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e« Tdentity Management [Shin et al., *03]
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it Reasoning with Permutations

» We model uncertainty in identity management with
distributions over permutations

Identities

/)]
c
O
wid
({v]
5 3124
£
(7] 2314
o
x| 3214
S 1243
=

2143

e

[13 2 4] means: \
“Alice is at Track 1,
and Bob is at Track 3,
and Cathy is at Track 2,
and David is at Track 4
with probability 1/10” /

Probability of each

track permutation




27 Storage Complexity

» There are n! permutations!

Memory required to store n! doubles

9 362,880 3 megabytes
12 4.8x108 9.5 terabyes
15 1.31x1012 1729 petabytes (I)

'x 1,800,000

» Graphical models not effective due to mutual exclusivity
constraints (“Alice and Bob cannot both be at Track 1
simultaneously”)

¢ One such constraint for each pair of identities
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Jle<im 1storder summaries

» An idea: For each (identity j, track i) pair, store
marginal probability that J maps to i

Identities

ABCD | P(o)
123 0
213 0

132

312
pRCH
321
1243 0
2143 0

Track Permutations

-~

“David is at Track 4 with
probability:
=1/10+1/20+1/5=7/20"

™

)
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Jle<im 1storder summaries

o Summarize a distribution using a matrix of 1st order
marginals

» Requires storing only n2 numbers!
» Example:

“Bob is at Track 2

A n

1/3/10| O /2 | 1/5

N

1/5 | 1/2 |[3/10| O

Tracks
(&9

3/10| 1/5 |1/10

4| 1/5 |3/10|3/20 A 4R

A B C D
Identities




e The problem with 1t order

o What 1st order summaries can capture:
o P(Alice is at Track 1) = 3/5
o P(Bob is at Track 2) = 1/2

DY
o N

1st order summaries cannot capture

o P({Alice,Bob} occupy Tracks {1,2}) =0
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e 2nd order summaries

» Idea #2: store marginal probabilities that ordered pairs
of identities (k,1) map to pairs of tracks (i,j)

Identities

: I
“Cathy is Track 3
1324 1/10 s
3124 0 David is in Track 4

with zero probability”
2314 1/20

3214 1/5
1243 0
2143 0

Track Permutations
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2"d order summaries

» Can also store summaries for ordered pairs:

» 2nd order summary requires O(n%) storage

Identities

(AB) (BA) (AC) (CA)

1/6

1/12

1/8

1/12

1/12

1/6

1/12

1/8

1/12

1/12

1/24

/
“Bob is at Track 1

and
Alice is at Track 3

1/12

1/12

1/24

1/8

i robabity 1112

10
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et Et cetera...

» And so forth... we can define:
o 3"-order marginals
o 4th-order marginals

‘ AEENR

o nth-order marginals

» (which recovers the original distribution but requires n!
numbers)

» By the way, the 0*-order marginal is the
normalization constant (which equals 1)

» Fundamental Trade-off: can capture higher-order
dependencies at the cost of storing more numbers

11
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<™ The Fourier interpretation

» Marginal summaries are connected to Fourier
analysis!
» Used for multi-object tracking [Kondor et al, '07]
» Simple marginals are “low-frequency”:
intuitively,

o 1st order marginals are the lowest frequency
responses (except for DC component)

» 2" order marginals contain higher frequencies than
1st order marginals

» 3" order marginals contain still higher frequency
information
» Note that higher-order marginals can contain
lower-order information

12



27 Fourier coefficient matrices

» Fourier coefficients on permutations are given as a
collection of square matrices ordered by “frequency”:

A% grder P
» Marginals are constructed by conjugating Fourier
coefficient matrices by a (pre-computed) constant matrix:

First two
_ ./ Fourier matrices

13

1st-order
marginals




" Hidden Markov Model Inference

act
Mixing model — “e.g., Tracks 2 and 3
Latent permutations| SWapped identities with probability 72"

Identity observations Observation model — “e.g.,
see green blob at Track 3"

» Problem statement: For each timestep, find posterior
marginals conditioned on all past observations

¢ Need to rewrite all inference operations
completely in the Fourier domain

14
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e Hidden Markov model inference

» Two basic inference operations for HMMs:

Prediction/Rollu

» How can we do these operations without enumerating all
n! permutations?

