
CHAPTER 1

Martingales, continued

Martingales are first and foremost a tool to establish the existence and prop-
erties of random limits. The basic limit theorems of probability (the law of large
numbers and Glivenko-Cantelli) establish that averages of i.i.d. variables converge
to their expected value. (The central limit theorem also falls into this class—it
additionally establishes a rate of convergence.) The sequence of averages is a ran-
dom sequence, but it completely derandomizes in the limit. For more complicated
processes—typically, if the variables are stochastically dependent—the limit might
be random. In general, random limits are very hard to handle mathematically,
since we have to precisely quantify the effect of dependencies and cope with the
randomness aggregating as we get further into the sequence.

It turns out that it is possible to control dependencies and randomness if a
process has the martingale property (or is at least a sub- or supermartingale).
Hence:

Martingales are tools for working with random limits.

They are not the only such tools, but there are very few others. This fact accounts
for the almost overwhelming importance of martingales in probability.

1.1. Martingales indexed by partially ordered sets

Martingales have already been discussed in Probability Theory I, where they were
indexed by values in N (so-called “discrete-time martingales”). We will briefly dis-
cuss martingales in “continuous time”—that is, martingales indexed by R+. How-
ever, martingales can much more generally be defined for index sets that need not
be totally ordered, and we will proof two useful results for such general martingales.

Partially ordered index sets. Let T be a set. Recall that a binary relation
� on T is called a partial order if it is

(1) reflexive, that is s � s for every s ∈ T.
(2) antisymmetric, that is if s � t and t � s, then s = t.
(3) transitive, that is if s � t and t � u, then s � u.

In general, a partially ordered set may contain elements that are not comparable,
i.e. some s, t for which neither s � t nor t � s (hence “partial”). If all pairs of
elements are comparable, the partial order is called a total order.

In various contexts—including martingales and the construction of stochastic
processes—we need partially ordered index sets. We have to be careful, though:
Using arbitrary partially ordered sets can lead to all kinds of pathologies. Roughly
speaking, the problem is that a partially ordered set can decompose into subsets
between which elements cannot be compared at all, as if we were indexing arbitrarily
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2 1. MARTINGALES, CONTINUED

by picking indices from completely unrelated index sets. For instance, a partially
ordered set could contain two sequences s1 � s2 � s3 � . . . and t1 � t2 � t3 � . . .
of elements which both grow larger and larger in terms of the partial order, but
whose elements are completely incomparable between the sequences. To avoid such
pathologies, we impose an extra condition:

If s, t ∈ T, there exists u ∈ T such that s � u and t � u . (1.1)

A partially ordered set (T,�) which satisfies (1.1) is called a directed set.

1.1 Example. Some examples of directed sets:

(a) The set of all subsets of an arbitrary set, ordered by inclusion.
(b) The set of all finite subsets of an infinite set, ordered by inclusion.
(c) The set of all positive definite n× n matrices over R, in the Löwner partial

order.
(d) Obviously, any totally ordered set (such as N or R in the standard order) is

directed.

/

Just as we can index a family of variables by N and obtain a sequence, we
can more generally index it by a directed set; the generalization of a sequence so
obtained is called a net. To make this notion precise, let X be a set. Recall that,
formally, an (infinite) sequence in X is a mapping N→ X , that is, each index
s is mapped to the sequence element xi. We usually denote such a sequence as
(xi)i∈N, or more concisely as (xi).

1.2 Definition. Let (T,�) be a directed set. A net in a set X is a function
x : T→ X , and we write xt := x(t) and denote the net as (xt)t∈T. /

Clearly, the net is a sequence if (T,�) is the totally ordered set (N,≤). Just
like sequences, nets may converge to a limit. The definition is analogous to that of
a Cauchy sequence:

1.3 Definition. A net (xt)t∈I is said to converge to a point x if, for every open
neighborhood U of x, there exists an index t0 ∈ T such that

xt ∈ U whenever t0 � t . (1.2)

/

Nets play an important role in real and functional analysis: Too establish
certain properties in spaces more general than Rd, we have to demand e.g. that every
net satisfying certain properties converges (not just every sequence). Sequences
have much stronger properties than nets; for example, in any topological space, the
set consisting of all elements of a convergent sequence and its limit is a compact
set. The same needs not be true for for nets.

Filtrations and martingales. The discrete-time martingales discussed in
Probability I are a special type of random sequences. Analogously, the more general
martingales we discuss in the following are a form of random nets.

Let (T,�) be a directed set. By a filtration, we mean a family F = (Ft)t∈T
of σ-algebras Fi, indexed by the elements of T, which satisfy

s � t =⇒ Fs ⊂ Ft . (1.3)

The case T = N, which you have already encountered in Probability Theory I, is
often called the discrete-time case; similarly, T = R+ is called the continuous-time
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case. The filtration property states that each σ-algebra Fs contains all preceding
ones. For a filtration, there is also a uniquely determined, smallest σ-algebra which
contains all σ-algebras in F , namely

F∞ := σ
(⋃

s∈TFs
)
. (1.4)

Clearly, every random sequence or net (Xs)s∈T is adapted to the filtration

Ft := σ
(⋃

s�tσ(Xs)
)
, (1.5)

which is called the canonical filtration of (Xs).
Now, let (T,�) be a partially ordered set and F = (Fs)s∈T a filtration. As in

the discrete-time case, we call a family (Xs)s∈T of random variables adapted to F
if Xs is Fs-measurable for every s. Then (Xs,Fs)s∈T is called a martingale if it
satisfies

Xs =a.s. E[Xt|Fs] whenever s � t , (1.6)

or equivalently,

∀A ∈ Fs :

∫
A

XsdP =

∫
A

XtdP whenever s � t . (1.7)

If it the conditions only with equality weakened to ≤ (that is, Xs ≤ E(Xt|Fs)
or
∫
XsdP ≤

∫
XtdP), it is called a submartingale; for ≥, it is called a super-

martingale.

