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Abstract

We present a complete mean field theory for a balanced state of a simple model of an orientation
hypercolumn, with a numerical procedure for solving the mean-field equations quantitatively. With
our treatment, one can determine self-consistently both the firing rates and the firing correlations,
without being restricted to specific neuron models. Here, we solve the mean-field equations numerically
for integrate-and-fire neurons. Several known key properties of orientation selective cortical neurons
emerge naturally from the description: Irregular firing with statistics close to — but not restricted to —
Poisson statistics; an almost linear gain function (firing frequency as a function of stimulus contrast) of
the neurons within the network; and a contrast-invariant tuning width of the neuronal firing. We find
that the irregularity in firing depends sensitively on synaptic strengths. If the Fano factor is considerably
larger (smaller) than 1 at some stimulus orientation, then it is also larger (resp. maller) than 1 for all
other stimulus orientations that elicit firing. We also find that the tuning of the noise in the input current
is the same as the tuning of the external input, while that for the mean input current depends on both
the external input and the intracortical connectivity.

Keywords: Mean-field theory, primary visual cortex, Fano factor, orientation tuning, contrast
invariance

Introduction

Neurons in primary visual cortex (V1) fire highly irregularly in response to visual stimuli, but
with reproducible firing rates. They do so despite the fact that they receive synaptic input from
thousands of other cortical neurons, which would lead to fluctuations in the input that were
small compared to the mean if excitatory and inhibitory inputs were not balanced (Softky &
Koch 1993). There has been some success in describing how such a balance can emerge self-
consistently from dynamics that are plausible for cortical networks. This was accomplished by
mean field-descriptions by van Vreeswijk and Sompolinsky, (1996, 1998), Amit and Brunel
(1997a, b) and Brunel (2000). However, their treatments do not permit a self-consistent
calculation of firing correlations. How to do this correctly was first shown for an all-inhibitory
network by Hertz et al. (2003) using the systematic formulation of mean field theory due to
Fulvi Mari (2000). In a recent paper (Lerchner et al. 2006) we presented a mean-field theory
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for a balanced network model that allowed us to quantify how the irregularity in firing and,
more generally, the firing correlations depend on intrinsic network properties such as synaptic
strengths. The analysis was applied to a statistically homogeneous network, representing a
cortical column composed of neurons with similar response characteristics. Here, we show
how to extend this treatment to networks with systematic structure, consisting of multiple
cortical columns. In particular, we model an orientation hypercolumn, composed of a set of
orientation columns.

An orientation column contains neurons that respond strongest to elongated visual stimuli
of a specific orientation, the preferred orientation (PO). Orientation selective neurons exhibit
a tuned response to other orientations, with sharply decreasing firing rates as the similarity
between PO and stimulus orientation decreases, until the firing is completely suppressed
for orientations outside the runing width of the neuron in question. An important feature of
orientation tuning is that the tuning width is independent of the stimulus contrast (Sclar &
Freeman 1982). It is not possible to capture this feature in a single-neuron description using
a Hubel and Wiesel feed-forward connectivity (Hubel & Wiesel 1962) from the lateral genic-
ulate nucleus (LGN); rather, cortical interactions are needed to achieve contrast-invariant
tuning (for review see Sompolinsky & Shapley 1997). Ben-Yishai et al. (1995) proposed
a model for which the tuning width is independent of the contrast, but a threshold-linear
relationship between input current and firing rate was an assumption of the model, and the
problem of the firing statistics was not addressed.

Here, we show how a contrast-invariant tuning width, an almost linear input—output rela-
tionship, and irregular firing can all be explained by a balanced hypercolumn model. With our
mean-field treatment, we can quantify how certain network properties like synaptic strengths,
tuning of the LGN input and of the intracortical connectivity influence the statistics and tun-
ing of the neuronal firing. Using the Fano factor F (the ratio of spike count variance and
mean spike count) to quantify the irregularity in firing, we find, e.g., that if F is significantly
greater than 1 the orientation tuning of F reaches a maximum at the PO. Fano factors greater
than 1 are normally observed for neurons in V1 (see, e.g., Gershon et al. 1998). We also
make quantitative predictions about the tuning of the input currents and their fluctuations.

The model

We model a single orientation hypercolumn in primary visual cortex, with a simplified net-
work architecture as indicated in Figure 1. The network comprises an excitatory population
and an inhibitory one, of sizes N; and N, respectively. Each population is divided into # sub-
populations (orientation columns), parameterized by an angle 6. The angles, spaced equally
between —7/2 and /2, indicate the preferred orientation (PO), to which the neurons in the
corresponding column respond strongest.

We use leaky integrate-and-fire neurons and interconnect them randomly with a connec-
tion probability P, (0 — 0’) that depends on the similarity of the POs. The probability that
a neuron with PO 0 (in population a) receives afferent input from a neuron with PO 6’ in
population b is taken as

&
N,
where K is the expected overall number of inputs from neurons in population b. We take the
ratio K,/ N, independent of b € {1, 2}, i.e., excitatory and inhibitory neurons interconnect
with the same probability in our model. The functional form of Equation 1 is motivated by
anatomical evidence that the connection probability between cortical neurons decreases as

Py —60)=—(1+ycos2( —06"), )



Mean field theory for a balanced hypercolumn model in V1 133

Columns: PO 6

leeXt(eq)

Stimululus _ o
Orientation .-~ __-~
8, ,..;',}f”’ SRERP!
= Ex.|
ST~ “

21

!
!
v
3
A
—

Figure 1. Structure of the model network. The hypercolumn consists of multiple orientation columns, each of
which has an excitatory and an inhibitory subpopulation and is assigned a preferred orientation (PO) 6. Columns
with more similar POs share on average more connections than more dissimilar ones (the density of connections is
indicated only between one column and the rest, for clarity). The network receives excitatory external input, weakly
tuned to the stimulus orientation y. The inset shows a sketch for the connectivity and connection strengths %,
within an orientation column.

their distance increases, and by the fact that orientation columns with similar PO tend to lie
closer together on the cortical surface than ones with dissimilar PO. We followed Ben-Yishai
et al. (1995) in choosing the simplest possible form that is periodic with period . We assume
that the degree of tuning, as measured by the parameter y € (0, 1), is the same for both the
inhibitory and the excitatory population.

