Algebraic models for multilinear dependence

Jason Morton
Stanford University

December 11, 2008 NIPS

Joint work with Lek-Heng Lim of Berkeley

Univariate cumulants

Mean, variance, skewness and kurtosis describe the shape of a univariate distribution.

Covariance matrices

The covariance matrix partly describes the dependence structure of a multivariate distribution.

- PCA
- Gaussian graphical models
- Optimization-bilinear form computes variance

But if the variables are not multivariate Gaussian, not the whole story.

Even if marginals normal, dependence might not be

Covariance matrix analogs: multivariate cumulants

- The cumulant tensors are the multivariate analog of skewness and kurtosis.
- They describe higher order dependence among random variables.
(1) Definitions: tensors and cumulants
(2) Properties of cumulant tensors
(3) Insights and models from algebraic geometry
(4) Algorithms from Riemannian geometry
(5) Potential applications

Symmetric tensors and actions

A tensor in coordinates is a multi-way array with a multilinear action.

- Tensor $\llbracket a_{i j k} \rrbracket \in \mathbb{R}^{r \times r \times r}$ is symmetric if it is invariant under all permutations of indices

$$
a_{i j k}=a_{i k j}=a_{j k}=a_{j k i}=a_{k j j}=a_{k j i} .
$$

Comes with an action:

- Symmetric multilinear matrix multiplication. If Q is an $n \times r$ matrix, T an $r \times r \times r$ tensor, make an $n \times n \times n$ tensor $K=(Q, Q, Q) \cdot T$ or just $Q \cdot T$ where

$$
K_{\alpha \beta \gamma}=\sum_{i, j, k=1}^{r, r, r} q_{\alpha i} q_{\beta j} q_{\gamma k} t_{i j k} .
$$

- If T is $r \times r$ and Q is $n \times r$, we have $Q \cdot T=Q T Q^{\top}$; for $d>2$ multiply on $3,4, \ldots$ "sides" of the multi-way array.

Moments and Cumulants are symmetric tensors

Vector-valued random variable $\mathbf{x}=\left(X_{1}, \ldots, X_{n}\right)$.
Three natural d-way tensors are:

- The d th non-central moment $s_{i, 1, \ldots, s_{d}}$ of \mathbf{x} :

$$
S_{d}(\mathbf{x})=\left[\mathbb{E}\left(x_{i_{1}} x_{i_{2}} \cdots x_{i d}\right)\right]_{i_{1}, \ldots, i_{d}=1}^{n} .
$$

- The d th central moment $S_{d}(\mathbf{x}-\mathbb{E}[\mathbf{x}])$, and
- The d th cumulant $\kappa_{i_{1} \ldots i_{d}}$ of \mathbf{x} :

$$
K_{d}(\mathbf{x})=\left[\sum_{A_{1} \sqcup \ldots \sqcup A_{q}=\left\{i_{1}, \ldots, i_{d}\right\}}(-1)^{q-1}(q-1)!s_{A_{1}} \ldots s_{A_{q}}\right]_{i_{1}, \ldots, i_{d}=1}^{n} .
$$

Measuring useful properties.

For univariate x, the cumulants $K_{d}(x)$ for $d=1,2,3,4$ are

- expectation $\kappa_{i}=\mathbb{E}[x]$,
- variance $\kappa_{i i}=\sigma^{2}$,
- skewness $\kappa_{i i i} / \kappa_{i i}^{3 / 2}$, and
- kurtosis $\kappa_{i i i i} / \kappa_{i i}^{2}$.

The tensor versions are the multivariate generalizations

$$
\kappa_{i j k}
$$

they provide a natural measure of non-Gaussianity.