Our objective in the following. The objective of martingale convergence
results is ideally to establish, for a given martingale (Xs,Fs), the existence of a
limit random variable X∞ which satisfies

Xs =a.s. E[X∞|Fs] for all s ∈ T . (1.8)

Note that a result of the form (1.8) is more than just a convergence result: (1.8) is
a representation theorem.

1.2. Notions of convergence for martingales

You will recall from the martingale convergence results discussed in Probability I
that two types of convergence are of interest: Convergence almost surely, and in
L1. We should briefly review why so.

In terms of convergence of a random variable, the strongest result we can hope
for is almost sure convergence, i.e.

Xs(ω)→ X∞(ω) P-a.s. (1.9)

However, if (Xs) is a martingale, we also know that

Xs =a.s. E[Xt|Fs] for all s with s � t . (1.10)

This holds no matter how large (in the partial order) we make t. We hence might
be forgiven to hope that (1.8) holds, too—but that is not generally true. What do
we need to establish (1.8)? Suppose (Xs) converges to X∞ in L1, i.e.

lim

∫
Ω

|Xs(ω)−X∞(ω)|P(dω) = limE
[
|Xs −X∞|

]
→ 0 . (1.11)
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(Note: If T is a directed set, then (E[|Xs −X∞|])s∈T is a net in R, so L1 convergence
means this net converges to the point 0 in the sense of Definition 1.3.) It is easy to
verify the following fact:

1.4 Fact. If (Xs) converges in L1 to X∞, then (XsIA)i converges in L1 to X∞IA
for every measurable set A. /

Hence, for every index s ∈ T, L1 convergence implies

lim

∫
A

XsdP = lim

∫
Ω

XsIAdP =

∫
Ω

X∞IAdP =

∫
A

X∞dP (1.12)

for every A ∈ Fs. By the martingale property (1.6), the sequence or net of integrals
is additionally constant, that is∫

A

XsdP =

∫
A

XtdP for all pairs s ≤ t and hence

∫
A

XsdP =

∫
A

X∞dP ,

(1.13)
which is precisely (1.8).

Recall from your discussion of notions of convergence for random variables in
[Probability I, Chapter 17] how the different types of convergence relate to each
other:

almost surely in probability L1 Lp

weakly

subsequence (1.14)

Neither does almost sure convergence imply L1 convergence, nor vice versa. This
is why “strong” martingale convergence results are typically of the form, “If (...),
the martingale converges to a limit almost surely and in L1”.

1.3. Uniform integrability

Recall from e.g. Theorem 27.1 in Probability I that the martingale property and
a very mild supremum condition suffice to establish almost sure convergence: If
(Xn,Fn) is a submartingale satisfying supn E[max{0, Xn}] <∞, thenX∞ = limXn

exists almost surely. Moreover, the limit is finite almost surely, and integrable. The
result does not yield L1 convergence. The property we need for martingales to con-
verge in L1, and hence to establish (1.8), is uniform integrability. As a reminder:

1.5 Definition. Let T be an index set and {fs|s ∈ T} a family of real-valued func-
tions. The family is called uniformly integrable with respect to a measure µ if,
for every ε > 0, there exists a positive function g ≥ 0 such that∫

{|fs|≥g}
|fs|dµ ≤ ε for all s ∈ T . (1.15)

/

Clearly, any finite set of random variables is uniformly integrable. The defi-
nition is nontrivial only if the index set is infinite. Here is a primitive example:
Suppose the functions fs in (1.15) are the constant functions on [0, 1] with values
1, 2, . . .. Each function by itself is integrable, but the set is obviously not uniformly
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integrable. If the functions are in particular random variables Xs : Ω→ R on a
probability space (Ω,A,P), Definition 1.5 reads: For every ε, there is a positive
random variable Y such that

E
[
|Xs|

∣∣|Xs| ≥ Y
]
≤ ε for all s ∈ T . (1.16)

The definition applies to martingales in the obvious way: (Xs,Fs)s∈T is called a
uniformly integrable martingale if it is a martingale and the family (Xs)s∈T of
functions is uniformly integrable.

Verifying (1.15) for a given family of functions can be pretty cumbersome,
but can be simplified using various useful criteria. We recall two of them from
[Probability I, Theorem 27.2]:

1.6 Lemma. A family (Xs)s∈T of real-valued random variables with finite expec-
tations is uniformly integrable if there is a random variable Y with E[Y ] <∞ such
that either of the following conditions holds:

(1) Each Xs satisfies∫
{|Xs|≥α}

|Xs|dµ ≤
∫
{|Xs|≥α}

Y dµ for all α > 0 . (1.17)

(2) Each Xs satisfies |Xs| ≤ Y .

/

We now come to our first result for martingales on general index sets, which
shows two important facts:

(1) We can easily obtain uniformly integrable martingales by positing a limit vari-
able X and “filtering” it.

(2) Uniform integrability is necessary to for (1.8) to hold.

1.7 Theorem. Let X be an integrable, real-valued random variable on a probability
space (Ω,A,P). Let (T,�) be a partially ordered set, and F = (Fs)s∈T a filtration
in A. Then (

E[X|Fs],Fs
)
s∈T (1.18)

is a uniformly integrable martingale. /

Proof. (Xs,Fs) is a martingale by construction: For any pair s � t of indices,

E[Xt|Fs] =a.s. E[E[X|Ft]|Fs] =a.s. E[X|Fs] =a.s. Xs .

