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Identity Management [Shin et al., „03]

Identity Mixing @Tracks 1,2

Where is Donald Duck?
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Identity Management

Mixing @Tracks 1,2

Mixing @Tracks 1,3

Mixing @Tracks 1,4

Track 3

Track 4

Where is 

?
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Reasoning with Permutations
We model uncertainty in identity management with 
distributions over permutations

A B C D P(σ)

1 2 3 4 0

2 1 3 4 0

1 3 2 4 1/10

3 1 2 4 0

2 3 1 4 1/20

3 2 1 4 1/5

1 2 4 3 0

2 1 4 3 0
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Probability of each 
track permutation

A B C D P(σ)

1 2 3 4 0

2 1 3 4 0

1 3 2 4 1/10

3 1 2 4 0

2 3 1 4 1/20

3 2 1 4 1/5

1 2 4 3 0

2 1 4 3 0

[1 3 2 4] means: 
“Alice is at Track 1, 

and Bob is at Track 3, 
and Cathy is at Track 2,
and David is at Track 4
with probability 1/10”
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Storage Complexity

There are n! permutations!

Graphical models not effective due to mutual exclusivity 
constraints (“Alice and Bob cannot both be at Track 1
simultaneously”)

One such constraint for each pair of identities

n n! Memory required to store n! doubles

9 362,880 3 megabytes

12 4.8x108 9.5 terabyes

15 1.31x1012 1729 petabytes (!!)

x 1,800,000
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1st order summaries
An idea: For each (identity j, track i) pair, store 
marginal probability that j maps to i

A B C D P(σ)

1 2 3 4 0

2 1 3 4 0

1 3 2 4 1/10

3 1 2 4 0

2 3 1 4 1/20

3 2 1 4 1/5

1 2 4 3 0

2 1 4 3 0

Identities
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A B C D P(σ)

1 2 3 4 0

2 1 3 4 0

1 3 2 4 1/10

3 1 2 4 0

2 3 1 4 1/20

3 2 1 4 1/5

1 2 4 3 0

2 1 4 3 0

“David is at Track 4 with 
probability: 

=1/10+1/20+1/5=7/20”
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1st order summaries
Summarize a distribution using a matrix of 1st order 
marginals

Requires storing only n2 numbers!

Example:

0

1/2

1/2 1/5

3/10 0

1/5 1/10 9/20

3/10

1/5

3/10

1/5 3/10 3/20 7/20

A B C D

1

2

3

4

Identities

T
ra

c
k

s

“Bob is at Track 2
with zero probability”

“Cathy is at Track 3
with probability 1/20”
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The problem with 1st order

What 1st order summaries can capture:

P(Alice is at Track 1) = 3/5 

P(Bob is at Track 2) = 1/2

Now suppose:

Tracks 1 and 2 are close,

Alice and Bob are not next to each other

P({Alice,Bob} occupy Tracks {1,2}) = 0

1st order summaries cannot capture
higher order dependencies!
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2nd order summaries
Idea #2: store marginal probabilities that ordered pairs
of identities (k,l) map to pairs of tracks (i,j)

A B C D P(σ)

1 2 3 4 0

2 1 3 4 0

1 3 2 4 1/10

3 1 2 4 0

2 3 1 4 1/20

3 2 1 4 1/5

1 2 4 3 0

2 1 4 3 0

Identities
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A B C D P(σ)

1 2 3 4 0

2 1 3 4 0

1 3 2 4 1/10

3 1 2 4 0

2 3 1 4 1/20

3 2 1 4 1/5

1 2 4 3 0

2 1 4 3 0

“Cathy is Track 3
and 

David is in Track 4
with zero probability”
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2nd order summaries

Can also store summaries for ordered pairs:

2nd order summary requires O(n4) storage

(A,B) (B,A) (A,C)

(1,2)

(2,1)

(C,A)

(1,3)

(3,1)

1/6 1/12 1/8

1/12

1/12

1/8 1/24

1/24 1/8

1/6 1/12

1/12

1/8 1/12

1/12

1/12

Identities

T
ra

c
k

s

“Bob is at Track 1
and

Alice is at Track 3
with probability 1/12”
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Et cetera…
And so forth… we can define:

3rd-order marginals

4th-order marginals

…

nth-order marginals

(which recovers the original distribution but requires n! 
numbers)

By the way, the 0th-order marginal is the 
normalization constant (which equals 1)

Fundamental Trade-off: can capture higher-order 
dependencies at the cost of storing more numbers
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The Fourier interpretation

Marginal summaries are connected to Fourier 
analysis!

