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We study the spike statistics of neurons in a network with dynamically
balanced excitation and inhibition. Our model, intended to represent a
generic cortical column, comprises randomly connected excitatory and
inhibitory leaky integrate-and-fire neurons, driven by excitatory input
from an external population. The high connectivity permits a mean field
description in which synaptic currents can be treated as gaussian noise,
the mean and autocorrelation function of which are calculated self-
consistently from the firing statistics of single model neurons. Within
this description, a wide range of Fano factors is possible. We find that
the irregularity of spike trains is controlled mainly by the strength of the
synapses relative to the difference between the firing threshold and the
postfiring reset level of the membrane potential. For moderately strong
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synapses, we find spike statistics very similar to those observed in pri-
mary visual cortex.

1 Introduction

The observed irregularity and relatively low rates of the firing of neocorti-
cal neurons suggest strongly that excitatory and inhibitory input are nearly
balanced. Such a balance, in turn, finds an attractive explanation in the
approximate, heuristic mean field description of Amit and Brunel (1997a,
1997b) and Brunel (2000). In this treatment, the balance does not have to
be put in “by hand”; rather, it emerges self-consistently from the network
dynamics. This success encourages us to study firing correlations and irreg-
ularity in models like theirs in greater detail. In particular, we would like
to quantify the irregularity and identify the parameters of the network that
control it. This is important because one cannot extract the signal in neu-
ronal spike trains correctly without a good characterization of the noise.
Indeed, an incorrect noise model can lead to spurious conclusions about
the nature of the signal, as demonstrated by Oram, Wiener, Lestienne, and
Richmond (1999).

Response variability has been studied for a long time in primary vi-
sual cortex (Heggelund & Albus, 1978; Dean, 1981; Tolhurst, Movshon,
& Thompson, 1981; Tolhurst, Movshon, & Dean, 1983; Vogels, Spileers, &
Orban, 1989; Snowden, Treue, & Andersen, 1992; Gur, Beylin, & Snodderly,
1997; Shadlen & Newsome, 1998; Gershon, Wiener, Latham, & Richmond,
1998; Kara, Reinagel, & Reid, 2000; Buracas, Zador, DeWeese, & Albright,
1998) and elsewhere (Lee, Port, Kruse, & Georgopoulos, 1998; Gershon
et al., 1998; Kara et al., 2000; DeWeese, Wehr, & Zador, 2003). Most, though
not all, of these studies found rather strong irregularity. As an example, we
consider the findings of Gershon et al. (1998). In their experiments, mon-
keys were presented with flashed, stationary visual patterns for several
hundred ms. Repeated presentations of a given stimulus evoked varying
numbers of spikes in different trials, though the mean number (as well as
the peristimulus time histogram) varied systematically from stimulus to
stimulus. The statistical objects of interest to us here are the distributions
of single-trial spike counts for given fixed stimuli. Often one compares the
data with a Poisson model of the spike trains, for which the count distri-
bution P(n) = m"e™™ /n!. This distribution has the property that its mean
(n) = m is equal to its variance (§n%) = ((n — (n))*). However, the experi-
mental finding was that the measured distributions were quite generally
wider than this: (§n%) > m. Furthermore, when data were collected for many
stimuli, the variance of the spike count was fit well by a power law func-
tion of the mean count: (§n%) o« m¥, with y typically in the range 1.2 to
1.4, broadly consistent with the results of many of the other studies cited
above.
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Some of this observed variance could have a simple explanation: the
condition of the animal might have changed between trials, so the intrinsic
rate at which the neuron fires might differ from trial to trial, as suggested
by Tolhurst et al. (1981). But it is far from clear whether all the variance can
be accounted for in this way. Moreover, there is no special reason to take a
Poisson process as the null hypothesis, so we do not even really know how
much variance we are trying to explain.

In this article, we try to address the question of how much variability, or
more generally, what firing correlations can be expected as a consequence of
the intrinsic dynamics of cortical neuronal networks. The theories of Amit
and Brunel (1997a, 1997b) and of van Vreeswijk and Sompolinsky (1996,
1998) do not permit a consistent study of firing correlations. The Amit-
Brunel equations ignore firing correlations and variations in firing rate
within neuronal populations; thus, they do not constitute a complete mean
field theory. Although one can calculate the variability of the firing (Brunel,
2000), the calculation is not self-consistent. Van Vreeswijk and Sompolin-
sky use a binary neuron model with stochastic dynamics, which makes it
difficult, if not impossible, to study temporal correlations that might occur
in networks of spiking neurons. Therefore, in this article, we do a complete
mean field theory for a network of leaky integrate-and-fire neurons, in-
cluding, as self-consistently-determined order parameters, both firing rates
and autocorrelation functions. This kind of theory is needed whenever the
connections in the network are random. A general formalism for doing this
was introduced by Fulvi Mari (2000) and used for an all-excitatory network;
here we employ it for a network with both excitatory and inhibitory neu-
rons. A preliminary study of this approach for an all-inhibitory network
was presented previously (Hertz, Richmond, & Nilsen, 2003).

2 Model and Methods

The model network, indicated schematically in Figure 1, consists of N; exci-
tatory neurons and N, inhibitory ones. In this work, we use leaky integrate-
and-fire neurons, though the methods could be carried over directly to net-
works of other kinds of model neurons, such as conductance-based ones.
They are randomly interconnected by synapses, both within and between
populations, with the mean number of connections from population b to
population a equal to K;, independent of a. In specific calculations, we have
used K; from 400 to 6400, and we take K, = K7 /4.