Fs ⊆ Ft

(1.19)

To show that it is also uniformly integrable, we use Jensen’s inequality [e.g. Prob-
ability I, Theorem 23.9]—recall: φ(E[X|C]) ≤ E[φ(X)|C] for any convex function
φ—which implies

|Xs| =a.s.

∣∣E[X|Fs]
∣∣ ≤a.s. E

[
|X|
∣∣Fs] . (1.20)

Hence, for every A ∈ Fs, we have∫
A

|Xs|dP ≤
∫
A

|X|dP , (1.21)

which holds in particular for A := {|Xs| ≥ α}. By Lemma 1.6, the martingale is
uniformly integrable. �
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1.4. Convergence of martingales with directed index sets

You have already seen martingale convergence results for the discrete time case
T = N in the previous class. The next result generalizes the martingale convergence
theorem [Probability I, Theorem 27.3] to the case of arbitrary directed index sets.

1.8 Martingale convergence theorem. Let (Xs,Fs)s∈T be a martingale with
directed index set T. If the martingale is uniformly integrable, there exists a random
variable X∞ such that (Xs,Fs)s∈T∪{∞} is a martingale; that is,

Xs =a.s. E[X∞|Fs] for all s ∈ T . (1.22)

The variable X∞ is integrable, and uniquely determined up to almost sure equiva-
lence. /

Proof. The key idea is to use the directed structure of the index set to reduce
to the martingale convergence theorem for the discrete-time case, Theorem 27.3 in
[Probability I].

Step 1: The net satisfies the Cauchy criterion. We have to show that the random
net (Xs)s∈T converges in L1; in other words, that

∀ε > 0 ∃s0 ∈ T : E[|Xt −Xu|] ≤ ε for all t, u with s0 � t and s0 � u . (1.23)

This follows by contradiction: Suppose (1.23) was not true. Then we could find an
ε > 0 and a sequence s1 � s2 � . . . of indices such that E[|Xsn+1

−Xsn |] ≥ ε for all
n. Since the (Xs,Fs)s∈T is a uniformly integrable martingale, so is the sub-family
(Xsn ,Fsn)n∈N—but we have just shown that is does not converge, which contra-
dicts Theorem 27.3. Thus, (1.23) holds.

Step 2: Constructing the limit. Armed with (1.23), we can explicitly construct
the limit, which we do using a specifically chosen subsequence: Choose ε in (1.23)
consecutively as 1/1, 1/2, . . .. For each such ε = 1/n, choose an index sn satisfying
(1.23). Since T is directed, we can choose these indices increasingly in the par-
tial order, s1/1 � s1/2 � . . .. Again by [Probability I, Theorem 27.3], this makes
(Xs1/n)n a convergent martingale, and there is a limit variable X. (We will still

have to tweak X a little to obtain the variable X∞ we are actually looking for.)

Step 3: The entire net converges to the limit X. For the sequence constructed
above, if n ≤ m, then s1/n � s1/m. Substituting into (1.23) shows that

E[|Xs1/m−Xs1/n |] ≤
1

n
and hence E[|X−Xs|] ≤

1

n
for all s with sn � s .

Hence, the entire net converges to X.

Step 4: X is determined almost everywhere. We have to show that the event

N := {ω | (Xtm(ω)) does not converge} (1.24)

is a null set in F∞. Recall from the convergence diagram (1.14) that L1 is pretty
high up in the food chain: Convergence of a sequence of random variables in L1

implies convergence in probability, which in turn implies existence of an almost
surely convergent subsequence. Since (Xs1/n) by construction converges to X in

L1, this means there is a subsequence (t1, t2, . . .) of (s1/n)n such that (Xtm)m
converges almost surely to X.
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Since Xs is a martingale, we also have Xs1/n =a.s. E[Xtm |Fs1/n ] for any index
s1/n in the entire sequence which satisfies s1/n � tm, and so the entire sequence
(X1/n) converges almost surely. Hence, N is a null set. Since all random variables
Xs and X are F∞-measurable, N ∈ F∞.

Step 5: X does what we want. We have to convince ourselves that X indeed satisfies
(1.22), and hence that∫

A

XsdP =

∫
XdP for all A ∈ Fs . (1.25)

Since the entire net (Xs)s∈T converges to X in L1, we can use Fact 1.4: IAXs also
converges to IAX in L1 for any A ∈ Fs. Hence,∫

A

XsdP =

∫
Ω

IAXsdP =

∫
Ω

IAXdP =

∫
A

XdP . (1.26)

Step 6: X is unique up to a.s. equivalence. Finally, suppose X ′ is another F∞-
measurable random variable satisfying (1.22). We have to show X =a.s. X

′. Since
both variables are F∞-measurable, we have to show that∫

A

XdP =

∫
A

X ′dP (1.27)

holds for all A ∈ F∞. We will proof this using a standard proof technique, which
I do not think you have encountered before. Since it is important and very useful,
let me briefly summarize it in general terms before we continue:

1.9 Remark [Proof technique]. What we have to show in this step is that some
property—in this case, (1.27)—is satisfied on all sets in a given σ-algebra C (here:
F∞). To solve problems of this type, we define two set systems:

(1) The set D of all sets A ∈ C which do satisfy the property. At this point, we do
not know much about this system, but we know that D ⊂ C.

(2) The set E of all A ∈ C for which we already know the property is satisfied.

