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Abstract

Measured responses from visual cortical neurons show that spike times tend to be correlated
rather than exactly Poisson distributed. Fano factors vary and are usually greater than 1, indicating
a tendency toward spikes being clustered. We show that this behavior emerges naturally in a
balanced cortical network model with random connectivity and conductance-based synapses. We
employ mean-#eld theory with correctly colored noise to describe temporal correlations in the
neuronal activity. Our results illuminate the connection between two independent experimental
#ndings: high-conductance states of cortical neurons in their natural environment, and variable
non-Poissonian spike statistics with Fano factors greater than 1.
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1. Introduction

Neurons in primary visual cortex show a large increase in input conductance during
visual activation: in vivo recordings (see, e.g., [2]) show that the conductance can rise
to more than three times that of the resting state. Such high-conductance states lead
to faster neuronal dynamics than would be expected from the value of the passive
membrane time constant, as pointed out by Shelley et al. [9]. Here we use mean-#eld
theory to study the #ring statistics of a model network with balanced excitation and
inhibition and observe consistently such high-conductance states during stimulation.
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In our study, we characterize the irregularity of #ring by the Fano factor F , de#ned
as the ratio of the variance of the spike count to its mean. For temporally uncorrelated
spike trains (i.e., Poisson processes) F=1, while F ¿ 1 indicates a tendency for spike
clustering (bursts), and F ¡ 1 indicates more regular #ring with well-separated spikes.
Observed Fano factors for spike trains of primary cortical neurons during stimulation
are usually greater than 1 and vary over an entire order of magnitude (see, e.g., [6]).
We #nd the same dynamics in our model and are able to pinpoint some relevant
mechanisms: synaptic #ltering leads to spike clustering in states of high conductance
(thus F ¿ 1), and Fano factors depend sensitively on variations in both threshold and
synaptic time constants.

2. The model

We investigate a cortical network model that exhibits self-consistently balanced ex-
citation and inhibition. The model consists of two populations of neurons, an excita-
tory and an inhibitory one, with dilute random connectivity. The model neurons are
governed by leaky integrate-and-#re subthreshold dynamics with conductance-based
synapses. The membrane potential of neuron i in population a (a= 1; 2 for excitatory
and inhibitory, respectively) obeys

duia(t)
dt

= −gLuia(t) −
2∑

b=0

Nb∑

j=1

gijab(t)(u
i
a(t) − Vb): (1)

The #rst sum runs over all populations b, including the excitatory input population
representing input from the LGN and indexed by 0. The second sum runs over all
neurons j in population b of size Nb. The reversal potential Vb for the excitatory inputs
(b=0; 1) is higher than the #ring threshold, and the one for the inhibitory inputs (V2)
is below the reset value. The constant leakage conductance gL is the inverse of the
membrane time constant �m.
The time-dependent conductance gijab(t) from neuron j in population b to neuron i

in population a is taken as

gijab(t) =
g0ab√
Kb

∑

s

exp(−(t − tjs )=�b)�(t − tjs ) (2)

if there is a connection between those two neurons, otherwise zero. The sum runs
over all spikes s emitted by neuron j, �b is the synaptic time constant for the synapse
of type b (excitatory or inhibitory), and � is the Heaviside step function. Kb de-
notes the average number of presynaptic neurons in population b. We followed van
Vreeswijk and Sompolinsky [10] in scaling the conductances like 1=

√
Kb so that the

Guctuations in the total conductance are of order 1, independent of network size and
connectivity.
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3. Mean-�eld theory

We use mean-#eld theory to reduce the full network problem to two neurons: one
for each population, each receiving a Gaussian noisy input, the mean and covariance of
which depend self-consistently on the #ring statistics. This method is exact in the limit
of large populations with homogeneous connection probabilities [5]. Here we consider
stationary #ring only, for simplicity. Then the time-dependent conductance described
in (2) can be replaced by a realization of a Gaussian distributed random variable gab
with mean

〈gab〉 = g0ab
√
Kbrb (3)

and covariance

〈�gab(t) �gab(t′)〉 = (g0ab)
2(1 − Kb=Nb)Cb(t − t′): (4)

Here rb is the #ring rate of the presynaptic neuron b and Cb(t−t′) is the autocorrelation
function of its synaptically #ltered spike trains. A simple approximation for the auto-
correlation, analogous to that used by Amit and Brunel [1], Brunel [3], is to take the
#ring to be temporally uncorrelated. The term (1−Kb=Nb) is a correction for the #nite
connection concentration Kb=Nb and can be derived using the methods of [8].
The self-consistent balance condition is obtained by setting the net current in (1) to

zero when the membrane potential is at threshold �a and the conductances have their
mean values (3). In the large Kb-limit, it reads

2∑

b=0

g0ab
√
Kb rb(�a − Vb) = 0: (5)

The distribution of the variables gab can be calculated numerically using an iterative
approach [4]. One starts with a guess based on the balance equation (5) for the means
and the white-noise approximation for the covariances. One then generates a large
sample of speci#c realizations of gab(t), which are used to integrate (1) to generate a
large sample of spike trains. The latter can then be used to calculate new estimates of
the means and covariances by applying (3) and (4) and correcting the initial guesses,
moving them toward the new values. These steps are repeated until convergence.

