ML-LDS equations. In most of the estimates,
these differences were limited to the update of the dynamics matrix A. The (normalised) cost
function LA to minimise with respect to A is given by:

LA =
1

2
log |I−AA⊤|+

λA

2(T − 1)
Tr[(A− I)(A − I)⊤]

+
1

2
Tr

[

(I−AA⊤)−1
(

AM00A⊤ − 2AM01 +M11
)]

, (8)

where M ij for i, j = 0, 1 are second moments of the posterior:

M ij :=
1

T − 1

T−1
∑

t=1

Ẽ
[

x(t+ i)x(t+ j)⊤
]

,

where Ẽ denotes the expected value under the posterior p(X |Y,Θold). The gradient of the cost
function (8) is (in matrix form):

∂LA

∂A
= (I−AA⊤)−1

(

−A+ (AM00 −M10) +

(AM00A⊤ −AM01 −M10A⊤ +M11)(I −AA⊤)−1A
)

+
λA

T − 1
(A− I).

In some cases, the loading matrix C was also regularised. In these cases, the relevant cost
function LC,d,R must be minimised with respect to all the observation parameters C,d, R:

LC,d,R =
1

2
log |R|+

1

2
Tr

[

R−1
(

CNxxC⊤ − 2CNxy +Nyy
)]

+
λC

2T
Tr[CC⊤],

whereNxx = 1
T

∑

t Ẽ[x(t)x(t)
⊤], Nxy = 1

T

∑

t Ẽ[x(t)](y(t)−d)⊤ andNyy = 1
T

∑

t(y(t)−d)(y(t)−
d)⊤. The new estimates C∗, d∗ and R∗ obey the following equations:

0 =
λC

T
R∗C∗ + C∗Nxx −Nyx

d∗ =
1

T

T
∑

t=1

(

y(t)− C∗
Ẽ[x(t)]

)

R∗ = diag
[

Nyy − 2C∗Nxy + C∗Nxx(C∗)⊤
]

.
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Note that Nxx, Nxy, Nyy are functions of d∗. The first equation is a Lyapunov equation, which
can be solved in closed form for C∗ given d∗, R∗. For every partial M-step we iterated once through
these three fixed-point equations in the order given above. The parameters were initialised with
the previous values from Θold.

Performance measures. We report results using two performance measures. The first is the
log-likelihood log p(Y |Θ) of the model with parameters Θ, evaluated on test data Y . This measure
depends both on the parameters and on the particular choice of test data set, and this latter
dependence adds irrelevant variance to the measure (for instance, due to variations in firing rate).
To reduce this added variance we subtracted the log-likelihood log p(Y |Θbase) of a baseline model.

Hence the performance measure log p(Y |Θ)
p(Y |Θbase)

is the log-likelihood-ratio of the model being tested

compared to the baseline model. For the experiments reported in Figure 2 we used the generative
LDS as the baseline model. For all other experiments the baseline model was an LDS with n = 1
and with parameters estimated by ML on the same data as the models being tested. The reported
log-likelihood ratios were normalised by the number of test trials.

The second measure we used is taken from Macke et al. (2011) (a slight adaptation of the
measure initially introduced by Yu et al. (2009)) and assesses cross-prediction performance of
a model with parameters Θ. Briefly, on test data we computed the predicted mean trajectory
E[Yi,:|Y\i,Θ] for every observation dimension i (i.e. every neuron) given the data from all other
dimensions (\i) under the model. We then computed the mean-squared error of this prediction
from the true trajectory, MSEi. We subtracted MSEi from the MSE of a constant predictor (i.e.,
constant activity given by the true mean of dimension i on each trial) and report the average of
this quantity over all available test data. Thus, this measure quantifies the average increase in
prediction performance over a constant value (higher is better).

Both measures were averaged over 4 cross-validation folds (except for Figure 2 where we used
40 cross-validation folds). Errorbars for both measures are defined as the standard deviation of
the mean over the cross-validation folds.

Orthonormalised latent dimensions for visualisation. In principle we can visualise the
population activity Y using the mean posterior latent trajectories E[X |Y,Θ] under an LDS model
with parameters Θ. However, the latent dimensions are not ordered in any particular way,
nor do they form an orthogonal projection from the space of measurements, and so visualisa-
tion in the “raw” latent space may be difficult to interpret. This problem was discussed by
Yu et al. (2009) and we adopt the solution presented there. Briefly, we orthonormalise the
loading matrix C as follows. Let C = USV ⊤ be the singular value decomposition of C. We
transform all LDS parameters Θ = (A,Q,x0, Q0, C,R,d) using the matrix T = SV ⊤ to form
Θ̃ = (TAT−1, TQT⊤, Tx0, TQ0T

⊤, CT−1, R,d). Thus, the loading matrix of Θ̃ is C̃ = U which
has orthonormal columns. This set of parameters describes the same model as before, but now
the projections from the latent space to the measurements are orthogonal, and the latent dimen-
sions are ordered by the measurement variance they explain. Thus, the mean posterior latent
trajectories in this model are useful for visualisation.