Then clearly,

E ⊂ D ⊂ C . (1.28)

What we have to show is D = C.
The proof strategy is applicable if we can show that: (1) E is a generator of C,

i.e. σ(E) = C; (2) E is closed under finite intersections; and (3) D is closed under
complements and increasing differences. If (2) and (3) are true, the monotone class
theorem [Probability I, Theorem 6.2] tells us that σ(E) ⊂ D. In summary, (1.28)
then becomes

C = σ(E) ⊂ D ⊂ C , (1.29)

and we have indeed shown D = C, i.e. our property holds on all of C. /

Now back to the proof at hand: In this case, we define D as the set of all
A ∈ F∞ which satisfy (1.27). We note that (1.27) is satisfied whenever A ∈ Fs for
some index s, and so we choose E as

E =
⋃
s∈T
Fs . (1.30)

Then (1.28) holds (for C = F∞), and we have left to show D = F∞. Recall that
σ(E) = F∞ by definition, so one requirement is already satisfied.
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The system D is closed under complements and increasing limits: Suppose
A ∈ D, and let Ā be its complement. Since Ω is contained in every Fs, it is also
in D. Since both A and Ω satisfy (1.27), so does Ā = Ω \A, and D is closed
under differences. Similarly, suppose A1 ⊂ A2 ⊂ . . . is a sequence of sets which are
all in D, and A := ∪nAn. By definition of the integral,

∫
A
XdP = limn

∫
An

XdP.

Applying the limit on both sides of (1.27) shows A ∈ D.
The set system E is closed under finite intersections: Suppose A ∈ Fs and

B ∈ Ft for any two s, t ∈ T. Since T is directed, there is some u ∈ T with s, t � u,
and hence A,B ∈ Fu and A ∩B ∈ Fu ⊂ E .

Hence, we have σ(E) = D by the monotone class theorem, and

F∞ = σ(E) = D ⊂ F∞ , (1.31)

so (1.27) indeed holds for all A ∈ F∞. �

Theorem 1.8 above shows that uniform integrability is not only necessary but
also sufficient to establish (1.8). This is an example of a more general fact regarding
the convergence of random variables (whether or not they form martingales): The
diagram (1.14) shows that convergence in probability does not imply L1 conver-
gence. To obtain the latter from the former, we need extra conditions. One possible
condition is to assume that the random sequence or net in question (1) converges
almost surely and (2) is dominated, i.e. bounded in absolute value by some random
variable (|Xs| ≤ Y for some Y and all s). This fairly strong assumption can be
weakened to: The net (1) converges in probability and (2) is uniformly integrable.
We can hence augment diagram (1.8) as follows:

almost surely in probability

L1 Lp
+

uniform
integrability

weakly

subsequence

(1.32)

For martingales in particular, we can use the martingale property (plus mild
regularity conditions) to ensure almost sure convergence to a limit (e.g. Theorem
27.1 in Probability I). Almost sure convergence implies convergence in probability;
by also imposing an uniform integrability assumption, we then obtain the desired
L1 convergence.

1.5. Application: The 0-1 law of Kolmogorov

Recall the 0-1 law from Probability I: If X1, X2, . . . is an infinite sequence of inde-
pendent random variables, and a measurable event A does not depend on the value
of the initial sequence X1, . . . , Xn for any n, then A occurs with probability either
0 or 1. The prototypical example is the convergence of a series: If the random
variables take values in, say, Rn, the event{∑

iXi converges
}

(1.33)



1.6. CONTINUOUS-TIME MARTINGALES 9

does not depend on the first n elements of the sequence for any finite n. Hence,
the theorem states that the series either converges almost surely, or almost surely
does not converge. However, the limit value it converges to does depend on every
Xi. Thus, the theorem may tell us that the sequence converges, but not what it
converges to.

In formal terms, the set of events which do not depend on values of the first n
variables is the σ-algebra Tn = σ(Xn+1, Xn+2, . . .). The set of all events which do
not depend on (X1, . . . , Xn) for any n is T := ∩nTn, which is again a σ-algebra,
and is called the tail σ-algebra, or simply the tail field.

1.10 Kolmogorov’s 0-1 law. Let X1, X2, . . . be independent random variables,
and let A be an event such that, for every n ∈ N, A is independent of the outcomes
of X1, . . . , Xn. Then P(A) is 0 or 1. That is, if A ∈ T , then P(A) ∈ {0, 1}. /

This result was also proven as Theorem 10.6 in [Probability I]. It can be proven
very concisely using martingales. Arguably the key insight underlying the theorem
is that every set in T is σ(X1, X2, . . .)-measurable. The martingale proof shows
this very nicely:

Proof. For any measurable set A, we have P(A) = E[IA]. Suppose A ∈ T .
Since A is independent of X1, . . . , Xn, we have

P(A) = E[IA] =a.s. E[IA|X1:n] for all n ∈ N . (1.34)

We use martingales because they let us determine the conditional expectation
E[IA|X1:∞] given the entire sequence: The sequence (E[IA|X1:n], σ(X1:n))n is an
uniformly integrable martingale by Theorem 1.7, and by Theorem 1.8 converges
almost surely to an a.s.-unique limit. Since

E
[
E[IA|X1:∞]

∣∣X1:n] =a.s. E[IA|X1:n] , (1.35)

(1.22) shows that the limit is E[IA|X1:∞], and hence

E[IA|X1:∞] =a.s. lim
n

E[IA|X1:n] =a.s. lim
n

P(A) = P(A) . (1.36)

Since T ⊂ σ(X1:∞), the function IA is σ(X1:∞)-measurable, and hence

P(A) = E[IA|X1:∞] = IA ∈ {0, 1} almost surely. (1.37)

