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Overview
Background

The consensus ranking problem
The code of a permutation
The Mallows and GM Models

Exact algorithm for ML estimation
Other statistical models on Sn

Extensions
“Model” selection

← An old problem
← The star of the show
← Statistical formulation
Theoretical solution
...why Mallows?
Where else can it work?
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Outline

Background
The consensus ranking problem
The code of a permutation
The Mallows and GM Models

Exact algorithm for ML estimation

Other statistical models on Sn

Extensions
“Model” selection
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The Consensus Ranking problem

Problem Given a set of rankings {π1, π2, . . . πN} ⊂ Sn find the
consensus ranking (or central ranking) π0 such that

π0 = argmin
Sn

N∑

i=1

d(πi , π0)

for d = distance on Sn the set of permutations of n objects
Relevance

◮ voting schemes Ireland, APA, panels

◮ aggregating user preferences (e.g in marketing)

◮ subproblem of other problems leaning to rank [Cohen,
Schapire,Singer 99]

Equivalent to finding the “mean” or “median” of a set of points
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The Inversion distance

Definition The Inversion distance
= the number of pairs on which π and π′ disagree
= the minimum number of adjacent transpositions to turn π into π′

also called Kendall, or Kemeny distance

Example π−1 = [ 1 2 3 4 ], (π′)−1 = [ 3 1 2 4 ] ⇒ d = 2

Fact: Consensus ranking for the inversion distance is NP hard

This talk Will make the problem even harder by phrasing it as ML
estimation of a statistical model over Sn
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A decomposition for the inversion distance

d(π, id) = number inversions between π and id

id = identity permutation

d(π, id) = # (inversions w.r.t 1)
︸ ︷︷ ︸

V1

+ # (inversions w.r.t 2)
︸ ︷︷ ︸

V2

+ # ( inversions w.r.t 3)
︸ ︷︷ ︸

V3

+ . . .

Vj = number inversions where j is disfavored
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The code V1:n−1

Vj = number inversions where j is disfavored
Definition V1:n−1(π) is called the code of permutation π

◮ V1:n−1(id) = 0
◮ V1:n−1(π) uniquely determines π

Example The code of π−1 = [3 5 1 4 2 ]

3 5 1 4 2 V1 = 2

3 5 − 4 2 V2 = 3

3 5 − 4 − V3 = 0

− 5 − 4 − V4 = 1

− 5 − − − V5 = 0
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Reconstructing π from V

π−1 = [6 1 3 5 2 4]
V = 1 3 1 2 1

V1 = 1 · 1 · · · · pay cost θ1V1

V2 = 3 · 1 · · 2 · pay cost θ2V2

V3 = 1 · 1 3 · 2 · pay cost θ3V3

V4 = 2 · 1 3 · 2 4 pay cost θ4V4

V5 = 1 · 1 3 5 2 4 pay cost θ5V5

V6 = 0 6 1 5 3 2 4
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A parametrized divergence between permutations
◮ The Inversion distance to id

d(π, id) =
n−1∑

j=1

Vj(π)

◮ The inversion distance between π, π′

d(π, π′) = d(π(π′)−1) =
n−1∑

j=1

Vj(π(π′)−1)

◮ Definition Generalized Inversion “distance”

d~θ
(π, π′) =

n−1∑

j=1

θjVj(π(π′)−1) θj ≥ 0
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The Mallows Model
◮ Definition The Mallows model is a distribution over Sn

defined by

Pπ0,θ(π) =
1

Zθ

exp

(

−θ

n−1∑

j=1

Vj(ππ−1
0 )

)

◮ π0 is the central permutation
it is the unique mode of Pπ0,θ whenever θ > 0

◮ θ ≥ 0 is a dispersion parameter

◮ for θ = 0, Pπ0,0 is the uniform distribution over Sn

◮ Pπ0,θ is a product of independent univariate distributions

Pπ0,θ ∝
n−1∏

j=1

e−θVj and Z =
n−1∏

j=1

Zj(θ) =
n−1∏

j=1

1− e−θ(n−j+1)

1− e−θ
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The Generalized Mallows Model (GMM)

Mallows model Pπ0,θ(π) = 1
Zθ

exp
(

−θ
∑n−1

j=1 Vj(ππ−1
0 )
)

An immediate generalization θ → ~θ = (θ1, θ2, . . . θn−1)

Definition The generalized Mallows Model (GMM) [Fligner,
Verducci 86]

P
π0,~θ

(π) =
1

Z~θ

exp

[

−
n−1∑

j=1

θjVj(ππ−1
0 )

]
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The estimation problem
◮ Data {πi}i=1:N i.i.d. sample from Sn

◮ Model Mallows Pπ0,θ or GMM P
π0,~θ

◮ Consensus ranking problem Set θ = 1 estimate π0.