4. Results

For the above-described model, we chose parameters corresponding to population
sizes of 16,000 excitatory neurons and 4000 inhibitory neurons, representing a small
patch of layer IV cat visual cortex. The neurons were assumed to be connected ran-
domly, with 10% connection probability between any two neurons. The #ring threshold
was #xed to 1, excitatory and inhibitory reversal potentials were set to +14=3 and −2=3,
respectively, and the membrane time constant �m = g−1

L was taken to be 10 ms. For
the results presented here, the integration time step was 0:5 ms.
Fig. 1 illustrates the importance of coloring the noise produced by intra-cortical

activity. The white noise approximation underestimates both the correlation times and
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Fig. 1. Autocorrelation functions for white noise (dotted line) and colored noise (solid line). The white noise
approximation underestimates the amount of temporal correlation in the neuronal #ring.
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Fig. 2. Fano factors for a range of reset values and synaptic time constants �s. Longer synaptic time constants
lead to increased clustering (bursts) of spikes, which is reGected in higher Fano factors.

the strength of the correlations in the neuron’s #ring: its autocorrelation (dotted line)
is both narrower and weaker than the one for colored noise (solid line).
Fano factors vary systematically with both the distance between reset and thresh-

old and the synaptic time constant �s. Non-zero synaptic time constants consistently
produced Fano factors greater than 1. Varying the reset between 0.8 and 0.94 and �s
between 2 and 6 ms resulted in values for F spanning an entire order of magnitude,
from slightly above 1 to about 10 (see Fig. 2).
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5. Discussion

In all our simulations, we observed that the membrane potential changed on a con-
siderably faster time scale than the membrane time constant �m =10 ms. This behavior
is observed only if conductance-based synapses are included in the integrate-and-#re
neuron model. To understand this phenomenon, it is convenient to follow Shelley et al.
[9] and rewrite the equation for the membrane potential dynamics (1) in the following
form:

dua(t)
dt

= −gT(t)(ua(t) − VS(t)); (6)

with the total conductance gT(t)= gL +
∑

b gab(t), and the e6ective reversal potential
VS(t)=gT(t)−1 ∑

b gab(t)Vb. The membrane potential ua(t) follows the eKective reversal
potential with the input dependent e6ective membrane time constant gT(t)−1. The
eKective reversal potential changes on the time scale of the synaptic time constants,
which are up to #ve times shorter than �m in our simulations. However, if the eKective
membrane time constant is shorter than the synaptic time constant (due to a large
enough total conductance), then the neuron will #re repeatedly during intervals when
VS(t) stays above threshold, as observed in our simulations.
In high-conductance states, the #ring statistics are strongly inGuenced by synaptic

dynamics (see Fig. 2). This is in contrast with strictly current-based models, where
the neuron reacts too slowly to reGect fast synaptic dynamics in its #ring. Here, the
synaptic #ltering of arriving spikes leads to temporal correlations in VS(t) and thus
to temporal correlations (in the form of spike clustering) in #ring. These correlations,
in turn, lead to further correlations in the input, producing still more strongly corre-
lated #ring. For this reason, in mean-#eld models with conductance-based dynamics,
coloring the noise is especially important in order to describe accurately the temporal
correlation in #ring statistics (see Fig. 1). We con#rmed these considerations by run-
ning simulations without synaptic #ltering (�s = 0). As expected, intra-cortical activity
became uncorrelated and the white noise approximation produced the same result as
coloring the noise correctly. In that case, Fano factors stayed close to 1 (see Fig. 2),
i.e, no tendency of spike clustering was observed.
Previous investigations showed that varying the distance between threshold and reset

in balanced integrate-and-#re networks has a strong eKect on the irregularity of the
#ring [7]. By including a conductance-based description of synapses, we were now
able to show a strong eKect of synaptic time constants on #ring statistics, even if they
are several times smaller than the passive membrane time constant: Synaptic #ltering
facilitates clustering of spikes in states of high conductance.
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