�

1.6. Continuous-time martingales

The so-called continuous-time case is the special case where the index set is chosen
as T := R+, so we can think of the martingale (Xt) as a time series, started at
time t = 0. For any fixed ω ∈ Ω, we can the interpret the realization (Xt(ω)) of
the martingale as a random function t 7→ Xt(ω). Each realization of this function
is called a sample path. We can then ask whether this function is continuous,
or at least piece-wise continuous—this is one of the aspects which distinguish the
continuous-time case from discrete time. Rather than continuity, we will use a
notion of piece-wise continuity:

1.11 Reminder [rcll functions]. Let f : R+ → R be a function. Recall that f is
continuous at x if, for every sequence (xn) with xn → x, we have limn f(xn) = f(x).
We can split this condition into two parts: For every sequence xn → x, (1) limn f(xn)
exists and (2) equals f(x).
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Now suppose that, instead of all sequence with limit x, we consider only those
which converge from above to x, i.e. sequences with xn → x and xn ≥ x for
all n; we denote convergence from above as xn ↘ x. If condition (1) is satisfied
for all sequences which converge to x from above, i.e. if limn f(xn) exists for all
xn ↘ x, we say that f has a right-hand limit at x. If (2) is also satisfied, i.e. if
limn f(xn) = f(x) for all such sequence, we call f right-continuous at x. Left-
hand limits and left-continuity are defined similarly, considering only sequence
which converge to x from below.

We say that a function on R+ is right-continuous with left-hand limits, or
rcll for short, if it is right-continuous at every point in [0,∞) and has a left-hand
limit at every point in (0,∞]. /

Intuitively, rcll functions are functions that are piece-wise continuous functions
which jump at an at most countable number of points (otherwise, they would not
have right- and left-hand limits). If the function jumps at x, the function value
f(x) is part of the “right-hand branch” of the function (which is condition (2) in
right-continuity).

Filtrations for continuous-time martingales. In this section, we look for
conditions which ensure a martingale has rcll sample paths. To formulate such con-
ditions, we have to impose additional requirements on filtrations. One requirement
is that filtrations contain all negligible sets.

1.12 Reminder [Negligible sets and completions]. If (Ω,A) is a measurable
space, the σ-algebra A does not usually contain all subsets of Ω. For a given
probability measure, there may hence be a non-measurable set B which is contained
in a P-null set A ∈ A. Sets which are contained in null sets are called negligible
sets. (In other words, a null set is a negligible set which is also measurable.)

Even if a negligible set is not technically measurable, we might still argue that
it is morally measurable, since we know what its measure would be if it happened
to be in A: B ⊂ A and P(A) = 0 implies the measure would have to be zero. With
this rationale, we can simply regard all negligible sets as null sets, and add them to
the σ-algebra. It is easy to check that the resulting set system is again a σ-algebra.

It is called the P-completion of A, and denoted AP
. Note that we cannot define

a completion before specifying a measure on (Ω,A). /

To work with rcll sample paths, we need a similar requirement for filtrations:

1.13 Definition. A filtration (Ft)t∈R+
in a probability space (Ω,A,P) is called

complete if it contains all P-negligible sets, i.e. if Ft = FP
t for all t. /

A second requirement is that the filtration itself is “smooth”: Suppose for some
index s ∈ R+, all filtrations Ft with t > s suddenly contain much more information
than Fs—roughly speaking, the amount of information available “jumps up” at s.
Such cases are excluded by the following definition:

1.14 Definition. A filtration (Ft)t∈R+
is called right-continuous if

Ft = ∪s>tFs for all t ∈ R+ . (1.38)

/

Martingales with rcll paths. Theorem 1.16 below shows under which con-
ditions a martingale, or even a submartingale, defined with respect to a complete
and right-continuous filtration has rcll sample paths. To proof that result, we will
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need the following lemma. I will cheat a little and proof the theorem but not the
lemma.

1.15 Lemma. Let F be a filtration indexed by R+, and let (Xt,Ft)t∈R+ be a sub-
martingale. Then there is a null set N such that the following holds: For all t ∈ R+,
there is a real-valued random variable Xt+ such that

Xt+(ω) = lim
s∈Q+,s↘t

Xs(ω) whenever ω 6∈ N . (1.39)

Modify Xt+ on the null set N by defining Xt+(ω) := 0 for ω ∈ N . If F is complete
and right-continuous, then Xt+ is integrable and

Xt ≤ Xt+ almost surely (1.40)

for each t ∈ R+, with equality almost surely if and only if the function µ(t) := E[Xt]
is right-continuous at t. /

Two remarks on Lemma 1.15:

(1) Note that the assertion in (1.39) is stronger than just almost sure convergence
for each t: The latter would mean that, for each t, there is a null set Nt outside
of which (1.39) holds. Since the index set is uncountable, ∪tNt would not be
guaranteed to be a null set. The lemma shows, however, that there is a single
null set N outside of which (1.39) holds for all t.

(2) The lemma holds for a general submartingale. Recall that, if (Xt) is a martin-
gale, then all Xt have identical mean E[Xt] = µt = µ, so the function t 7→ E[Xt]
is constant and hence rcll. By the last assertion in the lemma, equality in (1.40)
therefore holds automatically if (Xt) is a martingale.