Each nonzero synapse from a neuron in population b to one in population «a is taken to
have strength

a0,b0’ __ ﬂ
i =R @

where the parameters ¥, are of order 1. With this scaling, the fluctuations in the input
current are also of order 1, the same order as the distance between reset and threshold of
our model neurons (cf. van Vreeswijk & Sompolinsky 1996, 1998).

The subthreshold dynamics of the membrane potentials are given by

du? (z) _ u® (1)
dr T

where the membrane time constant 7 is chosen to be the same for all neurons. The excitatory
external input from the LGN, I$"(6), is assumed to be (weakly) tuned to the orientation 6,
of the stimulus due to a feed-forward connectivity from the LGN as in the classical model by
Hubel and Wiesel (1962). For simplicity, we take it to be constant in time and the same for
all neurons 7 within a column. The functional form we use is, similar to the tuning (Equation
1) of the intracortical connectivity,

+ IS (60) + I (), 3)

IS (00) = I (1 + € cos 2(0 — 6p)), (4)

a
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where € € (0, 1) is the degree of tuning, which is assumed to be the same for both populations.
(The condition € < 1 assures IS5 (0y) to be non-negative, i.e., excitatory, for all orientations).
A more detailed model for this external input current, including temporal fluctuations and

random connectivity, was briefly described in an overview article by Hertz et al. (2004).

The recurrent input I**"*°(z) from within the model cortex is given by
2 b0, Ny/n
, ,b0’ !
=20 2 5o, )
b=16'=8, j=1

where $7'(2) = )_, 8(t — £3,,,) is the spike train of neuron j with PO ¢’ in population b.

Mean field theory

In the following mean-field analysis of the orientation hypercolumn model, we consider
stationary firing only, for simplicity. However, the formulation is general enough to allow for
non-stationary rates. We presented such a time-dependent treatment for a balanced single-
column model elsewhere (Lerchner et al. 2006).

Mean-field description

We analyze the model for the case of large but extremely dilute connectivity (i.e., K, >
1, but K,/N, — 0), so that each neuron receives a high number of uncorrelated inputs.
According to the central limit theorem, the recurrent input currents given by Equation 5 can
therefore be described as Gaussian random processes. For stationary rates, the mean input
current is constant in time for any given neuron, although the level of the mean does vary
from neuron to neuron due to the random connectivity. In a general mean-field theory, one
must consider temporal correlations in these currents, i.e., not restrict the description of the
random processes to white noise.

To separate the mean of the currents from their fluctuations (‘noise’), it is convenient to

apply such separations to the description of both the synaptic weights ]?g‘bgl and the spike

ij
trains Sf‘g (¢) in Equation 5. For the weights we can write

af,b0" __ ab,bo’ af,bo’
Fi 7 =5 F8FTT (6)
where the bar means averaging over the index j, i.e., the neurons in the source population:
jﬁ@,b@’ . Z j'qg,bg, (7)
1y Nb/n pai 1]

Generally, we use the bar-notation for averaging over neuron populations, which will always
apply to the running index j in this work. To separate the spike trains into static and dynamic
components, we write

S (1) = rop + 6087 + 882 (1), ®)

where rpg = r? = 1/(Ny/n) }_,; %" is the average rate of the neurons in sub-population ¢’
of population . The difference between this average rate and the actual rate of neuron j
is denoted 81‘?9,. These two components are both static, describing time-averaged quanti-
ties. The temporal fluctuations of the spike train and their possible correlations in time are
captured by the third term on the right-hand side of Equation 8, § 5?0/ (2). Using the central
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limit theorem and methods like those in Fulvi Mari (2000) and Kree and Zippelius (1987)
we can then derive the following mean-field formulation of the recurrent current:

2
L) = Fu(VKedy + B(2)). ©)
b=1
with
on
Ay = % Z (1 4y cos2(0 —0))ryy (10)
0'=0,
1 On .1
Bi() =~ 3 T +ycos20 —0)(((}")")* %0 + a0 (1) (1)
0'=6,

where the values xo are drawn from a unit-variance normal distribution. We have dropped
the neuron index ¢ because this statistical description of the input current reduces the network
problem to single neuron problems — one for each column population, indexed by af. The
terms &¢ (2) stand for realizations of Gaussian random processes obeying

(&b (D)Epe (1)) = Cpor (t — 1). (12)

Here, Cpy (z — ¢') denotes the average autocorrelation function of the fluctuations in the spike
trains of neurons with PO 0’ in population b, given by

No/n

1 , )
Coo (¢ = 1) = 1 D68} @3S} (@)). (13)
=1

With the operation (-) we mean averaging over realizations of random processes, such as
stochastic spike trains. We will refer to such realizations as ‘trials’ since they represent (re-
sponses to) repeated presentations of the same stimulus in experimental settings.