Used for multi-object tracking [Kondor et al, ‟07]

Simple marginals are “low-frequency”: 
intuitively,

1st order marginals are the lowest frequency 
responses (except for DC component)

2nd order marginals contain higher frequencies than 
1st order marginals

3rd order marginals contain still higher frequency 
information

Note that higher-order marginals can contain 
lower-order information
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Fourier coefficient matrices
Fourier coefficients on permutations are given as a 
collection of square matrices ordered by “frequency”:

Marginals are constructed by conjugating Fourier 
coefficient matrices by a (pre-computed) constant matrix:

0th order1st order2nd ordernth order

1st-order 
marginals

First two 
Fourier matrices
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Hidden Markov Model Inference

Problem statement: For each timestep, find posterior 
marginals conditioned on all past observations

Need to rewrite all inference operations 
completely in the Fourier domain

Latent permutations

Identity observations

Mixing model – “e.g., Tracks 2 and 3
swapped identities with probability ½” 

Observation model – “e.g.,
see green blob at Track 3”
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Hidden Markov model inference

Two basic inference operations for HMMs:

How can we do these operations without enumerating all 
n! permutations?
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(Prediction/Rollup)

(Conditioning)



Random walk transition model

We assume that t+1 is generated by the rule:

Draw Q( )

Set t+1 = t

For example, Q([2 1 3 4])=½ means that Tracks 1 and 
2 swapped identities with probability ½

Mixing Model
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Prediction/Rollup

Inputs:

Prior distribution P( t)

Mixing Model Q( )

Prediction/Rollup can be written as a convolution:

Convolution (Q*Pt)!
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prior distribution

mixing model

Fourier Domain Prediction/Rollup

Convolutions are pointwise products in the Fourier 
domain:

Prediction/Rollup does not increase

the representation complexity!
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Hidden Markov model inference

Two basic inference operations for HMMs:

How can we do these operations without enumerating all 
n! permutations?
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(Prediction/Rollup)

(Conditioning)



Conditioning
Bayes rule is a pointwise product of the likelihood 
function and prior distribution:

Example likelihood function: 

P(z=green | σ(Alice)=Track 1) = 9/10

(“Prob. we see green at Track 1 given Alice is at 
Track 1 is 9/10”)

PriorPosterior Likelihood

Track 1
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Conditioning
Conditioning increases the representation 
complexity!

Example: Suppose we start with 1st order marginals of 
the prior distribution:

P(Alice is at Track 1 or Track 2)=.9

P(Bob is at Track 1 or Track 2)=.9

…

Then we make a 1st order observation: 

“Cathy is at Track 1 or Track 2 with probability 1”

(This means that Alice and Bob cannot both be at Tracks 
1 and 2!)

P({Alice,Bob} occupy Tracks {1,2})=0

Need to store 2nd-order 
probabilities after 

conditioning!
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Kronecker Conditioning
Pointwise products correspond to convolution in the Fourier 
domain [Willsky, „78]

(except with Kronecker Products in our case)

Our algorithm handles any prior and any likelihood, generalizing the 
previous FFT-based conditioning method [Kondor et al., „07]

prior likelihood

posterior

Conditioning can increase

representation complexity!
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Dealing with bandlimiting errors
Consecutive conditioning steps can propagate errors, 

(sometimes causing approximate marginals to be negative!)

Our Solution: Project to relaxed Marginal Polytope 
(space of Fourier coefficients corresponding to 
nonnegative marginal probabilities)

Projection can be formulated as a Quadratic Program
in the Fourier domain

Marginal 
Polytope
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Tracking with a camera network
Camera Network data:

8 cameras, multi-view, 
occlusion effects

11 individuals in lab

Identity observations
obtained from color 
histograms

Mixing events declared 
when people walk close 
to each other
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classification 

w/o Projection with Projection 
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Scaling
For fixed representation depth, Fourier domain inference is 
polytime:

But complexity can still be bad…

Representation Depth # of Fourier coefficients

1st order O(n2)

2nd order O(n4)

3rd order O(n6)

4th order O(n8)

3rd order

2nd order

1st order

Exact inference
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Can we exploit some other kind of structure
in practice??
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Adaptive Identity Management

In practice, it is often sufficient to reason over smaller 
subgroups of people independently

Groups join when tracks from two groups mix

Groups split when an observation allows us to reason 
over smaller groups independently

“This is Bob” 

(and Bob was originally in the Blue group)

Idea: adaptively factor problem into 
subgroups allowing for higher order 

representations for smaller subgroups
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Problems
If the joint distribution h factors as a product of 
distributions f and g:

Distribution over 
tracks {1,…,p}

Distribution over 
tracks {p+1,…,n}

(Join problem) What are the Fourier coefficients of 
the joint h given the Fourier coefficients of factors f
and g?