We scale the synaptic strengths in the way van Vreeswijk and Som-
polinsky (1996, 1998) did, with each nonzero synapse from population b to
pobpulation a having the value J,/+/Kjp. Thus, the mean value of a synapse
] g is

(2.1)
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Figure 1: Structure of the Model Network.

and its variance is
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(672) _(1 Nb)Nb. (22)

The parameters ], are taken to be of order 1, so the net input current to
a neuron from the K; neurons in population b connected to it is of order
/Kp. With this scaling, the fluctuations in this current are of order 1.

Similarly, we assume that the external input to any neuron is the sum
of Ko > 1 contributions from individual neurons (in the lateral geniculate
nucleus, if we are thinking about modeling V1), each of order 1/4/Kj, so
the net input is of order /Kp. In our calculations, we have used Ko = Kj.

We point out that this scaling is just for convenience in thinking about the
problem. In the balanced asynchronous firing state, the large excitatory and
inhibitory input currents nearly cancel, leaving a net input current of order
1. Thus, for this choice, both the net mean current and its typical fluctuations
are of order 1, which is convenient for analysis. The physiologically relevant
assumptions are only that excitatory and inhibitory inputs are separately
much larger than their sum and that the latter is of the same order as its
fluctuations.
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Our synapses are not modeled as conductances. Our synaptic strength
simply defines the amplitude of the postsynaptic current pulse produced
by a single presynaptic spike.

The model is formally specified by the subthreshold equations of motion

for the membrane potentials uf (a =1,2,i =1,..., N),
du? I/l? 2 & ab cb
:_74-2 E ESHOR 2.3
dt T b:ojzljl] i® 23)

together with the condition that when u{ reaches the threshold 6,, the
neuron spikes and the membrane potential is reset to a value u;. The in-
dices a or b =0, 1, or 2 label populations: b = 0 refers to the (excitatory)
population providing the external input, b = 1 refers to the excitatory pop-
ulation, and b = 2 to the inhibitory population. In equation 2.3, t is the
membrane time constant (taken the same for all neurons, for convenience),
and S]b» (t) = X, 8(t — tj,) is the spike train of neuron j in population b. We
have ignored transmission delays, and we take the reset levels u} equal to
the rest value of the membrane potential, 0. In our calculations, the thresh-
olds are given a gaussian distribution with a standard deviation equal to
10% of the mean. We fix the mean threshold 6, = 1. Analogous variability
in other single-cell parameters (such as membrane time constants) could
also be included in the model, but for simplicity, we do not do so here.

We assume that the neurons in the external input population (b = 0) fire
as independent Poisson processes. However, the neurons in the network
(b =1, 2) are not in general Poissonian,; it is their correlations that we want
to find in this investigation.

2.1 Mean Field Theory: Stationary States. We describe the mean field
theory and its computational implementation first for the case of stationary
rates. We will assume N; > K, > 1 (large but extremely dilute connectiv-
ity). Any mean field theory has to start with an ansatz for the structure of
its order parameters. In words, our ansatz is that neurons fire noisily: thus,
they are characterized by their rates (which can vary across a neuronal pop-
ulation) and autocorrelation functions. We assume the latter to contain a
delta function spike at equal times of strength equal to the rate (because
they are spiking neurons) plus a continuous part at unequal times. In our
dilute limit, the theory is simplified by the fact that there are no cross-
correlations between neurons. (Therefore, we generally drop the “auto”
from “autocorrelation.”)

Under these assumptions, each of the three terms in the sum on b on
the right-hand side of equation 2.3 can be treated as a gaussian random
function with time-independent mean. (This can be proved formally using
the generating-functional formalism of Fulvi Mari, 2000; it is a consequence
of the fact that Kj > 1 and the independence of the ]i?b. Furthermore,
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experiments (Destexhe, Rudolph, & Paré, 2003) show that a gaussian ap-
proximation is very good for real synaptic noise.) We write the contribution
from population b as

Np

Ii”b(t):Z(] + 8] [rs + 817 +8S(1)], (2.4)

=1

where 1y, is the mean rate in population b, Sr? is the deviation of the rate of
neurons j from its population mean, and 55?(1?) = S?(t) — r]h- describes the
fluctuations of the activity of neuron j from its temporal mean r;’ .

The mean (over both time and neurons in the receiving population a)

comes from the product of the first terms:

(122()) = /Ko J ot 2.5)

By (---) we mean a time average or, equivalently, an average over “trials”
(independent repetitions of the Poisson processes defining the input popu-
lation neurons). We will generally use a bar over a quantity to indicate an
average over the neuronal population or over the distribution of the ]
(Note that these two kinds of averages are very different things.)