Analyrical trearment

In general, it is not possible to solve the mean-field equations (9—11) for the neuronal input
current analytically. We can, however, derive approximate solutions for the average firing
rate for each orientation column, and thus for the average orientation tuning of neurons
in the network. On one hand, this will provide us with qualitative insight into fundamental
properties of the network, such as an approximate linear dependence of the firing rate on the
stimulus contrast, and an on-average contrast-invariant tuning width. On the other hand, this
will also provide us with a starting point for the iterative numerical procedure described in the
following section that will allow us to solve the mean-field equations for specific parameter
values.

Population firing rates. The input currents from the excitatory population and the inhibitory
population have mean values of order »/K; > 1 and /K, > 1, respectively (see Equation 9).
In addition, for the external input current (Equation 4) we take I = /K, I with K, >
1. If the neurons are to exhibit irregular firing at a low rate, as cortical neurons do, these
currents must nearly cancel and threshold crossings have to be caused by the fluctuations
in the currents, which are of order 1. For our orientation hypercolumn model, this ‘balance
condition’ implies that the average input currents in Equation 3 have to nearly cancel for
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each orientation column 6:

2
VEIZ (1 + € cos 20 — 00)) + Y Jar/ Koy = O(1), (14)

b=1

where A, is defined in Equation 10. Here, we have ignored the contribution of the leakage
current (the first term on the right-hand side of Equation 3), because it is small compared
to the input currents, and because the balance condition (Equation 14) holds only up to
corrections of O(1).

To solve these equations, we consider a continuum formulation for the weighted average
over all angles instead of the discrete formulation in Equation 10 and write

/2 do’

A, = 7(1 +ycos2(0 — 0))rpy. (15)

—m/2

Then Equation 14 becomes a pair of integral equations for .. In addition, we will ignore the
terms of O(1) in the balance condition by setting the right-hand side of Equation 14 to zero.
This simplification will lead to an approximate solution for the population firing rates that is
close to, but not exactly equal to, the correct solution determined later with the numerical
procedure.

In the broadly tuned case (all orientation columns respond with non-vanishing mean rates
to every stimulus orientation), these integral equations can be solved directly. To do so, we
perform a Fourier expansion centered at 0, of the mean rate within orientation column 6’
and write rpg = 1,0+ 152 08 2(0" —0y) + - - - . For both the input current and the connection
probabilities, we have already used such Fourier notations with the fewest possible terms to
retain a periodic function with period 7. Due to that choice, all higher Fourier components
for the mean currents vanish as well, and we get

2
\/E};xt(l +e€cos2(8 —6y)) + Z \/Ej’ab |:rb,0 + %yrb,Z cos2(0 — 90)] =0. (16)
b=1

By solving for each of the two Fourier components of the mean rates separately, we obtain

2
a1 N
a0 = — E D™ a7
b=1

26 G o g s "
re2 = =223 Al = e, (18)
b=1

2e
v
where the matrix J is composed of the elements %,, = %.,+/K;/Ko. Firing rates have to be
non-negative, so this solution can only be valid for € € (0, y/2]. However, such a broad tuning
is not normally observed for cortical neurons. Rather, orientation sensitive neurons tend to
be more ‘narrowly tuned’, with firing suppressed for stimulus orientations 0, that differ too
much from the neuron’s preferred orientation 6: r, = 0 for |0 — 09| > 6. for some tuning
width 6,. Within the parameter regime € € (y /2, y] we find such narrowly tuned solutions to
our model. The tuning width 6, turns out to be the same for both excitatory and inhibitory
neurons, which is a consequence of the population-independence of the tuning parameters
€ and y.
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To find approximate solutions for the narrowly tuned case, we use our insight from the
broadly tuned case and make the ansatz

v |0 152008 2(0" = 60) for |0" — 60| <67 (19)
o for [0 — 6| > 67,
where 6% = —1/2 cos™ (rs,0/75.2). As mentioned above, since we have assumed equal tuning

in (1), 6% is the same for both b. Thus, in Equation 15 the integration is restricted to |6’ — 6| <
.. Because 1y = 0 at 0’ — 0y = 6., we can rewrite the part of the ansatz for |§' — 6y| < 6, in
the form

Tpor = Tbyz(COS 2(9/ — 90) — COS 296) (20)

With this approach, we can indeed find (approximate) solutions for the tuning width and
the rates from the balance condition (Equation 14) with the right-hand side set to zero.
Analogous to the solution for the broadly tuned case Equation 16, now the total mean-input
current can be expressed as

(1Y = /Ko I (1 + € cos 2(0 — 6p)) (21)
2
+ Y VR Fas[r5.2£0(0e) + vro.2 f2(0c) cos 20 — 6o)], (22)
b=1
where
b dg’ ) 1.
fo@.) = (cos 20" — cos 20,) = —(sin 26, — 26, cos 26,) (23)
-9 T b4
b do’ , , 1 1.
f206.) = / cos 26’ (cos 20" — cos 260,) = — | 6, — — sin 46, ). (24)
o T b/ 4

(We have borrowed the notation from Ben-Yishai et al. (1995) who studied a different kind
of model that contains similar expressions; see also Hansel and Sompolinsky (1998)). Again,
the total current Equation 22 has to vanish for all orientation columns 8, so both the constant
and the cos 2(0 — 6p) terms vanish separately:

2
I+ Fure2fo(0) =0 (25)
b=1
~ 2 ~
eI +y Y Furs2fo®) =0. (26)
b=1
Dividing Equation 25 by 26 yields
0.
£0) _ € 2
fO (96) 14

which can be solved for 6,. Note that Equation 27, and thus the tuning width of the mean
rates, does not depend on the overall strength of the input, IS*' (i.e., the ‘contrast’ of the
stimulus). We find therefore contrast-invariant tuning of the mean rates as a result of corti-
cal interactions, in agreement with experimental findings (Sclar & Freeman 1982). Having
calculated 6., we can find the mean rates with help of Equation 25, via