(Split problem) What are the Fourier coefficients of 
factors f and g given the Fourier coefficients of the 
joint h?
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First-order Independence
Let f be a distribution on permutations of {1,…,p}, and g 
be a distribution on permutations of {p+1,…,n}

Join problem for 1st-order marginals:

Given 1st-order marginals of f and g, what does the matrix of 1st-
order marginals of h look like?

1st-order marginals

f

h

g

zeroes

“Cathy is at Track 4

with probability 1/20”

“Cathy is at Track 10

with zero probability”
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Joining
Joining for higher-order coefficients gives similar block-
diagonal structure

Also get Kronecker product structure for each block
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Joining
Coefficients of the joint related to coefficients of the 
factors by:

Block multiplicities equivalent to Littlewood-Richardson 
coefficients

#P-hard to compute in general, but (very) tractable for 
low-order decompositions

Complexity: same as prediction/rollup step for the joint 
distribution (with known block multiplicities)
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Problems
If the joint distribution h factors as a product of 
distributions f and g:

Distribution over 
tracks {1,…,p}

Distribution over 
tracks {p+1,…,n}

(Join problem) What are the Fourier coefficients of 
the joint h given the Fourier coefficients of factors f
and g?

(Split problem) What are the Fourier coefficients of 
factors f and g given the Fourier coefficients of the 
joint h?
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Splitting
We would like to “invert” the Join process:

Consider recovering 2nd

Fourier block

Need to recover A, B from    
– only possible to 

do up to scaling factor

Our approach: search for 
blocks of the form:

or

Theorem: these blocks 
always exist! (and are 

efficient to find)
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Marginal Preservation
Now we know how to join/split given the Fourier 
transform of the input distribution

Problem: In practice, never have entire set of Fourier 
coefficients!  

Marginal preservation guarantee:

Conversely, we get a similar guarantee for splitting

(Usually get some higher order information too)

Theorem: Given mth-order marginals for 
independent factors, then we exactly recover 

mth-order marginals for the joint distribution. 
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Detecting Independence
To adaptively split large distributions, need to be able to 
detect independent subsets.

Recall what first-order independence looks like:

matrix of marginals with appropriate
ordering on identities and tracks

In practice, get unordered 
identities, tracks…

34

Can use (bi)clustering* on matrix of marginals
to discover an appropriate ordering!

* (Need balance constraint forcing square blocks)



First-order independence
First-order condition is insufficient:

“Alice is in yellow team” “Bob is in white team”

“Alice guards Bob”

Tracking yellow and white teams 
independently ignores the fact that Alice 
and Bob are always next to each other!
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Handling Near-Independence
We only detect at first-order, but:

We can measure departure from independence at 
higher orders

And even when higher order independence does not 
hold, we have the following result:

(we get a marginal distribution for white team and a marginal 
distribution for yellow team)

When first-order independence does not hold, we obtain 
approximate marginals.

Theorem: If first-order independence holds, 
we always obtain exact marginals of each 
subset of tracks.
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Experiments - Accuracy
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dataset from [Khan et al. 2006] 37



Experiments – Running time
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Conclusion
Presented an intuitive, principled representation for distributions 
on permutations with

Fourier-analytic interpretations, and

Tuneable approximation quality

Formulated general and efficient inference operations directly in 
the Fourier domain (prediction/rollup, conditioning, join, split)

Addressed approximation and scalability issues

Applied algorithms successfully on simulated and real data

Opens significant, new research opportunities in AI/ML
Some ideas generalize to other finite groups
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Algorithm Summary
Initialize prior Fourier coefficient matrices

For each timestep t = 1,2,…,T

Prediction/Rollup:
For all coefficient matrices

Conditioning
For all pairs of coefficient matrices 

Compute and reproject to the orthogonal Fourier 
basis

Drop high frequency coefficients of

Project to relaxed Marginal polytope using a 
Quadratic program

Return marginal probabilities for all timesteps

41

Input: Fourier coefficients of mixing and observation models



Fourier-theoretic framework can handle a variety of 
probabilistic models

But… need to be able to efficiently compute Fourier 
coefficients for mixing/observation models...