The fluctuations around this mean are of two kinds. One is the neuron-to-
neuron rate variations in population a, obtained from the time-independent
terms in equation 2.4:

8(I%) = Z th 50 +Za]“b b (2.6)

Using equations 2.1 and 2.2, their variance reduces, for K; < Nj, to

(8(122))* = ”bz =120 2.7)

The second kind is the temporal fluctuations for single neurons, obtained
from the terms in equation 2.4 involving 8 S? (). Their population-averaged
correlation function is proportional to the average correlation function in
population b:

- 2
(817 (tys I8t (t) ﬁbz (885188} () = T 3Cult — ). (2.8)
]
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Thus, we can write this contribution to the input current for a single
neuron as

I8 = Jab [mrb +/ () +sfb<t>], 2.9)
where x#? is a unit-variance gaussian random number and

(E(H)E () = Co(t — ). (2.10)

The x? are time and trial independent, while the noise £%(t) varies both in
time within a trial and randomly from trial to trial. Note that for this model,
a correct and complete mean field theory has to include rate variations,
through (r]b)z, and the temporal firing correlations, given by C,(t — t'), as
well as the mean rates. In our treatment here, we will assume that the
neurons in the external input population fire like Poisson processes, so
1#9(t) is white noise. However, the neurons providing the source of the
recurrent currents are not generally Poissonian, so their correlations appear
in the statistics of the noise term.

The self-consistency equations of mean field theory are simply the condi-

tions that the average output statistics of the neurons, 7,, (r;’ 2and C,(t — t),
are the same as those used to generate the inputs for single neurons us-
ing integrate-and-fire neurons with synaptic input currents given by equa-
tion 2.9.

In an equivalent formulation, the second term in equation 2.9 can be
omitted if the noise terms £ (t) have correlations equal to the unsubtracted
correlation function,

1
Cltt —t) = N PEHOEH) (2.11)
j

For |t —t'| = oo, C)'(t — ') — (r;’ )2, 50 £%0(t) acquires a random static com-

ponent of mean square value (r]b»)z.

In still another way to do it, one can use the average rate r, in place of
its root mean square value in the second term on the right-hand side of
equation 2.9 and employ noise with a correlation function:

. 1

Co(t —t) = N D A(SHE) =) (SiE) = 1)) (2.12)

]
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For |t — /| — oo,

Cylt — ) — (12 —my)" = (5r%)". (2.13)

There are now two static random parts of () in equation 2.9: one from
the second term and one from the static component of the noise. Their sum

is a gaussian random number with variance equal to (rj»’)z. Thus, these three
ways of generating the input currents are equivalent.

2.1.1 The Balance Condition. Inastationary, low-rate state, the mean mem-
brane potential described by equation 2.3 has to be approximately station-
ary. If excitation dominates, we have du? /dt « /Ko, implying a firing rate
of order +/Kj (or one limited only by the refractory period of the neuron).
If inhibition dominates, the neuron will never fire. The only way to have
a stationary state at a low rate (less than one spike per membrane time
constant) is to have the excitation and inhibition nearly cancel. Then the
mean membrane potential can lie a little below threshold, and the neuron
can fire occasionally due to the input current fluctuations. This suggests the
following heuristic theory, based on this approximate balance.

Using equations 2.3 and 2.5, we have

2
> /Koy = O(1), 2.14)
b=0

or, up to corrections of O(1/+/Kp),
2
Z Javrs =0, (2.15)
b=0

with [ = Jas/Ks/Kp. These are two linear equations in the two unknowns
1., a4 = 1,2, with the solution

2
ra = Y 13w Jsoro, (2.16)

b=1

where J! is the inverse of the 2 x 2 matrix with elements fub, a,b=1,2.
If there is a stationary balanced state, the average rates of the excitatory
and inhibitory populations are given by the solutions of equation 2.16.
This argument, given by Amit and Brunel and by Sompolinsky and van
Vreeswijk, depends only on the rates, not on the correlations.
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2.1.2 Numerical Procedure. For integrate-and-fire neurons in a stationary
state, the mean field theory can be reduced to a set of analytic equations if
neuron-to-neuron rate variations are neglected and a white-noise (Poisson
firing) approximation is made (Amit & Brunel, 1997a, 1997b; Brunel, 2000).
However, in a complete mean field theory for our model, the randomness
in the connectivity forces these features to be taken into account, and it is
necessary to resort to numerical methods. Thus, we simulate single neu-
rons driven by gaussian synaptic currents; collect their firing statistics to
compute the rates r,, rate fluctuations (81’?’)2, and correlations C,(t — t');
and then use these to generate improved input current statistics. The cycle
is repeated until the input and output statistics are consistent. This algo-
rithm was first used by Eisfeller and Opper (1992) to calculate the remanent
magnetization of a mean field model for spin glasses.

Explicitly, we proceed as follows. We simulate single excitatory and
inhibitory neurons over “trials” 100 integration time steps long. (We will
call each time step a “millisecond.” We have explored using smaller time
steps and verified that there are no qualitative changes in the results.) We
start from estimates of the rates given by the balance condition, which
makes the net mean input current vanish. Then the sum over presynaptic
populations of the O(/K}) terms in equation 2.9 vanishes, leaving only the
rate variation and noise terms. We then run 10,000 trials of single excitatory
and inhibitory neurons, selecting on each trial random values of x#* and
‘;‘“b (t). Since at this point we do not have any estimates of either the rate
fluctuations (81’” )? or the correlations Cy(t — ), we use r} in place of (r )?
in equation 2.9 and use white noise for S“b(t) Cy(t —t') = rpd(t = ).

The random choice of x; from trial to trial effectively samples across
the neuronal populations, so we can then collect the statistics r,, (r”)2 (or,
equivalently, (Br )?), and C,(t —t') from these trials. These can be used
to generate an 1mproved estimate of the input noise statistics to be used
in equation 2.9 in a second set of trials, which yields new spike statistics
again. This procedure is iterated until the input and output statistics agree.
This may take up to several hundred iterations, depending on network
parameters and how the computation is organized.