1
ACH

Ya2 = —

2
Y e I, (28)
b=1
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and by using the equality r, 0 = —r,,2 cos 26,.

Input noise spectrum. The preceding calculations show how cortical interactions are respon-
sible for a narrowing of the tuning of the population firing rates, relative to the tuning of
the input to the network. We can proceed one step further in our analytical treatment of the
mean-field model and consider the tuning of the neuronal input noise spectrum. We can
write the dynamic noise in the input current as

2
prrOsEa) = Y% [
b=1

—/2

/2 do’
—(1+ycos2@ —0))Cey(t — 1), (29)
T

where we have used the continuum notation for the weighted averages. The correlation
function Cpy (z — t') has a piece proportional to r,(0)8(z — t’), which gives

. 2 2 2 /2 d9/ ,
lim (|8 %5 (w)|*) = Z ab/ — (1 4y cos2(0 — 0")ry (30)
w—> 00 =1 77_[/2 T
2
= Falre2fo0) + vre2 £2(6.) cos 2(6 — 6o)]. €29

o>
Il

1

To obtain Equation 31, we performed calculations analogous to the ones for solving the
integrals for the rate equations. Using Equations 27 and 28, we can then write the flat
contribution to the noise spectrum as
2 2
wlgr;oqalgg%w)}z) = —I™[1+ecos2(0 —00)] > J5 > (A e I (32)
b=1 c=1
This result states that the high-frequency limit of the neuronal input noise has the same
orientation tuning as the external input to the neuron.

For ¢ # ¢/, it is not possible to calculate analytically solutions to Equation 29 because the
correlation function Cpy (z — ') needs to be evaluated numerically. Similarly, the tuning of
the irregularity in the neuronal firing (as described by, e.g., the Fano factor) can only be
determined by solving the full mean-field model numerically.

Numerical procedure

We use an iterative approach that was originally developed for spin glass models (Eisfeller &
Opper 1992) to find self-consistent solutions of the firing statistics given by the rates r,, the
rate fluctuations (r}’e)z, and the correlations C,4(z — ') (see Equations 9-13). We start with
initial estimates of these quantities, which we obtain by using a white-noise approximation
and the analytical treatment described above. We then generate many realizations of Gaussian
synaptic currents using Equations 4 and 9, which we use to drive single integrate-and-
fire neurons. By collecting their firing statistics, we obtain improved estimates of the rates,
rate fluctuations and correlations. These are then used to repeat the cycle until the input
and output statistics are consistent. What follows is a more detailed description of how we
implemented this general approach for the orientation hypercolumn model.

In our calculations, we modeled the hypercolumn as an assembly of 30 orientation
columns, with their preferred orientations 6 equally spaced between —n/2 and 7 /2 (or
between —90 and 90 degrees, as in the figure captions). We used parameter values corre-
sponding to expected numbers of K; = 4000 excitatory inputs and K, = 1000 inhibitory
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inputs to each neuron. For simplicity, we chose a membrane time constant of T = 10 ms for
all neurons. The generic intra-cortical connection strengths %, in (2) were taken as

(,711 .712) _ <0-5 —2>_ (33)
P J 1 =2

The synaptic strengths of the afferent inputs from the LGN were taken to be stronger for
the excitatory neurons; specifically, in Equation 4, we chose Is*' = %If’“. To study the role
of the overall strength of synapses, we multiplied the generic synaptic weights (including the
strength of the external input) by a common scaling factor ¥.

To solve the mean-field equations for a specific set of network parameters, we proceed in
two steps. First, we calculate the average firing statistics for all sub-populations af, a € {1, 2},
6 €{1,...,30}. Then, we calculate the necessary statistics for investigating single-neuron
properties.

The first step requires obtaining the average firing statistics of all sub-populations a6 at all
stimulus orientations 6, and all stimulus contrasts I°* of interest. However, at this stage, we
only need to probe the network at one stimulus orientation (but at all contrasts) because of the
inherent symmetry in the network topology. A shift in stimulus orientation 6, corresponds to
a shift in the labeling of the orientation columns of equal magnitude and opposite direction.
In addition, we only need to run simulations for half of the columns 6 and mirror the results
for the other half.

To collect the average firing statistics from a sub-population af, we simulate many trials of
single neurons that are sampled from within that sub-population. This is achieved by gener-
ating Gaussian input currents according to the mean-field description given by Equation 9.
For the first iteration, we use the approximate mean rates rpy derived from our analytical
treatment (Equation 28), white noise approximations for the correlations (i.e., rpg8(z — ')

instead of Cpy (z — t')), and rbzg, in place of (r}’el)z. We effectively sample different neurons in
the sub-population af by drawing a different set of random numbers xp¢ for each trial. We
thus obtain a large number of spike trains that provide us with new ‘output’ firing statistics
for this specific sub-population af when driven with ‘input’ statistics of all sub-populations
b6’. Within the first iteration, this step is repeated for different choices of a and 6 until we
have obtained output statistics for all sub-populations af. For the next iteration, we up-
date all input statistics using a small step size of order 1/4/K, towards the output statistics,
followed by again collecting new output statistics via simulating many single neurons. As
already mentioned, these steps are repeated until input and output statistics agree. How
do we estimate the average rates, rate fluctuations and correlations from the spike trains?
The average rates are simply obtained via the average spike counts; the correlations from
calculating the T x T covariance matrix of the spike matrix, where 7T is the trial length in
time steps; and we estimate the average rate fluctuations from the long-tail offset of the spike
autocorrelation function, which stems from the trial-to-trial rate variations of the different
neurons. Specifically, we have for |t — /| — oo:

Coor(t — 1) — (¥ —re)” = (8r%%)%. (34)

Once this first part of the procedure converges, which usually takes tens of iterations,
one has obtained a set of self-consistent average firing statistics, describing the population
responses for a specific stimulus contrast. Equipped with these population statistics we can
then proceed to the second part to obtain the necessary information for calculating input
statistics and firing statistics for individual neurons.
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To collect statistics from a single neuron rather than from a population of neurons, we need
to examine the description of the ‘static part of the noise’ in the input current (Equation 11),
reflected by the Gaussian random numbers x4/, more closely. These random numbers reflect
the fact that the overall strength of the input current from the presynaptic sub-population
b0’ varies randomly from neuron to neuron for a given stimulus. That random offset of
the mean of the Gaussian input current has two sources: first, there is intrinsic variability
in the connectivity, i.e., the number of inputs from presynaptic population b6’ varies from
one neuron to the next. This contribution to the offset is stimulus-independent and neuron-
specific. Second, there is intrinsic variability in the presynaptic firing rates because the fraction
of presynaptic neurons that actually contributes to the input of a single neuron constitutes
a random sample drawn from a population of neurons with a distribution of rates. The
distribution of rates, and thus the contribution to the offset from this source, is potentially
stimulus-dependent. We can separate these two contributions formally by writing

((erl)z) : Xpor = Too Voo + ((57“?0,)2) : Zpys (35)

where ypg and 2,y are independently drawn from a unit-variance normal distribution, reflect-
ing the variability in connectivity and the variability in presynaptic firing rates, respectively.
Before we can collect statistics from a single neuron (defined by a set of connectivity factors
Yper) under various stimulus conditions, we need to determine how strong the zs-values
can fluctuate from one specific stimulus to another one. In other words, we need to know
the amount of correlations between the 2, -values for all stimuli under consideration. This
correlation structure can be determined self-consistently, with an iterative approach analo-
gous to the procedure for calculating the temporal correlations in the spike trains: Starting
with an initial guess for the correlation structure between the rate variations (87}’9')2 under
all stimulus conditions, we generate correlated z¢-values for many single neurons for all
of these stimuli. We then simulate these neurons under all conditions and collect statistics
of the resulting rate fluctuations and their correlations. These correlations are then used in
the next iteration for generating new sets of correlated zp¢-values, followed by simulations
and data collection. The steps are repeated until the input and output-correlation structures
agree. This algorithm converges within a few steps (less than 10 in all our simulations) in
its naive form, where the output statistics of the previous iteration are directly used as the
input statistics for next one. Moreover, we found the algorithm to be robust with respect to
the initial guess. Both extremes, starting from perfect correlations (identical zpy-values for
all stimuli) and from no correlations (independently drawn z¢-values for each stimulus),
resulted in convergence to the same structures within a few steps.

Results

We concentrate first on results describing response characteristics of neurons obtained from
their firing statistics. These results can be compared directly with known properties of ori-
entation selective neurons in V1 like contrast-invariant tuning or the variability in spike
counts for repeated presentations of the same stimulus. We then describe results pertaining
to properties of the neuronal input currents (and their orientation tunings) for the present
hypercolumn model.

Tuning of the neuronal firing

A prominent feature of orientation selective neurons in primary visual cortex is an invari-
ance of the tuning width with respect to stimulus contrast. From our approximate analytical
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Figure 2. Orientation tuning of the firing rates. Firing rates as a function of stimulus orientation at three different
contrasts }g"t = 0.5, 1, and 2 (lower, middle, and upper curve in each panel) for randomly chosen single neurons,
denoted A, B and C, and for an average over 100 neurons (left panels). The tuning width is invariant with respect
to contrast for both the average tuning curves and single neuron tuning curves, despite the higher irregularity in the
shapes for single neurons. Stronger synaptic connections in the network result in more irregular tuning curves for
single neurons: Upper row: Moderately strong synapses (§ = 0.7). Lower row: Strong synapses (F; = 1.2).

treatment of the present model, we expect such a contrast invariance on average over neu-
rons within an orientation column (see Equation 27). Our numerical results confirm this
prediction. Figure 2 shows examples of tuning curves collected from neurons with preferred
orientation 6 = 0 at three different contrasts Zf"t = 0.5, 1, and 2 (the lower, middle, and
upper curve within each panel, respectively) and two different overall synaptic strengths
(¥, = 0.7 and 1.2; upper row and lower row, respectively). The parameter values for the
feedforward tuning from the LGN and for the tuning of the intra-cortical connectivity were
€ = 0.5 and y = 0.625, respectively, resulting in a predicted tuning width of 43.2 degrees,
according to the analytical approximation (Equation 27). The average tuning curves over 100
single neurons (left-most panels in Figure 2) are smooth and exhibit contrast-invariance. The
shapes of the tuning curves are well described by threshold-cosine functions, as predicted
by our analytical approximation, except for low rates close to the critical angle 6., where we
observe a rounded fall-off to zero with non-zero rates for angles just outside the analytically
predicted tuning width. Similarly, we observe an almost linear dependence of the firing rate
on the stimulus contrast (see Equation 28) except for low rates. In the upper row of Figure 2,
doubling the contrast results in approximately doubling the firing rate, while in the lower row
of Figure 2, where in this example the overall rates are low even at the preferred orientation,
the relationship is not exactly linear. (Note the different scalings of the y-axes in the upper
versus the lower panels.) Spike counts in our figures belong to trials of 100 ms duration.
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Figure 2 also shows examples of single-neuron tuning curves, providing a more direct
comparison of the model with experimental data. While the average tuning is both smooth
and symmetric, the tuning curves of single neurons show some distortions and asymmetries.
Part of this irregularity stems from the inherent variability in connectivity. The connectivity
pattern for a specific neuron is defined by a set of 60 random numbers yyo: b € {1,2}, 6" €
{1, ..., 30}, which underlies the idiosyncratic overall shapes, magnitudes, and asymmetries
seen in the tuning curves of the three neurons A4, B, and C in Figure 2. However, the increased
overall irregularity for stronger synapses (7, = 1.2 in the lower panel of Figure 2 as compared
to ¥, = 0.7 in the upper panel) is a signature of another contribution: the inherent variability
in the firing rates. The latter depends on — and increases with — the overall strength of the
synapses, as we will show below in more detail. It can also be seen in Figure 2, that, despite
the somewhat irregular shapes, the contrast-invariance of the tuning width is a property not
only of the average firing rate in our model, but also of individual neurons.