This problem is NP hard.

◮ Parameter estimation problem: Assume π0 known,
estimate the parameter θ or ~θ.

This problem is easy (convex, univariate)

◮ General ML estimation: estimate both π0 and θ or ~θ.

...at least as hard as consensus ranking. Will show that it’s no harder.
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Outline

Background
The consensus ranking problem
The code of a permutation
The Mallows and GM Models

Exact algorithm for ML estimation

Other statistical models on Sn

Extensions
“Model” selection
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The likelihood
Mallows

1

N
lnP(π1:N ; θ, π0) = −θ

n−1∑

j=1

∑N
i=1 Vj(πiπ

−1
0 )

N
+

n−1∑

j=1

lnZj(θ)

Generalized Mallows
1

N
lnP(π1:N ; ~θ, π0) = −

n−1∑

j=1

[θj

∑N
i=1 Vj(πiπ

−1
0 )

N
︸ ︷︷ ︸

V̄j

+ lnZj(θj)]

◮ Likelihood is separable and concave in each θj =⇒ estimation of θj

is straightforward

◮ No closed form solution
◮ Numerical convex minimization of θj V̄j + lnZj(θj)

◮ For Mallows Model

◮ Numerical convex minimization of θ
∑n−1

j=1 V̄j +
∑n−1

j=1 Zj(θ)
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Sufficient statistics
◮ Definition Preference matrix Q ∈ R

n×n

Qkl =
1

N

N∑

i=1

1[k≺πi
l ]

◮ Qkl is the frequency of k ≺ l in the data

◮ Examples

θ = 1 θ = 0.3 θ = 0.03
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Consensus Ranking: main result
◮ π0

ML = argmin
π0

∑n−1
j=1

P

i Vj (ππ−1
0 )

N
= argmin

π0

∑n−1
j=1 V̄j(π0)

Theorem[M,Phadnis,Patterson,Bilmes 07] The optimal π0
ML can

be found exactly by a branch-and-bound (B&B) algorithm
searching on matrix Q.

◮ . . . the search may not be tractable

◮ Intuition
◮ The cost equals Sum (Lower triangle (Q permuted by π0))
◮ Columns of lower triangle = V̄j(π0)



: Stagewise Ranking NIPS AML 12/11/08
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Simultaneous estimation of ~θ and π0

Cost
n−1∑

j=1

[

θj

∑

i Vj(πiπ
−1
0 )

N
+ lnZj(θj)

]

Theorem [MPPB07] The optimal π0
ML and ~θML can be found

exactly by a B&B algorithm searching on matrix Q.

◮ same search tree as before

◮ at a node of depth j , an additional estimation of θj is needed
(constant computational increase per node)
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What makes the search hard (or tractable)?
Running time = time( compute Q ) + time( B&B )

O(n2N) independent of N

◮ Number nodes explored by B&B
◮ independent of sample size N
◮ independent of π0

◮ depends on dispersion ~θML

◮ ~θ = 0 ⇒ uniform distribution
◮ all branches have equal cost

◮ θML
1:n−1 large ⇒ likelihood decays fast around π0

ML ⇒ pruning
efficient

◮ Theoretical results
◮ e.g if θj > Tj , j = 1 : n − 1, then B&B search defaults to

greedy

◮ Practically
◮ diagnoses possible during B&B run
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Related work

ML Estimation

[Fligner,Verducci 86] ~θ estimation; heuristic for π0

FV algorithm

1. Compute sj , j = 1 : n column sums of Q

2. Sort (sj)
n
j=1 in increasing order; π0 is sorting permutation
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Related work (2)
Consensus Ranking (θ = 1)

[CSS99] CSS algorithm = greedy search on Q

improved by extracting strongly connected components

[Ailon,Newman,Charikar 05] Randomized algorithm guaranteed

11/7 factor approximation (ANC)

[Mohri, Ailon 08] linear program

[Mathieu, 07] (1 + ǫ) approximation, time O(n6/ǫ + 22O(1/ǫ)
)

[Davenport,Kalagnanan 03] Heuristics based on edge-disjoint
cycles used by our B&B implementation

[Conitzer,D,K 05] Exact algorithm based on integer
programming, better bounds for edge disjoint cycles
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Is B&B practical?

