Claim 1. Let

$$
\begin{align*}
m & =\Lambda^{-1} K_{u u}^{-1} K_{u f} y \sigma^{-2}  \tag{1}\\
A & =L^{-1} K_{u f} \sigma^{-1}  \tag{2}\\
B & =L_{B} L_{B}^{\top}  \tag{3}\\
c & =L_{B}^{-1} A y \sigma^{-1} \tag{4}
\end{align*}
$$

given

$$
\begin{equation*}
K_{u u}^{-1} \Lambda^{-1} K_{u u}^{-1}=L^{-\top} B^{-1} L^{-1} \tag{5}
\end{equation*}
$$

then

$$
K_{u u}^{-1} m=L^{-T} L_{B}^{-T} c
$$

Proof.

$$
\begin{align*}
K_{u u}^{-1} m & =K_{u u}^{-1} \Lambda^{-1} K_{u u}^{-1} K_{u f} y \sigma^{-2}  \tag{6}\\
& =L^{-\top} B^{-1} L^{-1} K_{u f} y \sigma^{-2}  \tag{7}\\
& =L^{-\top} B^{-1} A y \sigma^{-1}  \tag{8}\\
& =L^{-\top} L_{B}^{-\top} L_{B}^{-1} A y \sigma^{-1}  \tag{9}\\
& =L^{-\top} L_{B}^{-\top} c \tag{10}
\end{align*}
$$

Notes:

- In Eq. 6 we used Eq. 1,
- Eq. 7 employed Eq. 5 .
- Eq. 2 was used in Eq. 8,
- from Eq. 3 follows that $B^{-1}=L_{B}^{-\top} L_{B}^{-1}$, which was used in Eq. 9.
- Eq. 10 used Eq. 4.