1.16 Theorem [Submartingales with rcll sample paths]. Let (Xt,Ft)t∈R+

be a submartingale, where F is right-continuous and complete, and the function
µ(t) := E[Xt] is right-continuous. Then there exists a submartingale (Yt,Ft)t∈R+

satisfying Xt =a.s. Yt for all t whose paths t 7→ Yt(ω) are rcll almost surely. /

Note that the result does not quite state that (Xt) is almost surely continuous,
but rather that there is a martingale Y which is equivalent to X—in the sense that
Xt =a.s. Yt, i.e. we are not able to distinguish Y from X by probabilistic means—
and this equivalent martingale is rcll almost surely. The process Y is called a
version or modification of X (since we modify the measurable function X on a
null set to obtain Y ; a precise definition will follow in a later chapter). Theorem 1.16
is our first example of a regularity result for a stochastic process, and we will see
later on, in the chapter on stochastic processes, that most regularity results are
stated in terms of the existence of almost surely regular versions.

Proof. Since (Xt) is a submartingale, Lemma 1.15 guarantees that the ran-
dom variable Xt+ defined in (1.39) exists for each t. Define Yt := Xt+. Then
the paths of Yt are rcll by construction. Since µ(t) is right-continuous by hy-
pothesis, Lemma 1.15 shows that Yt = Xt almost surely (equality holds in (1.40)).
The only thing left to show is hence that (Yt,Ft) is a submartingale, i.e. that∫
A
YsdP ≤

∫
A
YtdP for all A ∈ Fs and all s < t.

Let s < t. Then there are sequence s1 > s2 > . . . and t1 > t2 > . . . in Q+ such
that sn ↘ s and tn ↘ t. Since s < t, we can always choose the sequences such that
sn < tn for all n. As (Xn) is a submartingale, this implies∫

A

XsndP ≤
∫
A

XtndP for all A ∈ Fsn . (1.41)
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By (1.39), (Xsn) converges to Xs+ almost surely, and hence in probability. Since all
|Xsn | are upper-bounded by |Xs1 |, convergence in probability implies L1-convergence.
Hence, E[Xs+] = limn E[Xsn ], which in turn implies E[Xs+IA] = limn E[XsnIA] for
all A ∈ Fs (note that we can use Fs for Xs+ by right-continuity). By the same
device, E[Xt+IA] = limn E[XtnIA], and we have∫

A

Xs+dP = lim

∫
A

XsnIAdP
(1.41)

≤ lim

∫
A

XtnIAdP =

∫
A

Xt+dP , (1.42)

so (Xt+) is indeed a submartingale. �

1.7. Tail bounds for martingales

A tail bound for a (real-valued) random variable X is an inequality of the form

P(|X − E[X]| ≥ ε) ≤ f(ε) . (1.43)

Almost all distributions—at least on unbounded sample spaces—concentrate most
of their probability mass in some region around the mean, even if they are not
unimodal. If we move sufficiently far away from the mean, the distribution decays.
A tail bound quantifies how rapidly it does so; of interest is not so much how far
out we have to move before the probability decays, but rather the shape of f in the
region far away from the mean (in the “tails”). In particular, if f is of the form
f(ε) ≤ ce−g(ε) for some positive polynomial g, the distribution is said to exhibit
exponential decay. If f(ε) ∼ ε−α for some α > 0, it is called heavy-tailed.

1.17 Example [Hoeffding’s inequality]. One of the most widely used tail bounds
is the Hoeffding bound: Suppose X1, X2, . . . are independent, real-valued ran-
dom variables (which need not be identically distributed), and each is bounded
in the sense that Xn ∈ [ai, bi] almost surely for some constants ai < bi. Then the
empirical average Sn = 1

n (X1 + . . .+Xn) has tails bounded as

P(|Sn − E[Sn]| ≥ ε) ≤ 2 exp
(
− −2nε2∑

i(bi − ai)2

)
. (1.44)

/

If the Xn are dependent, we cannot generally hope for a bound of this form
to hold. Remarkably, it still does if the Xn form a martingale. In this case, each
Xn is required to be conditionally bounded given the previous value Xn−1, i.e. Xn

must lie in the interval [Xn − cn+1, Xn + cn+1].

1.18 Azuma-Hoeffding Inequality. Let (Xn,Fn)i∈N be a martingale. Require
that there exists a sequence of non-negative constants cn ≥ 0 such that

|Xn+1 −Xn| ≤ cn+1 almost surely (1.45)

and |X1 − µ| ≤ c1 a.s. Then for all ε > 0

P(|Xn − µ| ≥ ε) ≤ 2 exp
(
− ε2

2
∑n
j=0 c

2
n

)
. (1.46)

/

I can hardly stress enough how useful this result can be in applications: On
the one hand, the only requirement on the martingales is the boundedness of incre-
ments, which makes the bound very widely applicable. On the other hand, when it
is applicable, it is often also very sharp, i.e. we will not get a much better bound
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using more complicated methods. One application that has become very important
over the past twenty or so years is the analysis of randomized algorithms:

1.19 Example [Method of bounded differences]. Suppose an iterative ran-
domized algorithm computes some real-valued quantity X; since the algorithm is
randomized, X is a random variable. At each iteration, the algorithm computes
a candidate quantity Xn (which we usually hope to be a successively better ap-
proximation of some “true” value as n increases). If we can show that (1) the
intermediate results Xn form a martingale and (2) the change of Xn from one step
to the next is bounded, we can apply Theorem 1.18 to bound X. /

1.8. Application: The Pólya urn

Recall that an urn is a stochastic process defined by starting with a certain number
of white and black balls, and repeatedly drawing a ball uniformly at random. You
will be familiar with sampling with replacement (an urn in which the ball is replaced
after having been drawn) and sampling without replacement (the ball is removed).