15
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ez Random walk transition model

» We assume that o, is generated by the rule:
¢ Draw 1~ Q(7) €¢————— Mixing Model
o Set 6,1 = TGy
o For example, Q([2 1 3 4])="2 means that Tracks 1 and
2 swapped identities with probability 2

Track
Track 2

_
_

16



Sed ISE

- prediction/Rollup

o Inputs:
o Prior distribution P(cy)
o Mixing Model Q(r)

» Prediction/Rollup can be written as a convolution:

17
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e« Fourier Domain Prediction/Rollup

o Convolutions are pointwise products in the Fourier
domain:

prior distribution
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e Hidden Markov model inference

» Two basic inference operations for HMMs:

Prediction/Rollu

» How can we do these operations without enumerating all
n! permutations?

19



e Conditioning

» Bayes rule is a pointwise product of the likelihood
function and prior distribution:

P(o|z) o< P(z|o)P(o)
ey ) i

Posterior Likelihood Prior

» Example likelihood function:
o P(z=green | o(Alice)=Track 1) = 9/10

o ("Prob. we see green at Track 1 given Alice is at
Track 1is9/10")

v
&_ Jrack1__,

20



s Conditioning

» Conditioning increases the representation
complexity!

» Example: Suppose we start with 15t order marginals of
the prior distrpzl trinn: o

« P(Alice is at - Need to store 2"d-order
» P(Bob Is at probabilities after

o ... mg = . I
» Then we make conditioning! .

o "Cathy is at Trac ck 2 with probability 1”

» (This means that d Bob cannot both be at Tracks
1 and 2!)

o P({Alice,Bob} occupy Tracks {1,2})=0

21
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e« Kronecker Conditioning

» Pointwise products correspond to convolution in the Fourier
domain [Willsky, ‘78]
o (except with Kronecker Productsin our case)

¢ Our algorithm handles any prior and any likelihood, generalizing the
previous FFT-based conditioning method [Kondor et al., '07]

Conditioning can increase

posterior

P(0:2)

22
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e Dealing with bandlimiting errors

» Consecutive conditioning steps can propagate errors,
» (sometimes causing approximate marginals to be negative!)

o Our Solution: Project to relaxed Marginal Polytope
(space of Fourier coefficients corresponding to
nonnegative marginal probabilities)

» Projection can be formulated as a Quadratic Program
in the Fourier domain

23
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e Tracking with a camera network

¢ Camera Network data:

8 cameras, multi-view, Omniscient tracker
occlusion effects 5
» 11 individuals in lab 3
« Identity observations 5 5(Q
obtained from color N
histograms D) >, 40
« Mixing events declared % 15
when people walk close m = 30
to each other -
, 2 2q
(&
©
=10
S
a

tlme-lndependent
classification

w/o Projection with Projection

24



Jeii" Scaling

» For fixed representation depth, Fourier domain inference is

order
order
order

polytime:
§4' ) 4 \
o 7
ol 2,4 / Exactinference
ol I /
~
Can we exploit some other kind of structure
in practice??
«o
o But complexity can still be bad...
Representation Depth # of Fourier coefficients
1st order 0(n2)
2nd order o(n%)
3rd order 0O(n%)
4th order Oo(n?d)

25
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i Adaptive Identity Management

» In practice, it is often sufficient to reason over smaller
subgroups of people independently

\

Idea: adaptively factor problem into
subgroups allowing for higher order

(and Bob was originally in the Blue groupJ

o Groups join when tracks from two groups mix

o Groups split when an observation allows us to reason

over smaller groups independently
26



e Problems

o If the joint distribution A factors as a product of
distributions 7 and g:

Distribution over Distribution over
tracks {1,...,p} tracks {p+1,...,n}

(Join problem) What are the Fourier coefficients of

(Split problem) What are the Fourier coefficients of




27 First-order Independence

» Let f be a distribution on permutations of {1,...,p}, and g
be a distribution on permutations of {p+1,...,n}

» Join problem for 1st-order marginals:

« Given 1st-order marginals of fand g, what does the matrix of 1st-

order marginals of A look like?

“Cathy is at Track 4

n

1st-order marginals

“Cathy is at Track 10

. /4

ZEeroes

28



e Joining

» Joining for higher-order coefficients gives similar block-
diagonal structure

o Also get Kronecker product structure for each block

‘ : hiai :f=0= -g:ai : \

_______________________

-----------------------------



e Joining

» Coefficients of the joint related to coefficients of the
factors by:

» Block multiplicities equivalent to Littlewood-Richardson
coefficients

o #P-hard to compute in general, but (very) tractable for
low-order decompositions

» Complexity: same as prediction/rollup step for the joint
distribution (with known block multiplicities)
30



e Problems

o If the joint distribution A factors as a product of
distributions 7 and g:

Distribution over Distribution over
tracks {1,...,p} tracks {p+1,...,n}

(Join problem) What are the Fourier coefficients of

(Split problem) What are the Fourier coefficients of




e Splitting

» We would like to “invert” the Join process:

Our approach: search for f
blocks of the form:

Theorem: these blocks
always exist! (and are
efficient to find)

nd

A

g

Need to recover A4, B from
A ® B — only possible to
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- Marginal Preservation

» Now we know how to join/split given the Fourier
transform of the input distribution

» Problem: In practice, never have entire set of Fourier
coefficients!

» Marginal preservation guarantee:

/

Theorem: Given m®-order marginals for
Independent factors, then we exactly recover

ih_ i - i i i i - - i i. i .i i.

» Conversely, we get a similar guarantee for splitting
» (Usually get some higher order information too)

~

33



L« Detecting Independence

o ~rianthushy ol I distz P

Can use (bi)clustering* on matrix of marginals
¢ to discover an appropriate ordering!

_a

N

In practice, get unordered
identities, tracks...

matrix of marginals with appropriate
ordering on identities and tracks »




27 First-order independence

¢ First-order condition is insufficient:

“Alice guards Bob”

Tracking yellow and white teams
independently ignores the fact that Alice

“Alice is in yellow team” “Bob is in white team”

35
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Je<" Handling Near-Independence

» We only detect at first-order, but:

o We can measure departure from independence at
higher orders

» And even when higher order independence does not
hold, we have the following result:

-
Theorem: If first-order independence holds,

we always obtain exact marginals of each

\ Subsetortacks. )

» (we get a marginal distribution for white team and a marginal
distribution for yellow team)

» When first-order independence does not hold, we obtain
approximate marginals.

36



2 Experiments - Accuracy

nonadaptive

0.8t

o
o

better
o
LN

label accuracy

o
N

adaptive

0 0.05 0.1 0.15 0.2 0.25 0.3
ratio of observations

dataset from [Khan et al. 2006] 37



1< Experiments — Running time

nonadaptive

mn
T 2000 _ 1500y
S 0
Q nonadaptive S b adaptive
Y 1500 S
c wn 1000 \
> —
Q = )
| ©1000 [ \ £
v o ;
Q) 2 i 500 |
E adaptive =
= 500 =
3 d =
% 0 '-'I-'I-'I_'l-!"-o-ﬂquanv 0 . . . ,
Ko) 0 0.1 0.2 0.3 20 40 60 80 100
v ratio of observations Number of ants
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e Conclusion