Alternative Definitions of Cumulants

- In terms of log characteristic function,

$$
\kappa_{j_{1} \cdots j_{d}}(\mathbf{x})=(-1)^{d} \frac{\partial^{d}}{\partial t_{j_{1}}^{\alpha_{1}} \cdots \partial t_{j_{d}}^{\alpha_{d}}} \log \mathbb{E}\left(\left.\exp (i\langle\mathbf{t}, \mathbf{x}\rangle)\right|_{\mathbf{t}=\mathbf{0}}\right.
$$

- In terms of Edgeworth series,

$$
\log \mathbb{E}\left(\exp (i\langle\mathbf{t}, \mathbf{x}\rangle)=\sum_{\alpha=0}^{\infty} i^{|\alpha|} \kappa_{\alpha}(\mathbf{x}) \frac{\mathbf{t}^{\alpha}}{\alpha!}\right.
$$

where $\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right)$ is a multi-index, $\mathbf{t}^{\alpha}=t_{1}^{\alpha_{1}} \cdots t_{d}^{\alpha_{d}}$, and $\alpha!=\alpha_{1}!\cdots \alpha_{d}!$.

Properties of cumulants: Multilinearity

- Multilinearity: if \mathbf{x} is a \mathbb{R}^{n}-valued random variable and $A \in \mathbb{R}^{m \times n}$

$$
K_{d}(A \mathbf{x})=A \cdot K_{d}(\mathbf{x})
$$

where - is the multilinear action.

- This makes factor models work: $\mathbf{y}=A \mathbf{x}$ implies $K_{d}^{Y}=A \cdot K_{d}^{X}$;
- For example, $K_{2}^{Y}=A K_{2}^{X} A^{\top}$.
- Independent Components Analysis finds an A to approximately diagonalize K_{d}^{X}.

Properties of cumulants: Independence

Independence:

- $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}$ are mutually independent of variables $\mathbf{y}_{1}, \ldots, \mathbf{y}_{k}$, we have
$K_{d}\left(\mathbf{x}_{1}+\mathbf{y}_{1}, \ldots, \mathbf{x}_{k}+\mathbf{y}_{k}\right)=K_{d}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right)+K_{d}\left(\mathbf{y}_{1}, \ldots, \mathbf{y}_{k}\right)$.
- $K_{i_{1}, \ldots, i_{n}}(\mathbf{x})=0$ whenever there is a partition of $\left\{i_{1}, \ldots, i_{n}\right\}$ into two nonempty sets I and J such that \mathbf{x}_{I} and \mathbf{x}_{J} are independent.
- Why we want to diagonalize in independent component analysis
- Exploitable in other sparse cumulant techniques

Properties of cumulants: Vanishing and Extending

- Gaussian: If \mathbf{x} is multivariate normal, then $K_{d}(\mathbf{x})=0$ for all $d \geq 3$.
- Why you might not have heard of them: for Gaussians, the covariance matrix does tell the whole story.
- Support: There are no distributions with a bound n so that

$$
K_{d}(\mathbf{x}) \begin{cases}\neq 0 & 3 \leq d \leq n \\ =0 & d>n\end{cases}
$$

- Parametrization is trickier when K_{2} doesn't tell the whole story.

Making cumulants useful, tractable and estimable

Cumulant tensors are a useful generalization, but too big. They have (\#vars+d-1) quantities, too many to

- learn with a reasonable amount of data,
- store, and
- optimize.

Needed: small, implicit models analogous to PCA

PCA: eigenvalue decomposition of a positive semidefinite real symmetric matrix. We need a tensor analog.

But, it isn't as easy as it looks...

Tensor decomposition

Three possible generalizations are the same in the matrix case but not in the tensor case. For a $n \times n \times n$ tensor T,
Name minimum r such that

$$
\begin{array}{ll}
\text { Tensor rank } \quad \begin{array}{l}
T=\sum_{i=1}^{r} u_{i} \otimes v_{i} \otimes w_{i} \\
\text { not closed }
\end{array}
\end{array}
$$

Border rank
$T=\lim _{\epsilon \rightarrow 0}\left(S_{\epsilon}\right), \operatorname{Trank}\left(S_{\epsilon}\right)=r$ closed but hard to represent; defining equations unknown.

Multilinear rank $\quad T=(A, B, C) \cdot K, K \in \mathbb{R}^{r \times r \times r}, A, B, C \in \mathbb{R}^{n \times r}$, closed and understood.