Artificial data For the first experiment (illustrating the instability of ML parameters), we
generated the training time series consisting of 100 time steps by sampling from a stationary (and
therefore stable) LDS with n = 5 and q = 10. The dynamics matrix had 0.95 on the diagonal and
1 on the first upper off-diagonal. The innovation covariance was set to Q = 0.1 · I, the observation
covariance R = 0.1 · I and d = 0. The parameters were then transformed such that Q∞ = I. The
elements of C were then sampled Cij ∼ N (0, 1).

For the second experiment (studying the dependence of ML-LDS, cRS-LDS and RS-LDS on
data size) we also sampled from a stationary ground truth LDS with n = 5 and q = 10. The
dynamics matrix was randomly generated such that its EVs ρi had a large real part 0.95 <
ℜ(ρi) < 1 and a small imaginary part 0 < ℑ(ρi) < 0.15 and |ρi| < 1. Q was randomly generated
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with EVs uniformly in [0, 0.1]. R was set to R = 0.01 ·I and the elements from d were independent
samples from N (0, 1). The parameters were then transformed such that Q∞ = I. The elements
of C were finally sampled Cij ∼ N (0, 5). We sampled 250 time series with 100 time steps each.
From this set the training sets of varying size and the test data (100 trials) were randomly chosen
(non-overlapping).

Multi-electrode recordings Data were collected by Churchland et al. (2006), who generously
made them available for this study. The experimental setup, data acquisition and preprocessing are
described in detail in the original report. Briefly, activity was recorded from a 96-channel silicon
electrode array implanted at the border between dorsal premotor (PMd) and motor (M1) cortex
in the right hemisphere of an adult rhesus monkey. During the recording the monkey performed
a delayed center-out reach task for juice rewards. Reach targets were presented at 14 possible
locations. We only included data from a single session and a single reach condition yielding 56
trials in total. Spike sorting identified 105 distinct single and multi-units. Data was binned in
10ms bins, and trials where truncated such that they all contained 202 time steps (i.e. 2.02 s
corresponding to the duration of shortest trial) starting 1 s before the reach target was presented
to the monkey. The average activity per unit was 8.8Hz, 8.13% of the bins contained at least one
spike and 0.6% more than one spike.

Singular value constraints for EM and SSID algorithms SSID algorithms operate on the
Hankel matrix H of time-lagged covariances of the observed data (see Katayama 2005 for an in-
depth discussion). In particular, they find an approximate low-rank decomposition of this Hankel
matrix into the product of a reachability matrix C and an observability matrix O. The reachability
matrix is then used to determine the latent subspace i.e. the loading matrix C, whilst O is used to
determine the dynamics matrix A. The decomposition H ≈ OC is not unique, and it is common
to constrain C to be orthogonal, which, in turn, results in an orthogonal C (c.f. Siddiqi et al.,
2007). It is this constrained decomposition step which complicates attempts to derive a general
SSID estimation approach for stable dynamics.

Suppose that data are generated by a ground truth LDS in which the loading matrix C0 is
orthogonal and the dynamics matrix A0 is stable, but has some SVs that are larger than unity.
If we apply SSID as outlined above, with the estimate Ĉ constrained to be orthogonal, then
there is no possible value of Â satisfying σ(Â) < 1 which describes an equivalent LDS model. In
particular, suppose that Ĉ = C0T

−1 for some transformation T . Then the estimated model would
be equivalent to the true one if and only if Â = TA0T

−1. However, the transformation T must be
orthogonal (as both C0 and Ĉ are orthogonal matrices by assumption). This means that TA0T

−1

must have the same singular-value spectrum as A0, which by assumption violates the singular
value constraint. Clearly a similar situation can arise whenever Ĉ is found without reference to
Â, even if it is not required to be orthogonal.