» Presented an intuitive, principled representation for distributions
on permutations with
e Fourier-analytic interpretations, and
e Tuneable approximation quality

» Formulated general and efficient inference operations directly in
the Fourier domain (prediction/rollup, conditioning, join, split)

» Addressed approximation and scalability issues
» Applied algorithms successfully on simulated and real data

o Opens significant, new research opportunities in AI/ML
« Some ideas generalize to other finite groups
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Tt Algorithm Summary

» Initialize prior Fourier coefficient matrices P(¥)
o For each timestept=1,2,...,T
» Prediction/Rollup:

» For all coe ent matrices P( )
0 @ P
« Conditioning

. For all pairs of §oefficient matrices (P, @
» Compute P\ 7.(t) and reproject to the_ortiogonal Fourier
basis !

« Drop high frequelcy coefficients of P'"

» Project P()to relaxéd Marginal polytape using a
Quadratic program

» Return marginal probabilitiés for all timesteps

Input: Fourier coefficients of mixing and observation models
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=i Mixing and Observation Models

» Fourier-theoretic framework can handle a variety of
probabilistic models

» But... need to be able to efficientl/y compute Fourier
coefficients for mixing/observation models...

o Useful family of function “primitives”:

o Can efficiently Fourier transform the indicator function of
subgroups of the form S, C S,,:

|1 ifo(i)=ctforallk<i<n
05, (0) = { 0 otherwise

» Fourier coefficient matrices of S -indicators are diagonal, with all
nonzero entries equal to k!

42
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leciii 15t order observation model for tracking

act

Blob
for If Identity i
Track j

Color histogram z; IS On TraCI_( JI
prob. z; is
Gaussian

with mean =
- |{§ appearance

Color histogram
identity /7

appearance
model for
Identity 1

If we make one such observation per track, P(z|c)

is proportional to ds. . and can be represented
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Jeeit S -Indicator Primitives

» Most mixing/observation models can be written as

(sparse) | !
Associated subgroup of the S,

pd

Indicator function of of $,.xS, . is
the convolution of indicators
of S,and S,

identities”
131415}"

Observation Models

Singletrack _ “Alice is at track 2"

Multitrack ) “Alice is at track 2, Bob is at track 3”
Bluetooth ) “Red team is at tracks {1,3,5,6,8,9}"

Pairwise ranking Sy “Apples are better than oranges”

44



<" Generalized Independence

» Observation: We care:
« more about interactions between first and second place, and
» less about interactions between first and last place.

¢ Indenendence

\ - th
Objects | .Guava is ranked_§ ”

(apples,bananas,coconuts...) N some probabilit

45



e Rank Independence

» Candidate idea: Instead of factoring into independent
distributions over ranks, factor into distributions over
relative ranks

» Example:
ec=[7/326548109]
o ¢ =1[1234]

» Relative ranking of ¢ in c:
RR,(T)=1421 3]

¢ Definition:

Define (1,...,p) and (p+1,...n) to be rank independent if:




e Rank Independence

h(c) = f(RR,([1,...,p])) - g(RR,([p+1,...,n

Rank independence:

Does rank independence hold in real ranked data?

Can we exploit it for fast inference?

(think of shuffling two independent
permutations together)

¢ Some connections to Radon transforms...

47



Sed we

g« Generalization to unseen objects

» Consider a distribution P over user preference rankings on

fruits: { @ wﬂ

[
Generalization to unseen objects:

o

AlIOW TOr onie OcClated WITN SsIde

L —a
| -

» What if we know that the new object is a citrus fruit?

48



e Optimization

» Is MAP inference easier given a bandlimited function?
max|P(o)]

2 B/

Optimization: Can we formulate Fourier domain
" ; : b

» Optimizing a 1st-order function is reduces to bipartite
matching and can be done in polynomial time...

o Unfortunately:

~
Theorem: Any instance of the traveling salesman

problem can be reduced to optimizing a second-

e R ene ey