We characterize the irregularity in the neuronal firing by the Fano factor F. For a Poisson
process F = 1, while F # 1 implies temporal correlations in the spike times: F > 1 indicates
a tendency towards ‘bursty’ spiking behavior, and F < 1 indicates more regular spike trains
with narrower interspike interval (ISI) distributions. Figure 3 shows the tuning of the Fano
factor for three different overall connection strengths ¥ = 0.4, 0.7, and 1.2. As in Figure 2,
the results for (the same) three individual neurons are shown, as well as an averaged tuning
curve. It can be seen that the Fano factor depends systematically on the overall strength of
connectivity: stronger synapses lead to more irregular spike counts.

The averaged tuning curves possess a further characteristic that we observed consistently
in our simulations performed with various sets of parameters: if Fano factors are considerably
higher (lower) than 1 at the preferred orientation, then they are so for all stimulus orientations.
In addition, the Fano factors are then maximal (minimal) at the PO, declining (rising) closer
to 1 as the difference between the stimulus orientation and the preferred orientation increases.

Average (n = 100) Neuron A Neuron B Neuron C

Fano Factor

0 0 0 o gl
-40 -20 0 20 40 -40 -20 0 20 40 -40 -20 0 20 40 -40 -20 0 20 40
Stim. orientation 8, Stim. orientation B0 Stim. crientation 8, Stim. orientation 9,

Figure 3. Tuning of the Fano factors. Neurons 4, B and C are the same as in Figure 2. Fano factors depend
sensitively on the overall synaptic strength, scaled by the parameter ¥ . Weak synapses (f; = 0.5, blue) result in Fano
factors below 1, moderately strong synapses (¥ = 0.7, green) result in approximate Poisson statistics, i.e., F ~ 1,
while strong synapses result in Fano factors exceeding 1 (¥ = 1.2, red). The Fano factor-sensitivity on synaptic
strength is strongest at the preferred orientation, while stimuli close to the tuning width elicit firing statistics closer
to Poisson. Also shown in this figure is a comparison between instantaneous synaptic dynamics (solid lines) and
synaptic filtering with a time constant of 7; = 4 ms (dash—dot lines). Synaptic filtering causes somewhat higher
Fano factors, which is more pronounced for stronger synapses, but the qualitative behavior is already captured by
instantaneous synapses in this model.
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However, this property does not hold exactly when Fano factors are close to 1, as the curves
in Figure 2 for J;, = 0.7 show. Nevertheless, if the Fano factor is close to 1 at the PO, then
its tuning curve is nearly flat.

For simplicity, we formulated our model with instantaneous synaptic currents, rather than
including synaptic dynamics with more realistic temporal shapes of the postsynaptic cur-
rents. We tested, however, whether such a simplification is justified for our model or whether
this approach obscures important parts of the dynamics that might control the amount of
irregularity in the spike trains. It is straightforward to account for synaptic dynamics in the
mean-field formulation by replacing the correlation function of the spike trains (Equation 13)
with the correlation function of the synaptically filtered spike trains. Our approach of explic-
itly simulating neuronal and synaptic dynamics for solving the the mean-field equations
numerically makes it especially simple to generalize the model in this direction. We tested
our model with synaptic filter kernels K(z) of the form

K@) = v (e7/m —e7t/m) (36)
T2— T

for various values of synaptic time constants t; and t;, but observed only a weak depen-
dence of the firing characteristics on time constants up to 16 ms. We show an example in
Figure 3, where we overlayed simulation results for 7; = 0 and 7, = t;, = 4 ms (dash-dot
lines), corresponding to a postsynaptic current that decays exponentially with a time con-
stant of 4 ms. Synaptic filtering increases the tendency of ‘burstiness’ (positive temporal
correlation between spikes for short time lags), provided that such burstiness is present even
without synaptic filtering. Thus, synaptic filtering increases Fano factors bigger than 1 as
compared to instantaneous dynamics, but the increases were moderate in all cases we in-
vestigated and did not change the general qualitative temporal firing characteristics in the
present model.

As already mentioned, Fano factors that deviate from 1 indicate temporal correlations
in the spike trains. The nature of these correlations and their orientation dependence is
summarized in Figure 4 for a case with F < 1 (¥ = 0.5; upper panels) and a case with
F > 1 (§ = 1.3; lower panels) for both excitatory neurons (left panels) and inhibitory ones
(right panels). For % = 0.5, there is a negative dip for small time differences, indicating
a relative refractoriness to emitting a spike immediately after a previous one. For stronger
synapses (§, = 1.3) there is no such refractoriness. On the contrary, for strong synapses, we
observe positive correlations for small time differences. For both strong and weak synapses,
the correlations are strongest at the preferred orientation and decrease monotonically for less
optimal stimulus orientations. The autocorrelations for excitatory and inhibitory neurons
show the same qualitative features, differing only in their overall size.