If one tries this procedure in its naive form, that is, using the output
statistics directly to generate the input noise at the next step, it will lead to
big oscillations and not converge. It is necessary to make small corrections
(of relative order 1/4/Kj) to the previous input noise statistics to guarantee
convergence.

When one computes statistics from the trials in any iteration, the simplest
procedure involves calculating not the average correlation function Cp(t —
t') defined in equation 2.8 but, rather, C;(t — t') (see equation 2.12). From it,
we can proceed in two ways. In one (the first of the three schemes described
above for organizinthe noise) from its |t — t'| — oo limit we can obtain
(57 )%, and thereby (r 2 =12+ (61t ] )? for use in equation 2.9. Subtracting
thls limiting value from Cp(t — ') gives us Cp(t — t') (which vanishes for
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large |t — t'|) for use in generating the noise éi“b(t). We will call this the
subtracted correlation method.

Alternatively, as in the third of the schemes above, we can, at each step
of our iterative procedure, generate noise directly with the correlations
Cp(t —t') (which have a long-range time dependence) and use r in place
of (r? )? in equation 2.9. We call this the unsubtracted correlation method. We
have verified that the two methods give the same results when carried out
numerically, though the second one converges more slowly.

While the true rates in the stationary case are time independent and
C,(t, t') is a function only of t — ', the statistics collected over a finite set of
noise-driven trials will not exactly have these stationarity properties. There-
fore, we improve the statistics and impose time-translational invariance by

averaging the measured r,(t) and ((Sr;?(t))2 over t and averaging over the
measured values C, (¢, ') with a fixed t — t'.

After the iterative procedure converges, so that we have a good estimate
of the statistics of the input, we want to run many trials on a single neuron
and compute its firing statistics. This means that the numbers x? (b = 0, 1, 2)
should be held constant over these trials. In this case, it is necessary to
subtract out the large t — ' limit of C,(t — #') and use fixed xfb (constant in
time and across trials) to generate the input noise. (If we did it the other
way, without the subtraction, we would effectively be assuming that x
changed randomly from trial to trial, which is not correct.)

In our calculations we have used 10,000 trials to calculate these single-
neuron firing statistics. We perform the subtraction of the long-time limit
of C,(t — t') at |t — t'| = 50, and we have checked that equation 2.12 is flat
beyond this point in all the cases we have done.

If we perform this kind of measurement separately for many values
of the x®, we will be able to see how the firing statistics vary across the
population. Here, however, we will confine most of our attention to what
wg call the “average neuron”: the one with the average value (0) of all three
xP.

In particular, we calculate the mean spike count in the 100 ms trials and its
variance across trials. From this we can get the Fano factor F (the variance-
to-mean ratio). We also compute the autocorrelation function, which offers
a consistency check, since the Fano factor can also be obtained from

F = %/:Z C(r)dr. (2.17)

(This formula is valid when the measurement period is much larger than
the time over which C(r) falls to zero.)

We will study how these firing statistics vary as we change various
parameters of the model: the input rates ry, parameters that control the
balance of excitation and inhibition and the overall strength of the synapses.
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This will give us some generic understanding of what controls the degree
of irregularity of the neuronal firing.

2.2 Nonstationary Case. When the input population is not firing at a
constant rate, almost the same calculational procedure can be followed, ex-
cept that one does not average measured rates, their fluctuations, or correla-
tion function over time. To start, we get initial instantaneous rate estimates
from the balance condition, assuming that the time-dependent average
input currents do not vary too quickly. (This condition is not very stringent;
van Vreeswijk and Sompolinsky showed that the stability eigenvalues are
proportional to /Ky, so if they have the right sign, the convergence to the
balanced state is very rapid.)

To do the iterative procedure to satisfy the self-consistency conditions
of the theory, it is simplest to use the second of the two ways described
above (the unsubtracted correlation method). In this case, we get equations
for the noise input currents just like equation 2.9, except that the second
term is omitted and the r;, are t-dependent and the correlation functions
Ci°t depend on both t and #/, not just their difference. The only tricky part
is the subtraction of the long-time limit of the correlation function, which is
not simply defined.

We treat this problem in the following way. We examine the rate-
normalized quantity,

Clol(t, t)

Gt = oy

(2.18)

We find that this quantity is time-translation invariant (i.e., a function only
of t — t') to a very good approximation, so we perform the subtraction of the
long-time limit on it. Then multiplying the subtracted ¢ by 7, (t)r,(t') gives
a good approximation to the true (subtracted) correlation function C,(t, t).
The meaning of this finding is, loosely speaking, that when the rates vary
(slowly enough) in time, the correlation functions just inherit these rates as
overall factors without changing anything else about the problem.

We will use the this time-dependent formulation below to simulate ex-
periments like those of Gershon et al. (1998), where the LGN input () to
visual cortical cells is time dependent because of the flashing on and off of
the stimulus.

3 Results

The results presented in this article were obtained from simulations with
parameters K; = 4444 excitatory inputs and K, = 1111 inhibitory inputs
to each neuron. The average number of external (excitatory) inputs Ko
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was chosen to be equal to K;. All neurons have the same membrane time
constant T of 10 ms.