The example above also illustrates why the SV constraint is effective for likelihood-based
estimation. Here, Â and Ĉ are estimated together and Ĉ need not be constrained. In this case,
the requirement that σ(Â) < 1 can be satisfied by a suitable similarity transform T̃ applied to
A0 (for example, it might be possible to diagonalise A0, or in the general case the transformation
discussed in section 2.3 is always possible to obtain σ(A) < 1). The estimate Ĉ = C0T̃

−1, along
with appropriately transformed innovations covariance and first-state parameters, then yields an
LDS model exactly equivalent to the ground truth. Thus, by applying the SV constraint to Â first
and allowing Ĉ freedom to compensate, we obtain a fully general algorithm.

Details of GPFA implementation GPFA results were obtained using code developed as part
of the original GPFA study (Yu et al., 2009). As in that study, we used a squared-exponential
covariance function with a white noise contribution, with the relative magnitude of the squared-
exponential and the white noise elements set to a fixed value. Time constants of the covariance
kernel were initialised at 100ms.
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Figure 1: Maximum likelihood estimation of LDS parameters from data can result in
unstable systems. A) We generated training data by sampling from a stable LDS with 5 latent
dimensions. Shown are 3 out of 10 observation dimensions of the training set. B) Maximum
likelihood (ML) estimation of LDS parameters from the input time series shown in A results in
an unstable system. The figure shows a sample time series from the ML model which exhibits
a rapidly growing amplitude in time. C) Same as B, but for LDS parameters estimated under
stability constraints. The sample illustrates that the identified system was stable.
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Figure 2: The form of regularisation influences the spectrum of the dynamics matrix.
A) The complex eigenvalue spectra of the dynamics matrices A for maximum likelihood (ML-)
LDS (left), regularised (RS-) LDS (middle) and conventionally regularised (cRS-) LDS (right),
pooled over 40 runs. The eigenvalues (EVs) of the ground truth are marked by green crosses.
For little training data (upper row) ML estimation yields some EVs with small absolute values
corresponding to short time constants of the dynamics, whereas RS-LDS estimates larger EVs.
Given more training data (lower row) all algorithms identify the true EVs more reliably, although
the mismatched prior (cRS-LDS) leads to slower convergence. B) The log-likelihood ratios relative
to the ground truth model as a function of training set size. Both RS-LDS and ML-LDS converge
on the true parameters with growing training set size and thus obtain the same likelihood as the
ground truth model. For little training data stable RS-LDS outperforms ML-LDS as (by design)
the prior corresponding the RS-LDS regularisation matches the ground truth dynamics well.
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Figure 3: For limited training data stable, regularised LDS parameters yield a better
model of cortical multi-electrode recordings. A) Log-likelihood ratios on test data relative
to a baseline model as a function of the latent dimensionality. The training set consisted of 10
trials of 2 s recordings each. For all latent dimensionalities greater than 5, RS-LDS (with opti-
mised regularisation parameter λA) outperformed ML-LDS as the latter is prone to overfitting.
Furthermore, RS-LDS with fixed regularisation parameter λA = 103 also dominates ML-LDS.
Conventional regularisation of A (cRS-LDS) does not improve performance compared to unregu-
larised ML, suggesting that the corresponding prior does not match the population dynamics well.
B) Same as A, but for cross-prediction performance instead of log-likelihood ratio. The results
agree qualitatively with panel A, suggesting that RS-LDS yields a better overall description of the
statistics of the population activity dynamics.
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Figure 4: Regularisation that penalises deviations from constancy leads to smoother
dynamics. A) Scatter-plots of spectra of dynamics matrices estimated by standard ML (ML-
LDS, top) and by MAP with a prior that penalises deviations from constancy (RS-LDS, bottom).
The latter yields eigenvalues of the dynamics matrix that correspond to smooth dynamics. Spectra
are pooled over 4 cross-validation runs. B) Inferred latent trajectories (conditioned on 2 s of test
data) in the top three out of 15 orthogonal dimensions of smoothed latent trajectories for ML-LDS
(left) and RS-LDS (right). Trajectories inferred by ML-LDS are less smooth than those found by
RS-LDS, reflecting the different spectra shown in A. Parameters for panels A and B were taken
from same experiments as Figure 3 for n = 15.
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Figure 5: Regularisation benefit holds for a range of dimensionalities and training set
sizes. A) Log-likelihood ratios as a function of the training set size for RS-LDS with n = 20
latent dimensions and fixed regularisation parameters λA = 103 as well as for ML-LDS with
latent dimensions n = 10, 15, 20. The regularised RS-LDS outperformed unregularised ML for
training set sizes up to 35 trials. B) Same as A but for cross-prediction performance instead of
log-likelihood ratio. Both performance measures agree qualitatively.
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