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Basic Facts 1

Permutations are bijections π : {1, . . . , n} → {1, . . . , n}

Set of permutations forms the symmetric group Sn

Rankings correspond to permutations mapping items to ranks

With-ties ranking e.g., 1 ≺ 2, 3 ≺ 4 correspond to cosets of
the symmetric group Snπ0 ⊂ Sn.

Incomplete rankings e.g., 1 ≺ 4 correspond to a disjoint union
of cosets A ⊂ Sn.
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Basic Facts 2

We have m permutations D = {π1, . . . , πm} corresponding to
preferences drawn from a population (people, computer
programs, etc.)

The population defines a distribution p0 on permutations that
is the main object of interest

Censoring effect replaces permutations by with-ties or
incomplete ratings πi 7→ Ai ⊂ Sn

q(Ai |πi ) ∝ 1{πi∈A1}q(π1|A1)q(A1).

Collaborative filtering example: users drawn from a population
submitting censored versions (with-ties and incomplete) of
their true but unknown preferences.
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Basic Facts 3

Ai ∼ q(·|πi ) ∼ p0

The observed censored data Ai ⊂ Sn typically increses in size
as n increases.

Estimate p0 given the censored observations A1, . . . ,Am

Some assumptions need to be made on censoring model q

(censoring patterns are not systematic)
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The Mallows Model for Permutations

parametric location-spread model on fully ranked data

pµ,c(π) = ψ−1(c) exp (−c d(π, µ)) π, µ ∈ Sn c ∈ R+

d(π, σ) Kendall’s tau

Analogous to the normal distribution but lacks many of its
nice properties

Normalization term ψ has closed form and does not depend
on the location parameter
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Mallows Model and the Permutation Polytope
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The Mallows model is often unrealistic and impractical

Unimodal parametric shape is too restricted

MLE involves impossible discrete search (for large n)

Many extensions have been proposed by exploring other
exponential forms (Babington Smith, Bradley Terry, etc.).
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Luce-Plackett/Thurstone Models

A different approach: multi-stage ranking models

top ranked item is sampled

p(π(i) = 1) = νi/

n
∑

j=1

νj

given identity of items ranked 1, . . . , j − 1, the next ranked
item is sampled from the conditional distribution

p(π(k) = j |π(i1) = 1, . . . , π(ij−1) = j−1) = νk/
∑

l :j 6∈{i1,...,ij−1}

νl

Each item is assigned a parameter controlling its popularity.
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Handling With-Ties and Incomplete Rankings

Approach 1: define new distance or dissimilarity functions on
with-ties and incomplete rankings and proceed with distance based
models e.g., Mallows model

Expected distance with respect to distribution r

d∗(A ;B) =
1

|A| · |B |

∑

π∈A

∑

σ∈B

r(π)r(σ)d(π, σ)

Hausdorff distance

d∗(A,B) = max

{

max
π∈A

min
σ∈B

d(π, σ),max
σ∈B

min
π∈A

d(π, σ)

}

In both cases d∗ can be efficiently computed but resulting models
lack interpretation
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Handling With-Ties and Incomplete Rankings 2

Assume observed data Ai ⊂ Sn is a censored form of πi ∈ Ai .
Proceed with standard estimation techniques for missing data
(observed likelihood, etc.).

Strong interpretation

What are appropriate assumptions on censoring model?

Estimation and inference often intractable
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What Does the Data Look Like

Using

T ∗(A,B) =
1

|A| · |B |

∑

π∈A

∑

σ∈B

T (π, σ)

embed D = {A1, . . . ,Am} by multidimensional scaling
h : (Sn,T

∗) → (R2, ‖ · ‖2) in order to minimize distortion

R(h) =
∑

i ,j

(T ∗(Ai ,Aj) − ‖h(Ai) − h(Aj)‖)
2.

Estimate density of embedded points {h(A1), . . . , h(Am)}
using kernel density estimation in (R2, ‖ · ‖2).
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APA votes
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Jester
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Movie Ranking
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Non-Parametric Smoothing

NP alternative that does not involve parametric optimization

p̂(π) =
1

m

m
∑

j=1

Kh(π, πi ) =
1

mψ(c)

m
∑

j=1

exp (−cd(π, πi ))

p̂(Sλπ) =
1

mψ(c)

m
∑

j=1

∑

τ∈Sλπ

exp (−cd(τ, πi )) .

Partially ranked training data {Sγ1
π1, . . . ,Sγmπm} may be

expressed as a latent variable (say MCAR uniformly)

p̂(Sλπ) =
1

mψ(c)

m
∑

i=1

1

|Sγi
|

∑

µ∈Sλπ

∑

τ∈Sγi
πi

exp(−c d(µ, τ))
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Mallows Model vs. NP Smoothing
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Visualizing estimated probabilities for EachMovie data by permutation

polytopes: Mallows model (left) and non-parametric model for c = 2

(right). The Mallows model locates a single mode at 2|1|3|4 while the

non-parametric estimator locates the global mode at 2|3|1|4 and a

second local mode at 4|1|2|3.
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Open Problems 1

Censoring model π 7→ Ai is typically unknown

q(A|π) ∝ 1{π∈A}q(π|A)q(A).

Estimate q(π|A) and q(A) from data.

What is the relationship between q and estimation accuracy
(asymptotic variance, conditions on consistency)

In survey design q is determined by the survey policy. When
designing a survey, what tie or incomplete structures should
be chosen?

Guy Lebanon Probabilistic Models for Permutations



Open Problems 1

Censoring model π 7→ Ai is typically unknown

q(A|π) ∝ 1{π∈A}q(π|A)q(A).

Estimate q(π|A) and q(A) from data.

What is the relationship between q and estimation accuracy
(asymptotic variance, conditions on consistency)

In survey design q is determined by the survey policy. When
designing a survey, what tie or incomplete structures should
be chosen?

Guy Lebanon Probabilistic Models for Permutations



Open Problems 1

Censoring model π 7→ Ai is typically unknown

q(A|π) ∝ 1{π∈A}q(π|A)q(A).

Estimate q(π|A) and q(A) from data.

What is the relationship between q and estimation accuracy
(asymptotic variance, conditions on consistency)

In survey design q is determined by the survey policy. When
designing a survey, what tie or incomplete structures should
be chosen?

Guy Lebanon Probabilistic Models for Permutations



Open Problems 2

Models based on Kendall’s tau or similar distances are
rank-symmetric

d(1|2|3|4, 2|1|3|4) = d(1|2|3|4, 1|2|4|3).

Items at top ranks may be more important to match than at
bottom ranks.

Items at top and bottom ranks may be more important to
match than middle ranks.

Develop models with non symmetric distances such that when
learned from data will be more accurate in the correct ranks
e.g., shortest path on polytope with certain weight structure.
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Open Problems 3

Permutation models have mostly ignored covariate
information.

For example in movie recommendation

rater covariates: age and gender of rater in movie
recommendations
item covariates: genre, director, year, etc. in movie
recommendations

Develop models that take one or both forms of covariates into
account.
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Thank You!

Collaborators: Bill Cleveland, Josh Dillon, Paul Kidwell, Yi Mao

IEEE Trans on Visualization and Computer Graphics 14(6) 2008

Journal of Machine Learning Research 9, 2008

Advances in Neural Information Processing Systems 20, 2008
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