To study the effect of various combinations in synaptic strength, we use
the following generic form to define the intracortical weights J,:

(]11 ]12):(6 28). (3.1)
Ja T2 1 —2g

For the synaptic strengths from the external population, we use J19 =1
and [, = €. With this notation, ¢ determines the strength of inhibition
relative to excitation within the network and ¢ the strength of intracortical
excitation. Additionally, we scale the overall strength of the synapses with
amultiplicative scaling factor denoted | so that each synapse has an actual
weight of [, - [, regardless of a and b.

Figure 2 summarizes how the firing statistics depend on all of the param-
eters g, €,and J,. Theirregularity of spiking, as measured by the Fano factor,
depends most sensitively on the overall scaling of the synaptic strength, J;.
The Fano factor increases systematically as J; increases, and higher values
of intracortical excitation € also result in higher values of F. The same pat-
tern holds for stronger intracortical inhibition, parameterized by g. For all
of these cases, the mean firing rate remains virtually unchanged due to the
dynamic balance of excitation and inhibition in the network, whereas the
fluctuations increase with the increase of any of the synaptic weights.

Interspike interval (ISI) distributions are shown in Figure 3 for three
different values of |, keeping ¢ and g fixed at 0.5 and 1, respectively.
For a Poisson spike train, the Fano factor F =1, while F > 1 (which we
term super-Poissonian) indicates a tendency of spikes occurring in clusters
separated by accordingly longer empty intervals, and F < 1 (sub-Poissoniarn)
indicates more regularity, reflected by a narrower distribution. We have
adjusted the input rate 7y so that the output rate is the same in all three
cases.

The top panel of Figure 3 shows the ISI distribution of a super-Poissonian
spike train, obtained for |; = 1.42. Overlaied on the histogram of ISI
counts is an exponential curve indicating a Poisson distribution with the
same mean ISI length. Compared with the Poisson distribution, the super-
Poissonian spike train contains more short intervals, as seen by the peak at
short lengths, and also more long intervals, causing a long tail. Necessarily,
the interval count around the average ISI length is lower than that for a
Poisson spike train.

The ISI distribution in the middle panel of Figure 3 belongs to a spike
train with a Fano factor close to one, obtained for [; = 0.714. The overlaid
exponential reveals a deviation from the ISI count: while intervals of di-
minishing length are the most likely ones for a real Poisson process, our
neuronal spike trains always show some refractoriness reflected by a dip at
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Fano Factor
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Figure 2: Fano factors as a function of overall synaptic strength |, and intracor-
tical excitation strength € for three different inhibition factors: g =1, 1.5, and 2,
respectively. The increase of any of these parameters results in more irregular

firing statistics as measured by the Fano factor.
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Figure 3: Interspike interval distributions for fixed € = 0.5and g = 1, and three
different values of overall synaptic strength J,: 1.42 (super-Poissonian), 0.714
(Poissonian), and 0.357 (sub-Poissonian). Overlaid on each figure is the expo-
nential fall-off of a true Poisson distribution with the same average rate as in all
of the three cases.
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the shortest intervals. (We have not used an explicit refractory period in our
model. The dip seen here simply reflects the fact that it takes a little time
for the membrane potential distribution to return to its steady-state form
after reset.) Apart from this deviation, however, there is a close resemblance
between the observed distribution and the “predicted” one.

Finally, the lower panel of Figure 3 depicts a case with F < 1, with
weaker synapses, leading to a stronger refractory effect and (since the rate is
fixed) an accordingly narrower distribution around the average ISI length,
as compared to the overlaied Poisson distribution. This distribution was
obtained with weak synapses produced by a small scaling factor of J; =
0.357.

As mentioned in the previous section, the Fano factor can also be ob-
tained by integrating over the spike train autocorrelation divided by the
spike rate, equation 2.17. For a Poisson process, the autocorrelation vanishes
for all lags different from zero. In contrast, F > 1 (super-Poissonian case)
implies a positive integral over nonzero lags, whereas in the sub-Poissonian
case, there must be a negative area under the curve. Figure 4 shows exam-
ples of autocorrelations for all of the three cases. For the super-Poissonian
case (dashed line), there is a “hill” of positive correlations for short intervals,
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Figure 4: Three different spike train autocorrelations illustrating the relation-
ship between the Fano factor F and the area under the curve. For F =1 (Pois-
sonian, solid line), the autocorrelation is an almost perfect delta function. F > 1
(super-Poissonian, dashed line) is reflected by a hill generating a positive area,
and F < 1 (sub-Poissonian, dotted line) is accompanied by a valley of negative
correlations. (See the text for more details.)
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Figure 5: Spike count log(variance) versus log(mean) for three different values
of overall synaptic strength ], varying the external input rate ry. For |, =
1.19 (super-Poissonian, triangles), the data look qualitatively like those from
experiments. The other values for [, are 0.714 (Poisson, stars) and 0.357 (sub-
Poissonian, crosses).

reflecting the tendency toward spike clustering. The sub-Poissonian auto-
correlation (dotted line) shows a valley of negative correlations for short
intervals, indicating well-separated spikes in a more regular spike train.
The curve labeled as Poisson (solid line) does have a small valley around
zero lag, which reflects once more the refractoriness of neurons to fire at
extremely short intervals, unlike a completely random Poisson process.
(Actually, the measured F in this case is slightly greater than 1, implying
that in this case, the integral of the very small positive tail for t > 2 ms is
slightly larger than that of the (more obvious) negative short-time dip.)