More generally, an urn is a process where, each time we draw a ball, we may
or may not replace it, and may or may not add additional balls to the urn. It can
be parametrized as(

w a
d b

)
where

w = # initial white balls
b = # initial black balls

. (1.47)

Each time a ball is drawn, we replace it by a balls of the same color and d balls of
the opposite color. Important examples are:

a = 0 d = 0 Sampling with replacement
a = −1 d = 0 Sampling without replacement
a > 0 d = 0 Pólya urn
a = −1 d = 1 Ehrenfest urn (or Ehrenfest heat transfer model)

In particular, a Pólya urn with parameters (w0, b0, a) is a stochastic process
defined by an urn initially containing w0 white and b0 black balls. At each step,
draw a ball from the urn at random; then replace the ball, and add an additional
a balls of the same color. We define Xn as the fraction of white balls after n steps,

Xn =
# white balls after n steps

(# white balls + # black balls) after n steps
. (1.48)

1.20 Proposition. The proportions Xn converge almost surely: There exists a
random variable X∞ such that limn→∞Xn(ω) = X∞(ω) almost surely. /

I want to complement this existence result with a result on the form of the
limit, which we will not proof (since it does not involve a martingale argument):

1.21 Fact. The limiting distribution of proportions, i.e. the law of X∞, is the beta
distribution on [0, 1] with density

p(x) = B(w/a, b/a)xw/a−1(1− x)b/a−1 . (1.49)

where B denotes the beta function. /

Before we proof the existence of the limit, reconsider for a moment what Propo-
sition 1.20 tells us:
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• We know from basic calculus that a sequence need not converge—the propor-
tions could fluctuate perpetually. Proposition 1.20 shows that this is not the
case here: Even though the sequence is generated at random by the urn, it
always converges to a limit. Roughly speaking, if we would run the process for
an infinite amount of time to obtain the proportions X∞, and then restart it
with those proportions, they would never change again (which of course can
only be true since the urn has swollen to contain an infinite number of balls).
• On the other hand, the limit is random—if we start the process from the same

initial values twice, we will typically obtain two distinct limiting proportions.
(In fact, since the limiting distribution is continuous, they differ with proba-
bility 1.)

Proof of Proposition 1.20. We will show that (Xn) is a martingale, and
then apply the martingale convergence theorem to verify existence of the limit. Let
Wn and Bn respectively denote the number of white and black balls after n draws.
The probability of observing a white ball in the (n+ 1)st draw is, conditionally on
(Wn, Bn),

pn+1 =
Wn

Wn +Bn
. (1.50)

Hence,

Xn+1|Wn, Bn =

{
Wn+a

Wn+Bn+a with probability pn
Wn

Wn+Bn+a with probability 1− pn
. (1.51)

The history of the process, up to step n, is given by the nth σ-algebra in the
filtration Fn. The conditional expectation of Xn+1 given the history of the process
is hence

E[Xn+1|Fn] =
Wn + a

Wn +Bn + a
pn+1 +

Wn

Wn +Bn + a
(1− pn+1)

= . . . =
Wn

Wn +Bn
= Xn .

(1.52)

Since Xn is also clearly integrable, it is hence a martingale. We now use the
martingale convergence theorem, in the form of Corollary 27.1 in [Probability I]—
recall: If (Xn) is a non-negative supermartingale, then limn→∞Xn exists almost
surely—which completes the proof. �

1.22 Remark [Preferential attachment networks]. The Pólya urn may seem
primitive, but it has many important applications. One example are random graphs
used as models for certain social networks: A preferential attachment graph
is generated as follows. Fix an integer m ≥ 1. Start with a graph consisting of
a single vertex. At each step, insert a new vertex, and connect it to m randomly
selected vertices in the current graph. These vertices are selected by degree-biased
sampling, i.e. each vertex is selected with probability proportional to the number
of edges currently attached to it. You will notice that (1) the placement of the
next edge depends only on the vertex degrees (not on which vertex is connected to
which), and (2) the model is basically a Pólya urn (where each vertex represents a
color, and the degrees are the number of balls per color). It is hence not surprising
that most proofs on asymptotic properties of this model involve martingales. This,
in turn, is one of the reasons why this model is as well-studied as it is in the applied
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probability literature—the applicability of martingales makes it tractable, so we
study it because we can. /

1.9. Application: The Radon-Nikodym theorem

Let P be probability measure on a measurable space (X ,A), and let µ be a finite
measure on the same space (that is, µ(X ) <∞). Recall that a density of µ with
respect to P is an integrable function f : X → R≥0 satisfying

µ(dx) =a.e. f(x)P (dx) . (1.53)

When does a density exist for a given pair µ and P?
Equation (1.53) says that f transforms the set function P into µ by reweighting

it point-wise. Since it we cannot transform 0 into a positive number by multiplica-
tion with any value, this clearly requires that µ vanishes wherever P vanishes, that
is,

P (A) = 0 ⇒ µ(A) = 0 (1.54)

for all measurable sets A in X . Recall that µ is called absolutely continuous with
respect to P if µ and P satisfy (1.54)—in symbols, µ� P . The term “absolute
continuity” derives from the following:

1.23 Fact. ν � µ holds if and only if

for all ε > 0 exists δ > 0 such that µ(A) ≤ δ ⇒ ν(A) ≤ ε (1.55)

holds for all measurable sets A. /

That absolute continuity is a necessary condition for (1.53) to hold is obvious.
Remarkably, it is also the only condition required:

1.24 Radon-Nikodym theorem (for probability measures). Let P be a prob-
ability measure and µ a finite measure on a measurable space X . Then µ has a
density with respect to P if and only if µ� P . Any two such densities differ only
on a P null set. /

Proof of the theorem. The idea of the proof is to subdivide the space X
into a partition of n disjoint sets Aj , and define

Y(A1,...,An)(x) :=

n∑
j=1

f(Aj)IAj
(x) where f(Aj) :=

{
µ(Aj)
P (Aj) P (Aj) > 0

0 P (Aj) = 0
.

(1.56)
Think of Y as a “discretization” of the density f whose existence we wish to es-
tablish. Roughly speaking, we will make the partition finer and finer (by making
the sets Aj smaller and increasing n), and obtain f as the limit of Y . Since Y is a
measurable function on the space X , which forms a probability space with P , we
can regard the collection of Y we obtain for different partitions as a martingale.