In Figure 5, we illustrate how the firing statistics depend on € and y, which determine
how strongly the input current and the intracortical connectivity are tuned (see Equations 4
and 1, respectively). Fano factor tuning curves (left panels) and firing rate tuning curves
(right panels) for three different combinations of € and y are shown, parameterized by %,
the scaling factor for the synaptic strengths.

As shown analytically above, the ratio €/y determines the tuning width of the neuronal
firing (see Equation 27). This is reflected by the identical firing tuning widths in the first and
second row of Figure 5, for both of which €/y = 0.8, resulting in a tuning width of 6, = 43.2
degrees. The third row of Figure 5 shows results for the same external input tuning € = 0.5
as in the first row, but for a different ratio €/y = 0.6. This results in 6, = 67.7 degrees and
an accordingly broader tuning curve of the firing, plotted in the right panel of the third row.
The curves for the Fano factor tuning in the left panels of Figure 5 suggest that the tuning of
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Figure 4. Autocorrelation tuning. Upper panels: Weak synapses with % = 0.5. There is a dip to negative values for
small time differences. It decreases in strength at greater time differences. The dip indicates a relative refractoriness
to emitting a spike immediately after a previous one, resulting in Fano factors F < 1. Lower panels: Strong synapses
with J = 1.3. There is a hill of positive correlations for short intervals, falling off to zero for increasing time
differences. The hill indicates a tendency toward clustered spikes, resulting in F > 1. The autocorrelations for
excitatory neurons (left panels) and inhibitory neurons (right panels) show the same qualitative features, differing
only in overall size.

the firing irregularity is — just as the tuning of the firing itself — only dependent on the ratio
€/y. (We consistently found this dependence in all our simulations.)

Tuning of the neuronal input current

Our analytical treatment of the balanced hypercolumn model reveals that the high-frequency
neuronal input noise power has the same tuning as the external input. In Figure 6, we show
simulation results of the noise tuning for the same three combinations of € and y as in
Figure 5. For the panels in the first and the second row of Figure 6, ¢/y = 0.8, but € = 0.5
and € = 0.25 in the upper and middle rows, respectively. While the tuning of the neuronal
firing is identical for these two cases, the noise tuning is weaker in the middle row, reflecting
the weaker tuning of the external input (left panels). The results presented in the third row
of Figure 6 show a case with a broader tuning of the response, resulting from a different
ratio between € and y, but with the same € = 0.5 as in the first row. For these two cases, the
tunings on the input side — concerning external input and dynamic noise — are practically
indistinguishable, while the tunings of the firing differ. Thus, the noise tuning is determined
by €, unlike the response tuning, which depends on the ratio €/y.
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Figure 5. Dependence of the Fano factors on tuning parameters € and y at three different values of relative synaptic
strengths % . Fano factors and mean spike counts are shown for three different combinations of ¢ (external input
tuning) and y (connectivity tuning). The tuning of both the Fano factors and the mean counts are controlled by
the ratio €/y.

The balanced state for the orientation hypercolumn implies that the mean input currents
(external and recurrent currents), which are each of O(VK,) with K, > 1, cancel up to
corrections of O(1). It is not straightforward to calculate the tuning of the resulting net mean
current, since the balance condition (Equation 14) does not allow inferences about its size.
However, the solutions obtained by the numerical algorithm provide direct access to the net
mean currents, which we depict in Figure 7 for the same combinations of € and y as for the
noise tuning in Figure 6. It is clear from Figure 7 that the tuning of the mean input, unlike
the dynamic input noise tuning, is not determined by the tuning of of the external input.
Rather, it seems to be the ratio €/y that primarily determines it, as suggested by the almost
identical tunings for the two cases with identical €/y. Since the tuning of the external input
and that of the noise variance are the same, the left panels of Figure 7 also show how the
tuning of the noise compares to that of the mean input current for the three combinations
of € and y.

Discussion

In this work, we presented a complete mean field theory for a balanced network with struc-
tural inhomogeneity, together with an algorithm that allows one to find the self-consistent
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Figure 6. Dependence of the noise on tuning factors € and y. External input and dynamic input noise versus tuning
of the neuronal firing for the same three combinations of € and y as in Figure 5. It can be seen that the tuning of
the noise is determined by €, while the tuning of the firing rate is determined by the ratio €/y.

solutions for the mean rates, their cell-to-cell fluctuations, and the correlation functions.
We applied the theory to a simple model of an orientation hypercolumn in primary visual
cortex, comprised of integrate-and-fire neurons. Despite the relative simplicity of the model,
the resulting dynamics capture several key properties known about responses of orientation
selective cortical neurons iz vivo. Within this description, we can pinpoint how the resulting
neuronal dynamics are controlled by parameters of the model, and quantify their influence.

Specifically, we find contrast-invariant tuning of the neuronal firing not only for the pop-
ulation rates, as derived from the analytical treatment, but also for single, randomly chosen
neurons. Moreover, the firing rate increases linearly with the strength of the input current
(i.e., the contrast of the stimulus). Note that these are network effects originating in the dy-
namical balance between excitation and inhibition, not properties of isolated neurons. This
is in agreement with experimental results, where such a linear input—output relationship can
only be found for cortical neurons iz vivo, but not for single neurons iz vitro.