Measurements on V1 neurons in awake monkeys (see, e.g., Gershon
et al., 1998) suggest a linear relationship between the log variance and the
log mean of stimulus-elicited spike counts. We find a similar dependence
for neurons within our model network. Figure 5 shows results for three
different values of J;. In each case, five different values of the external
input rate ry were tried, causing various mean spike counts and variances.
The logarithm of the spike count variance is plotted as a function of the
logarithm of the spike count mean, and a solid diagonal line indicates the
identity, that is, a Fano factor of exactly 1. We see that for the largest value of
Js used here, the data look qualitatively like those from experiments, with
Fano factors in the range around 1.5 to 2.
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Figure 6: Parameterization of the time-dependent input rate r,(t). The input is
modeled as the sum of three functions: (1) a stationary background rate (which
is zero in this case); (2) a tonic part, which rises within the first 20 ms to a
constant level of Ay, where it stays for 60 ms, falling back to zero within the last
20 ms; and (3) an initial phasic part, which is nonzero only in the first 50 ms,
rising to a maximum value of By.

3.1 Nonstationary Case. The results presented in the previous section
were obtained with stationary inputs, while experimental data like those
from Gershon et al. (1998) were collected from visual neurons subject to
time-dependent inputs. Therefore, we performed calculations of the spike
statistics in which the input population rate ry was time dependent. The
modeled temporal shape of ry(t) is depicted in Figure 6. It is the sum of
three terms:

ro(t) = Ro + A(t) + B(t). (3.2)

The first, Ry, is a constant, as in the preceding section. The second term,
A(t), rises to a maximum over a 25 ms interval, remains constant for 50 ms,
and then falls off to zero over the final 25 ms,

0.5A0(1 — cos(4tr/T)) for 0<t<T/4
At)y=1{ 4 for T/4 <t <3T/4 (3.3)
0.5A40(1 — cos(4(T — t)n/T)) for 3T/4 <t <T,
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Figure 7: Spike count log(variance) versus log(mean) for time-varying external
inputs with varying overall strength. The neuron in the simulated network
(triangles) fires in a super-Poissonian regime, with an almost linear relationship
for low spike rates between the log variance and the log mean, resembling
closely data obtained from in vivo experiments. The diagonal solid line indicates
the identity of variance and mean (Fano factor F = 1).

where T is the total simulation interval of 100 ms. The third term, By, rises
to a maximum in the first 25 ms and then falls back to zero in the next 25 ms,
remaining zero thereafter:

0.5B¢(1 — cos(4tx/T)) for 0<t<T/4
B(t) = { 0.5Bo(1 —cos((T/2 —t)m/T)) for T/A <t <T/2 (3.4)
0 for T/2<t<T.

Figure 7 shows the logarithm of the spike count variance plotted against
the logarithm of the spike count mean for various nonstationary inputs
characterized by different values of Ay and By. The graph shows results for
Js =095, =0.5, g =1, and a background rate of Ry = 0.1. Table 1 shows
the choice of the 16 combinations of the stimulus parameters Ay and By,
together with the resulting Fano factors F for the simulated neuron.

The data look qualitatively like those obtained from in vivo experiments
by Gershon et al. (1998) and are similar to the super-Poissonian case in Fig-
ure 5. The neuron fires consistently in a super-Poissonian regime with Fano
factors slightly higher than 1 and an almost linear relationship between the
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Table 1: Stimulus Parameters Ay and By for the Results Depicted in Figure 7
and the Resulting Fano Factors F.

Ay 0375 0375 0500 0500 0750 0.750 1.000 1.000
Bp 0125 0375 0.125 0375 0250 0.750 0.250 0.750

F 1.14 1.2 1.22 1.23 1.29 1.36 1.37 1.4

Ap 1500 1.500 2.000 2.000 3.000 3.000 4.000 4.000
By 0500 1500 0.500 1.500 1.000 3.000 1.000 3.000

F 1.48 1.5 1.55 1.53 1.57 1.41 1.43 1.34

log variance and the log mean for low spike counts. For higher spike counts,
the curve bends toward values of lower Fano factors, just as for stationary
inputs (see Figure 5). In both cases, this bend reflects the decrease in irreg-
ularity of firing caused by an increasingly prominent role of refractoriness
for shorter interspike intervals.

3.2 Comparison with Network Simulations. An extensive exploration
of the validity of mean field theory is beyond the scope of this letter. How-
ever, we have performed simulations of networks constructed according to
the model of section 2 and compared their firing irregularity with that ob-
tained in mean field theory. Specifically, we tested two main results from our
mean field analysis, stating that Fano factors increase systematically with
synaptic strength and that there is an approximate power law between the
mean spike count and the spike count variance, similar to experimental
findings (see Figures 2 and 5, respectively).

Figure 8 shows measured Fano factors for a typical neuron in a network
with Ko = K; =400, K, = 100, and N = 10000, where we varied J; in the
same range as in Figure 2 (other parameters were ¢ = 1 and € = 0.5). The
Fano factor increases systematically as J; increases, lying in the quantitative
range predicted by mean field theory.

In addition (results not shown), we explored the lower and upper limits
of Fano factors in our network. For J; = 0.1, the average Fano factor of
all neurons in the network was 0.034. Notwithstanding the very regular
firing of all neurons in this network with very weak synapses, the overall
activity remained asynchronous, as required in our mean field analysis. At
the other extreme, for very strong synapses with J; = 32, we observed an
average Fano factor of 16.05, and individual neurons exhibited Fano factors
of up to 30 and higher. These results show that networks of integrate-and-
fire neurons exhibit a wide range of Fano factors in their balanced state,
depending on synaptic strength.