To guarantee optimality we need lower bounds for the
cost-to-go (admissible heuristics)

[MPPB07] admissible heuristic for Mallows Model

[Mandhani,M 09] improved heuristic for Mallows model, first
admissible heuristic for GMM model
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Experiments, estimate Mallows model

Data from Mallows model with n = 100, N = 100, various θ’s

Inversion distance between B&B result and FV, DK, Random
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Experiments, estimate Mallows model

Data from Mallows model with n = 100, N = 100, various θ’s

Nodes explored as a multiple of greedy search
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Experiments, estimate Mallows model

Data = Q with random entries in [0, 1], variable n

Relative improvement in cost between of B&B over the other
algorithms
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Experiments with GMM

Data from GMM with θj decreasing linearly, N = 1000

Nodes explored as multiple of minimum possible
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Experiments with GMM

Data from GMM with θj decreasing linearly, N = 1000

Running time
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Experiments with GMM

Data from GMM with θj decreasing linearly, N = 1000

Running time
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Experiments with GMM

Data from GMM with θj decreasing linearly, N = 1000

Relative improvement (%) of B&B over other algorithms
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Experiments with GMM

Data from GMM with θj decreasing linearly, N = 1000

Inversion distance between B&B result and FV, DK, Random
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Outline

Background
The consensus ranking problem
The code of a permutation
The Mallows and GM Models

Exact algorithm for ML estimation

Other statistical models on Sn

Extensions
“Model” selection
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Other statistical models on permutations

Several “natural” parametric distributions on Sn exist.

◮ P(π) ∝ exp
(

−
∑n−1

j=1 θjVj(π)
)

Generalized Mallows

◮ P(π) ∝
∏n−1

j=1 βjVj (π) with βj : the distribution of Vj Full model

◮ P(π) ∝ exp
(

−
∑

i<j αj1[i≻j ]

)

Bradley-Terry

Mallows ⊂ GMM ⊂ Full ⊂ Bradley-Terry

◮ item j has weight wj > 0 Plackett-Luce

P([itema, itemb, . . . itemn]) ∝
wa

∑

i ′ wi ′

wb
∑

i ′ wi ′ − wa

. . .

◮ item j has utility µj Thurstone

sample uj = µj + ǫj , j = 1 : n independently
sort (uj)j=1:n ⇒ π
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GMM Full B-T P-L T
Tractable Z yes yes no no no

“Easy” param yes sometimes no no Gauss
estimation

Tractable marginals yes yes no no Gauss
Params yes yes no no Gauss

“interpretable”

The GM model’s advantage comes from the code: the Vj ’s are
functionally independent
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The consensus ranking problem
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Extensions

Can we extend the exact π0, ~θ estimation to other classes of
problems?

◮ Generalized Mallows GMM X

◮ Top-t rankings

◮ Infinite permutations X

◮ “Model selection”: what are the stages? X

◮ Signed permutations . . .
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Infinite permutations
◮ Domain of items to be ranked is countable, i.e n → ∞

◮ Observed the top t ranks of an infinite permutation

◮ Examples
◮ Google: UW Statistics

www.stat.washington.edu/

www.stat.washington.edu/www/jobs/

www.stat.wisc.edu/

www.washington.edu/admin/factbook/

...
◮ searches in data bases of biological sequences (by e.g Blast,

Sequest, etc)
◮ open-choice polling, ”grassroots elections”

◮ Mathematically more natural
◮ for large n, models should not depend on n
◮ models can be simpler, more elegant than for finite n
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Definitions

Assume we have

◮ a countable set of items

◮ an infinite central ranking π0
−1 = [itema, itemb, itemc , . . .]

◮ a top-t ranking: π−1(1 : t) = [ item1, item2, . . . itemt ]

◮ Define sj + 1 = rank of itemj of π in π0

◮ relation to Vj : sj(π) = Vj(π
−1)

◮ The divergence becomes

d~θ
(π, π0) =

t∑

j=1

θjs j(π | π0)
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The Infinite Generalized Mallows model (IGMM)

For simplicity we assume t is fixed and the same for all observed
top-t rankings.