More formally, we construct a directed index set T as follows: A finite measur-
able partition H = (A1, . . . , An) of X is a subdivision of X into a finite number of
disjoint measurable sets Ai whose union is X . Let T be the set of all finite measur-
able partitions of X . Now we have to define a partial order: We say that a partition
H2 = (B1, . . . , Bm) is a refinement of another partition H = (A1, . . . , An) if every
set Bj in H2 is a subset of some set Ai in H1; in words, H2 can be obtaine from H1
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by splitting sets in H1 further, without changing any of the existing set boundaries
in H1. We then define a partial order on T as

H1 � H2 ⇔ H2 is a refinement of H1 . (1.57)

Since each index s ∈ T is now a measurable partition, we can define Fs as the
σ-algebra generated by the sets in s,

Fs := σ(A1, . . . , An) if s = (A1, . . . , An) . (1.58)

1.25 Lemma. (Ys,Fs)s∈T is a uniformly integrable martingale. /

Proof. It is easy to check the martingale property; we will show uniform inte-
grability. Let α > 0 and choose some index s = (A1, . . . , An). (Recall the definition
of uniform integrability in (1.15); we choose g as the constant function with value
α.) Then∫
{|Ys|≥α}

|Ys(x)|P (dx)
Ys≥0
=

∫
{Ys≥α}

Ys(x)P (dx)

=

∫
X

n∑
j=1

µ(Aj)

P (Ai)
I{x ∈ Ai and Ys(x) ≥ α}P (dx)

=µ{Ys ≥ α} .

(1.59)

Since Ys is a positive random variable, Markov’s inequality for Ys reads

P{Ys ≥ α} ≤
1

α
E[Ys] =

1

α
µ(X ) . (1.60)

Now we use (1.55): For a given ε > 0, choose some δ which satisfies (1.55), and set

α > µ(X )
δ . Then (1.60) implies P{Ys ≥ α} ≤ δ, and hence∫

{|Ys|≥α}
|Ys(x)|P (dx)

(1.59)
= µ{Ys ≥ α}

(1.55)

≤ ε . (1.61)

The choice of ε and δ is independent of the index s (since the rightmost term in
(1.60) does not depend on s). Hence, (Ys,Fs) is uniformly integrable. �

The proof of uniform integrability is the only real leg work in the proof of the
Radon-Nikodym theorem. The rest is easy:

Proof of Theorem 1.24. Since (Ys,Fs) is a uniformly integrable martin-
gale, Theorem 1.8 shows that an integrable random variable Y∞ with E[Y∞|Fs] =a.s. Ys
exists and is uniquely determined, up to almost sure equivalence. To verify that
Y∞ is a density, we have to show that µ(A) =

∫
Y∞(x)P (dx), and that Y∞ is non-

negative almost surely. The identity E[Y∞|Fs] =a.s. Ys means∫
A

Y∞(x)P (dx) =

∫
A

Ys(x)P (dx) for all A ∈ Fs . (1.62)

For each A, the index set T contains in particular the partition s = (A, Ā) consisting
only of A and its complement Ā. For this s, the previous equation becomes∫

A

Y∞(x)P (dx) =

∫
A

Ys(x)P (dx)

=

∫
A

( µ(A)

P (A)
TA(x) +

µ(Ā)

P (Ā)
TĀ(x)

)
P (dx) = µ(A) .

(1.63)
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This also implies that Y∞ ≥ 0 almost everywhere—otherwise, there would be a
non-null set A (i.e. P (A) > 0) on which Y∞ takes only negative values, and by the
previous equation, that would yield µ(A) < 0. �

FYI: The general case. The existence of densities is of course not limited to
the case where P is a probability measure, or even finite; I have stated the result in
the form above in order to prove it using martingales (and because the case where
P is not normalized is not particularly relevant in the following). Nonetheless, I
should stress that Theorem 1.24 still holds in precisely this form if µ and P are
both σ-finite measures:

1.26 Radon-Nikodym theorem. Let µ and ν be σ-finite measures on a mea-
surable space (X ,A). Then there exists a measurable function f : Ω→ [0,∞) with
µ(A) =

∫
A
fdν for all A ∈ A if and only if µ� ν. /

Indeed, there is a generalization beyond even the σ-finite case: ν need not be
σ-finite, and µ need not even be a measure. I have found this result very useful at
times, and since it is not widely known and almost impossible to find in textbooks,
I state it here without proof (which you can read up in [4, 232E] if you feel so
inclined):

1.27 Generalized Radon-Nikodym theorem. Let ν be a measure on a mea-
surable space (X ,A), and let µ : A → R≥0 be a finitely additive set function. Then
there is a measurable function f : X → R≥0 satisfying µ(A) =

∫
A
fdν for all A ∈ A

if and only if:

(i) µ is absolutely continuous with respect to ν.
(ii) For each A ∈ A with µ(A) > 0, there exists a set B ∈ A such that ν(B) <∞

and µ(A ∩B) > 0.

If so, f is uniquely determined ν-a.e. /
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