Useful family of function “primitives”:
Can efficiently Fourier transform the indicator function of 
subgroups of the form                 :

Fourier coefficient matrices of Sk-indicators are diagonal, with all 
nonzero entries equal to k!

Mixing and Observation Models
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1st order observation model for tracking 

If Identity i
is on Track j,

prob. zj is
Gaussian

with mean =
appearance

Blob
for

Track j
Color histogram zj

appearance
model for
Identity i

Color histogram
identity i

43

If we make one such observation per track, P(z| ) 
is proportional to          and can be represented 

exactly by 1st-order Fourier parameters



Sk-Indicator Primitives
Most mixing/observation models can be written as  
(sparse) linear combinations of Sk-indicators! 

Observation Models

Singletrack Sn-1 “Alice is at track 2”

Multitrack Sn-k “Alice is at track 2, Bob is at track 3”

Bluetooth SkxSn-k “Red team is at tracks {1,3,5,6,8,9}”

Pairwise ranking Sn-2 “Apples are better than oranges”

Mixing Models

Pairwise S2 “Tracks 1 and 2 swapped identities”

k-subset Sk “Confusion at tracks {1,2,3,4,5}”

Observation Models

Singletrack Sn-1 “Alice is at track 2”

Multitrack Sn-k “Alice is at track 2, Bob is at track 3”

Bluetooth SkxSn-k “Red team is at tracks {1,3,5,6,8,9}”

Pairwise ranking Sn-2 “Apples are better than oranges”

Mixing Models

Pairwise S2 “Tracks 1 and 2 swapped identities”

k-subset Sk “Confusion at tracks {1,2,3,4,5}”

Associated subgroup of the Sn

Observation Models

Singletrack Sn-1 “Alice is at track 2”

Multitrack Sn-k “Alice is at track 2, Bob is at track 3”

Bluetooth SkxSn-k “Red team is at tracks {1,3,5,6,8,9}”

Pairwise ranking Sn-2 “Apples are better than oranges”

Mixing Models

Pairwise S2 “Tracks 1 and 2 swapped identities”

k-subset Sk “Confusion at tracks {1,2,3,4,5}”

Indicator function of of SkxSn-k is 
the convolution of indicators 

of Sk and Sn-k
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Generalized Independence
Observation: We care: 

more about interactions between first and second place, and 

less about interactions between first and last place.

Independence allows us to capture something like this, 
but full independence is not appropriate for ranking:

1st-order marginals
“Guava is ranked 5th

with zero probability”

“Guava is ranked 6th

with some probability”

Generalized Independence: Can we exploit 
some kind of alternative structure?

Objects

R
a

n
k

s

1st place
2nd place

(apples,bananas,coconuts…)
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Rank Independence
Candidate idea: Instead of factoring into independent 
distributions over ranks, factor into distributions over 
relative ranks

Example: 

= [7 3 2 6 5 4 8 1 9]

¿ = [1 2 3 4]

46

Define (1,…,p) and (p+1,…n) to be rank independent if:

Candidate idea: Instead of factoring into independent 
distributions over ranks, factor into distributions over 
relative ranks

Example: 

= [7 3 2 6 5 4 8 1 9]

¿ = [1 2 3 4]

Relative ranking of ¿ in :

Definition:



Rank Independence

Rank independence is a strict generalization of 
independence

The joint distribution h can also be written as a 
convolution:

Some connections to Radon transforms…
47

Rank independence: 

Does rank independence hold in real ranked data?

Can we exploit it for fast inference?

Are there conditional generalizations of rank independence?

(think of shuffling two independent 
permutations together)



Generalization to unseen objects

Consider a distribution P over user preference rankings on 
fruits:

How can we modify P to include a never-before 
encountered object?

What if we know that the new object is a citrus fruit?
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Citrus fruits
Generalization to unseen objects:

Allow for objects to be associated with side information (features)

Allow for observation models to depend on features



Is MAP inference easier given a bandlimited function?

Optimizing a 0th-order (constant) function is trivial…

Optimizing a 1st-order function is reduces to bipartite 
matching and can be done in polynomial time…

Unfortunately:

Optimization

Theorem: Any instance of the traveling salesman 
problem can be reduced to optimizing a second-
order function on permutations in polynomial time.

permutations

49

Optimization: Can we formulate Fourier domain 
optimization algorithms that work well in practice?