In Figure 9, we show plots of the logarithm of the spike count variance
as a function of the logarithm of the mean spike count for six individual
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Figure 8: Fano factors as a function of overall synaptic strength ], obtained
from network simulations for a randomly chosen neuron (¢ =1, € =0.5). A
comparison with Figure 2 reveals that the mean field calculations correctly
predict both the qualitative relationship between Fano factors and synaptic
strength and the quantitative range of Fano factors for this range of J; values.

neurons in the network. Analogous to Figure 5, results for three different
values of |, are shown (1.5, 1.1, and 0.714, indicated by triangles, stars, and
crosses, respectively), each probed with five different strengths of external
inputs. The neurons were chosen randomly from all 8000 excitatory neu-
rons with nonzero firing rates. With the exception of neuron 4638 (in the
lower middle panel), |; = 1.5 resulted in super-Poissionian firing statistics,
Js = 0.714 in sub-Poissionian firing, and |, = 1.1 in approximately Poisson
statistics. There is a strong qualitative resemblance between the network
simulation results in Figure 9 and the mean field results in Figure 5, with
the latter showing spike count statistics of the hypothetical “average neu-
ron” defined above.

Taken together, these results suggest that mean field theory provides a
reliable way to estimate firing variability in balanced networks.

4 Discussion

Cortical neurons receive thousands of excitatory and inhibitory inputs, and
despite the high number of inputs from nearby neurons with similar firing
statistics and similar connectivity, their observed firing is very irregular
(Heggelund & Albus, 1978; Dean, 1981; Tolhurst et al., 1981, 1983; Vogels,
Spileers, & Orban, 1989; Snowden et al., 1992; Gur et al., 1997; Shadlen &
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Figure 9: Spike count statistics obtained from network simulations for six ran-
domly chosen neurons. Spike count log(variance) versus log(mean) are plotted
as in Figure 5, for various external input rates at three different values of synap-
tic strength (J; = 1.5, 1.1, and 0.714, represented by triangles, stars, and crosses,
respectively). There is a close qualitative resemblance to the results from mean
field calculations shown in Figure 5, where spike statistics of a hypothetical
neuron with average overall input are shown.

Newsome, 1998; Gershon et al., 1998; Kara et al., 2000; Buracas et al., 1998;
Lee et al., 1998; DeWeese et al., 2003). Dynamically balanced excitation and
inhibition through a simple feedback mechanism provide an explanation
that naturally accounts for this phenomenon without requiring fine-tuning
of the parameters (Amit & Brunel, 1997a, 1997b; Brunel, 2000; van Vreeswijk
and Sompolinsky, 1996, 1998). Moreover, neurons in such model networks
show an almost linear input-output relationship (input current versus firing
frequency), as do neurons in the neocortex.

Whenever one wants to understand a complex dynamical system, one
asks whether there is an approximate theory, possibly exact in some inter-
esting limit, that captures and affords insight into the observed properties.
Here, the high connectivity of the cortical networks of interest suggests try-
ing to obtain this insight from mean field theory, which becomes exact for an
infinite, extensively connected system. In this article, we have formulated a
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complete mean field description of the dynamically balanced asynchronous
firing state in the dilute, high-connectivity limit N, > K, > 1. Because of
the assumed random connection structure in the network, the mean field
theory has to include autocorrelation functions and rate variations as well as
population-mean rates as order parameters, as in spin glasses (Sompolinsky
& Zippelius, 1982).

We used this mean field theory to analyze firing correlations. We found
that the relationship between the observed irregularity of firing (spike count
variance) and the firing rate (spike count mean) of the neurons resembles
closely data collected from in vivo experiments (see Figures 5 and 7). To
do this, we developed a complete mean field theory for a network of leaky
integrate-and-fire neurons, in which both firing rates and correlation func-
tions are determined self-consistently. Using an algorithm that allows us
to find the solutions to the mean field equations numerically, we could
elucidate how the strength of synapses within the network influences the
expected firing statistics of cortical neurons in a systematic manner (see
Figure 2).

We have shown that the irregularity of firing, as measured by the Fano
factor, increases with increasing synaptic strengths (see Figure 2). Nearly
Poisson statistics (with F ~ 1) are observed for moderately strong synapses,
but the transition from sub-Poissonian to super-Poissonian statistics is
smooth, without a special role for F = 1.

The higher irregularity in the spike counts is always accompanied by a
tendency toward more “bursty” firing. (These bursts are a network effect
because the model contains only leaky integrate-and-fire neurons, which
do not burst on their own.) This burstiness can best be seen in the spike train
autocorrelation function (see Figure 4), which acquires a hill of growing size
and width around zero lag for increasing Fano factors. The interdependence
between firing irregularity and bursting can be understood with the help
of the ISI distributions depicted in Figure 3: when the rate, and thus the
average IS], is kept constant, then any higher count for shorter-than-average
ISIs must be accompanied by an accordingly higher count for longer ISIs
(indicating bursts), and vice versa. Thus, higher irregularity always goes
hand in hand with a higher tendency toward temporal clustering of spikes.