Another network effect that emerges naturally from the self-consistent dynamic balance, in
combination with the static randomness in the connectivity, is the irregularity in the neuronal
firing. We are able to describe it quantitatively through the correlation functions, which are
determined self-consistently in the theory. Such firing-statistical issues cannot be addressed
in ‘rate models’, which simply assume a particular relation between average input current
or membrane potential and firing rate. While it is possible to calculate the firing variability
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Figure 7. Dependence of the mean input current on tuning factors € and y. External input tuning and mean-input
tuning versus tuning of the response for the same three combinations of € and y as in Figures 5 and 6. The tuning
of the mean input is not determined by ¢; rather, as for the spike count tuning shown in the right panels, the ratio
€/y plays an important role.

in the mean-field treatment of (Brunel 2000), it cannot be done in a self-consistent manner
because of the assumption that the neuronal input is uncorrelated in time (white noise).
Here, we color the noise self-consistently. Poisson-like statistics (Fano factor F = 1) are only
one possibility within a continuum of firing statistics that depend sensitively on the strengths
of the synapses: stronger synapses generally lead to higher Fano factors. The underlying
mechanism can be summarized as follows: Stronger synapses increase the probability of a
spike shortly after reset, which leads to a higher tendency of spikes occurring in ‘clusters’,
thereby increasing the spike count variance. A detailed account of this mechanism, involving
the dependence of the membrane potential distribution on the synaptic strength can be found
in (Lerchner et al. 2006), where the analysis was carried out for a single cortical column.

We have concentrated on instantaneous synaptic currents in the present model because
the dependence of firing irregularity on synaptic filtering is weak, as shown in Figure 3. The
situation becomes quite different if conductance-based synapses are considered rather than
current-based ones, where the emergence of high-conductance states makes the neuronal
dynamics very sensitive to even short synaptic time constants, as discussed in (Lerchner
et al. 2004).

The mean field theory applied to the present model allows us to study tuning properties of
both the neuronal firing and the neuronal input and their dependence on network parameters.
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Concerning the irregularity of firing, our results suggest that the Fano factor F tend to stay
either well above 1, right around 1, or well below 1 for all orientations. That is, one never
finds a neuron with strongly super-Poissonian firing at one stimulus orientation and strongly
sub-poissonian firing at another. This appears to be true for individual neurons as well as for
population averages. Moreover, the modulation strength of F over angles increases, relative
to the almost untuned case of F ~ 1, with increasing (resp. decreasing) overall values of F,
reaching a maximum (resp. a minimum) at the preferred orientation.

Concerning the tuning of the input currents, we find analytically that the high-frequency
input noise power has the same tuning as the external input to the neuron (which in turn is
determined by a Hubel-Wiesel feed-forward connectivity from the LGN). In our numerical
calculations, we observe a close fit between the tuning of the overall input noise and the one of
the external input. This suggests that the tuning of the external input may be a good predictor
for the noise tuning, and vice versa. In contrast, we find that the tuning of the mean input
current does not reflect the one of the external input, but is predominantly determined by
the ratio €/y of the modulation strengths of the external input and the cortical interactions.

Anderson et al. (2000) demonstrated how the right amount of irregularity (‘noise’) in
the membrane potentials of cortical neurons can contribute to a contrast-invariant tuning
width, provided that the membrane potential is in itself contrast-invariant and that there is a
threshold-linear relationship between (noiseless) firing rate and membrane potential. In the
present work, none of these important properties need to enter the model as assumptions.
On the contrary, they emerge as consequences from the model and are all explained within
this single framework, as discussed above.

Some of our results (the existence of a stable, asynchronous low-rate state, contrast-
invariant orientation tuning, and the inverse relation between the sharpness of orientation
tuning and intracortical tuning strength y) were obtained previously by Wolf et al. (2001) in
an extension of van Vreeswijk and Sompolinsky’s stochastic binary model (van Vreeswijk &
Sompolinsky 1996, 1998) to a hypercolumn, but the treatment of a spiking neuron model
and all the results for correlations of both input and output are new here. Also new is that we
go beyond population statistics and make quantitative predictions about input and output
characteristics of individual neurons, which can be tested directly.

Firing irregularity of neurons in primary visual cortex has been investigated experimen-
tally for a long time (see, e.g., Heggelund & Albus 1978; Dean 1981; Tolhurst et al. 1981;
Snowden et al. 1992; Gershon et al. 1998). Well studied is also the dependence of firing rate
on the stimulus orientation (Sclar & Freeman 1982; Skottun et al. 1987), but we are not
aware of studies investigating the dependence of firing irregularity on the orientation. Our
predictions concerning the tuning of the input currents (for both mean and noise) can be
tested experimentally by systematically changing € (the external input tuning strength) via
changing the spatial modulation of the stimulus and then observing how the the mean and
noise tunings are affected separately.

The mean field theory presented here, in combination with the numerical procedure for
finding the self-consistent solutions, can be applied to models that capture more of the
known neuronal and cortical physiology. For example, it is straightforward to incorporate
conductance-based synapses into the hypercolumn model, as has already been done for a
single-column model (see Hertz et al. 2004; Lerchner et al. 2006). It is also straightforward
to use different, possibly more realistic neuron models — even several kinds of neuron models
within one given network model, since the neuronal dynamics are explicitly simulated within
the numerical procedure for collecting the firing statistics. Here, we have shown how the
theory can be applied to networks with non-homogenous architecture, using a simple one-
dimensional model for a cortical hypercolumn. This model can be thought of as describing
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an annulus around a pinwheel center. Using the same general techniques as introduced here,
the model can be extended to incorporate a two-dimensional geometry to describe an entire
pinwheel. Similarly, as we have shown for orientation selectivity, it is possible to include
other coding features, such as spatial phase, for example. Thus, the power of this mean-field
approach lies in its generality, which makes it possible to quantify dynamics of balanced,
highly connected networks.
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