Multilinear rank factor model

Let $\mathbf{y}=Y_{1}, \ldots, Y_{n}$ be a random vector. Write the d th order cumulant $K_{d}(\mathbf{y})$ as a best r-multilinear rank approximation in terms of the cumulant $K_{d}(\mathbf{x})$ of a smaller set of r factors \mathbf{x} :

$$
K_{d}^{Y} \approx Q \cdot K_{d}^{X}
$$

where

- Q is orthonormal, and Q^{\top} projects to the factors
- The column space of Q defines the s-dim subspace which best explains the d th order dependence.
- In place of eigenvalues, we have the core tensor K_{d}^{X}, the cumulant of the factors.

Have model, need loss and algorithm.

Principal cumulant components analysis

- Want factors/principal components that account for variation in all cumulants simultaneously

$$
\min _{Q \in \mathrm{O}(n, r), \mathcal{C}_{d} \in \mathrm{~S}^{d}\left(\mathbb{R}^{r}\right)} \sum_{d=1}^{\infty} \alpha_{d}\left\|\hat{K}_{d}(\mathbf{y})-Q \cdot \mathcal{C}_{d}\right\|^{2}
$$

- $\mathcal{C}_{d} \approx \hat{K}_{d}(\mathbf{x})$ not necessarily diagonal.
- Appears intractable: optimization over infinite-dimensional manifold

$$
\mathrm{O}(n, r) \times \prod_{d=1}^{\infty} \mathrm{S}^{d}\left(\mathbb{R}^{r}\right)
$$

- Reduces to optimization over a single Grassmannian $\operatorname{Gr}(n, r)$ of dimension $r(n-r)$,

$$
\max _{Q \in \operatorname{Gr}(n, r)} \sum_{d=1}^{\infty} \alpha_{d}\left\|Q^{\top} \cdot \hat{\mathcal{K}}_{d}(\mathbf{y})\right\|^{2}
$$

- In practice $\infty=3$ or 4 .

Geometric insights

- Secants of Veronese in $S^{d}\left(\mathbb{R}^{n}\right)$ and rank subsets— difficult to study.
- Symmetric subspace variety in $\mathrm{S}^{d}\left(\mathbb{R}^{n}\right)$ - closed, easy to study.
- Stiefel manifold $\mathrm{O}(n, r)$ is set of $n \times r$ real matrices with orthonormal columns.
- Grassman manifold $\operatorname{Gr}(n, r)$ is set of equivalence classes of $\mathrm{O}(n, r)$ under left multiplication by $\mathrm{O}(n)$.
- Parametrization of $S^{d}\left(\mathbb{R}^{n}\right)$ via

$$
\operatorname{Gr}(n, r) \times \mathrm{S}^{d}\left(\mathbb{R}^{r}\right) \rightarrow \mathrm{S}^{d}\left(\mathbb{R}^{n}\right)
$$

Coordinate-cycling heuristics

- Alternating Least Squares (i.e. Gauss-Seidel) is commonly used for minimizing

$$
\Psi(X, Y, Z)=\|\mathcal{A} \cdot(X, Y, Z)\|_{F}^{2}
$$

for $\mathcal{A} \in \mathbb{R}^{I \times m \times n}$ cycling between X, Y, Z and solving a least squares problem at each iteration.

- What if $\mathcal{A} \in \mathrm{S}^{3}\left(\mathbb{R}^{n}\right)$ and

$$
\Phi(X)=\|\mathcal{A} \cdot(X, X, X)\|_{F}^{2} ?
$$

- Present approach: disregard symmetry of \mathcal{A}, solve $\Psi(X, Y, Z)$, set

$$
X_{*}=Y_{*}=Z_{*}=\left(X_{*}+Y_{*}+Z_{*}\right) / 3
$$

upon final iteration.

- Better: L-BFGS on Grassmannian.