Why do stronger synapses lead to higher irregularity in firing? The size
of the input current fluctuations in equation 2.9 is controlled by the ], and
so, therefore, are the corresponding membrane potential fluctuations. Thus,
for example, the width of the steady-state membrane potential distribution
is proportional to J;. We next have to consider where this distribution is
centered. Remembering that, according to the balance condition, the firing
rate is independent of J,, and the center of the distribution has to move far-
ther away from threshold as J; is increased in order to keep the rate fixed.
Therefore, for very small |, almost the entire equilibrium membrane
potential distribution will lie well above the postspike reset value, while
for large [, it will be mostly below reset.



656 A. Lerchner, C. Ursta, J. Hertz, M. Ahmadi, P. Ruffiot, and S. Enemark

Immediately after a spike, the membrane potential distribution is a
delta function centered at the reset (here 0). It then spreads, and its mean
moves up or down toward its equilibrium value. This equilibration will
take about a membrane time constant. If the equilibrium value is well
above zero (the small-J; case), the probability of reaching threshold will be
suppressed during this time, implying a refractory dip in the ISI distribu-
tion and the correlation function and a tendency toward a Fano factor less
than 1.

In the large-]; case, where the membrane potential is reset much closer
to the threshold than to its eventual equilibrium value, the initial rapid
spread (with the width growing proportional to J;+/f) leads to an enhanced
probability of early spikes. At short times, this diffusive spread dominates
the downward drift of the mean (which is only linear in f). Thus, there is
extra weight in the ISI distribution and a positive correlation function at
these short times, leading to a Fano factor greater than 1.

Empirically, an approximate power-law relationship between the mean
and variance of the spike count has frequently been observed for cortical
neurons (see, e.g., Tolhurst et al., 1981; Vogels, Spileers, & Orban, 1989;
Gershon et al., 1998; Lee et al., 1998). Our model shows the same qualitative
feature (see Figures 5 and 6), though we have no argument that the relation
should be an exact power law. However, this agreement suggests that the
model captures at least part of physics underlying the firing statistics.

As already observed, not all of the variability in measured neuron re-
sponses has to be explained in the manner outlined above. Changing condi-
tions during the run of a single experiment may introduce extra irregularity,
caused by collecting statistics over trials with different mean firing rates.
Our analysis shows why—and how much—irregularity can be expected
due to intrinsic cortical dynamics.

Other authors have also studied firing irregularity, in phase-oscillator
models (Bressloff & Coombes, 2000; Bressloff, Bressloff, & Cowan, 2000)
and in a ring model with inhomogeneous excitation and inhibition (Lin,
Pawelzik, Ernst, & Sejnowski, 1998). Both groups found that their models
could produce highly irregular firing. In our work, we have tried to make
a systematic study of how the irregularity (quantified by the Fano factor)
depends on system parameters for a fairly simple model appropriate for
describing local (intracolumn) neocortical networks.

We have used instantaneous synapses; that is, we have not included
synaptic filtering of input spike trains in the calculations we have reported
here. However, we have incorporated such filtering, with a simple expo-
nential kernel, into our code and explored the effects of a nonzero synaptic
current decay time sy, We find that for small zy,/7, Fano factors grow
proportional to this ratio,

F(tgn) = F(O) (142 727), @1



Response Variability in Balanced Cortical Networks 657

with a = O(1) > 0. Since we are most interested in the limit 75y, < 7, we
have not studied these corrections in detail. However, it should be noted
that in a model where the synapses are modeled by conductances instead of
current pulses (Lerchner, Ahmadi, & Hertz, 2004), the effective membrane
time constant can become very small, so sy, can be considerably larger than
it (Destexhe et al., 2003). In this case, the dynamics become rather different.

Our formulation of the mean field theory is general enough to allow
other straightforward extensions toward greater biological realism and
more complicated network architectures. We have extended the model to
include systematic structure in the connections, modeling an orientation
hypercolumn in the primary visual cortex (Hertz & Sterner, 2003). More-
over, our algorithm for finding the mean field solutions is not restricted
to networks of integrate-and-fire neurons. It can be applied to any kind
of neuronal model. Furthermore, synaptic depression and facilitation can
be incorporated by using synaptically filtered spike trains to compute the
self-consistent solutions.

As we remarked earlier, if one ignores correlations in the synaptic input
and neuron-to-neuron rate variations (Amit & Brunel, 1997a, 1997b), ana-
lytic self-consistent equations for the population rates can be derived. From
these, one can calculate the steady-state Fano factor analytically in closed
form (Brunel, 2000). Such a calculation is obviously not self-consistent, al-
though it can give qualitative information about firing irregularity. We have
done some calculations, using our single-neuron simulation methods, but
in which we impose the Amit-Brunel approximations by hand when gener-
ating the input noise. As one could anticipate, we find that this procedure
systematically underestimates Fano factors in the super-Poissonian regime,
by factors of up to 2 or so at the largest values of J; studied here.

Since it is necessary to solve the full mean field theory numerically, one
might ask: If it is necessary to resort to numerical solution anyway, why
not just simulate the network directly? Our answer is that beyond the ad-
vantage of having to simulate only one neuron at a time, it is interesting to
know what the predictions of mean field theory are. To the extent that they
agree with network simulations, we can understand our findings in terms of
single-neuron properties (albeit with self-consistent synaptic current statis-
tics). Discrepancies would point to either finite-size or finite-concentration
effects or more subtle correlation effects not included in the mean field
ansatz. Identifying such effects, if they exist, would point the way toward
future theoretical investigations, which could shed potentially useful light
on the dynamics of these networks.
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