◮ Definition The Infinite GM model [MBao08] is a
distribution over top-t rankings with

P
π0,~θ

(π) =
1

∏t

j=1 Z (θj)
exp

[

−
t∑

j=1

θjsj(π | π0)

]

◮ π0 is a discrete infinite “location” parameter

◮ θ1:t > 0 dispersion parameter

◮ product of independent univariate distributions

◮ P
π0,~θ

(π) is well defined marginal over the coset defined by π

◮ Normalization constant Z (θj) = 1/(1− e−θj )
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Infinite Mallows model

Definition The Infinite Mallows Model

Pπ0,θ(π) =
1

Z t(θ)
exp

[

−θ
t∑

j=1

sj(π | π0)

]

it is the IGMM with θ1 = θ2 = . . . = θ
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Infinite Mallows: ML estimation

Theorem[M,Bao 08]

◮ Sufficient statistics
n # distinct items observed in data
T # total items observed in data
Q = [Qkl ]k,l=1:n frequency of k ≺ l in data
q = [qk ]k=1:n frequency of k in data

R = q1T − Q sufficient statistics matrix

◮ The optimal π0
ML can be found exactly by a B&B algorithm

searching on matrix R .

◮ the cost is Lπ0
(R) = Sum (Lower triangle (R permuted by π0))

◮ The optimal θML is given by

θ = log (1 + T/Lπ0
(R))
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Infinite GMM: ML estimation

Theorem [M,Bao 08]

◮ Sufficient statistics
n # distinct items observed in data
Nj # total permutations with length ≥ j

Q(j) = [Q
(j)
kl ]k,l=1:n, j=1:t frequency of 1[π(k)=j , π(l)<j ] in data

q(j) = [q
(j)
k ]k=1:n frequency of k in rank j in data

R (j) = q(j)1T − Q(j) sufficient statistics matrices

◮ For θ1:t given, the optimal π0
ML can be found exactly by a

B&B algorithm searching on matrix R(~θ) =
∑

j θjR
(j).

◮ the cost is Lπ0
(R) = Sum(Lower triangle(R(~θ) permuted by

π0))

◮ The optimal θj
ML is given by θj = log

(
1 + Nj/Lπ0

(R (j))
)

Hence, alternate maximization will converge to local optimum
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ML Estimation: Remarks
◮ sufficient statistics Q, q, R finite for finite sample size N

but don’t compress the data

◮ data determine only a finite set of parameters
◮ π0 restricted to the observed items
◮ ~θ restricted to the observed ranks
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◮ Similar result holds for finite domains
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Model selection: What are the stages?
◮ θjVj = penalty for placing j-th item, after items 1 : j − 1 are

placed
◮ One can also define θjV

reverse
j = penalty for j-th item, after

items j + 1 : n are placed
The GMM model based on V reverse

j has similar properties to
the standard GMM

◮ In general, given some permutation σ ∈ Sn one can define

θjV
σ
j = penalty for placing σ(j) after items σ1:j−1 are placed

◮ σ represents the ordering of the stages
◮ Each σ defines a model class {Pσ

π0,~θ
| π0 ∈ Sn, ~θ ∈ [0,∞)n}

◮ Can we estimate σ and π0 from data?
This is a “model selection” + estimation problem

◮ Identifiability Can the data distinguish between different σ’s ?
◮ Algorithm Can we find an algorithm to solve the problem?
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Identifiability: A few results
◮ Mallows → not identifiable

◮ Generalized Mallows
◮ sometimes identifiable (Ex:

n = 3, σ = π0 = id, θ1 ≫ 0, θ2 = 0)
◮ sometimes not identifiable

Qij = 0.5 for all j is always unidentifiable
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Estimation: a few results
◮ V σ

j can be defined consistently for all σ and π0

◮ for general σ sufficient statistics not known

◮ for σ skew-merged
◮ [Qij ] are sufficient statistics
◮ a B&B algorithm can estimate exactly σ, π0, θ
◮ Algorithm examines both column and row sums of Q
◮ strictly more complexity than the standard estimation

A skew-merged permutation:

σ = [ 1 5 4 2, 3 ] ⇒ 1 2 3 4 5

picks items from the “free ends” of the sequence only
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Conclusions
◮ B&B-type algorithm

◮ are theoretical solutions to estimation, consensus ranking
◮ but are also practical when a mode exists

◮ Mallows, GMM
◮ are simple models with good properties
◮ well understood now
◮ ⇒ to be used as components for more realistic data

generation mechanisms (mixtures, kernel density estimation,
. . . )

◮ The code grants GM it’s tractability
◮ because the Vj ’s are independent
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