Newton/quasi-Newton on a Grassmannian

 [Savas-Lim]- Objective $\Phi: \operatorname{Gr}(n, r) \rightarrow \mathbb{R}, \Phi(X)=\|\mathcal{A} \cdot(X, X, X)\|_{F}^{2}$.
- \mathbf{T}_{X} tangent space at $X \in \operatorname{Gr}(n, r)$

$$
\mathbb{R}^{n \times r} \ni \Delta \in \mathbf{T}_{X} \quad \Longleftrightarrow \quad \Delta^{\top} X=0
$$

(1) Compute Grassmann gradient $\nabla \Phi \in \mathbf{T}_{X}$.
(2) Compute Hessian or update Hessian approximation

$$
H: \Delta \in \mathbf{T}_{x} \rightarrow H \Delta \in \mathbf{T}_{x} .
$$

(3) At $X \in \operatorname{Gr}(n, r)$, solve

$$
H \Delta=-\nabla \phi
$$

for search direction Δ.
(1) Update iterate X : Move along geodesic from X in the direction given by Δ.

L-BFGS on Grassmannian

- BFGS update must be adjusted: on the Grassmannian, the vectors are defined on different points belonging to different tangent spaces.
- Parallel transport along a geodesic to new position.
- Limited memory version.

Convergence

- Compares favorably with Alternating Least Squares.

Mean-variance portfolio optimization

Markowitz mean-variance portfolio optimization defines risk to be variance.

$$
\min w^{\top} K_{2}(\mathbf{x}) w \quad \text { s.t. } \quad w^{\top} \mathbb{E}[\mathbf{x}]>\underline{r}
$$

Evidence indicates that investors optimizing variance with respect to the covariance matrix accept unwanted skewness and kurtosis risk.

- Extreme example: selling out-of-the-money puts looks safe and uncorrelated
- Many hedge funds essentially do this

Muti-moment portfolio optimization

So, take skewness and kurtosis into account in the objective.

- Need to use skewness K_{3} and kurtosis K_{4} tensors.
- Use low multilinear rank model to regularize and make optimization computable with many assets (linear vs. cubic)
With mean-zero returns in a \#assets= $m \times n=\#$ periods matrix A,
- Choose an s, need $m \times s$ orthonormal projector Q
- Approximate cumulant $n K_{d}=A^{\top} \cdot \Delta_{d, n} \approx Q \cdot C$
- Multilinear forms $w^{\top} \cdot K_{d} \approx w^{\top} Q \cdot \frac{1}{n} C$ give variance, skewness and kurtosis

Analogously to Eigenfaces,

Cumulants give features supplementing the PCA varimax subspace.

- In eigenfaces, we have a centered \#pixels $=n \times m=\#$ images matrix $A, m \ll n$.
- The eigenvectors of the covariance matrix K_{2}^{P} of the pixels are the eigenfaces.
- For efficiency, we compute the covariance matrix $K_{2}^{\text {Images }}$ of the images instead. The SVD gives both implicitly.

$$
\begin{gathered}
U S V^{\top}=\operatorname{svd}\left(A^{\top}\right) \\
m K_{2}^{\text {Images }}=A^{\top} A=U \wedge U^{\top} \\
n K_{2}^{\text {Pixels }}=A A^{\top}=V \Lambda V^{\top}
\end{gathered}
$$

Orthonormal columns of V, eigenvectors of K_{2}^{P}, are the eigenfaces.

we can compute Skewfaces,

Centered \#pixels $=n \times m=\#$ images matrix A.

- Let K_{3}^{P} be the (huge) third cumulant tensor of the pixels.
- Analogously, we want to compute it implicitly
- We just need the projector Π onto the subspace of skewfaces that best explain K_{3}^{P}.
Let $A^{\top}=U S V^{\top}$ with $\operatorname{dims}\left(m^{2}, m^{2}, m \times n\right)$.

$$
\begin{aligned}
n S_{3}^{\prime} & =A^{\top} \cdot \Delta_{n}=U \cdot S \cdot V^{\top} \cdot \Delta_{n} \\
m K_{3}^{P} & =A \cdot \Delta_{m}=V \cdot\left(S \cdot U^{\top} \cdot \Delta_{m}\right)
\end{aligned}
$$

Pick a small multilinear rank s. If $\left(S \cdot U^{\top} \cdot \Delta_{m}\right) \approx Q \cdot C_{3}$ for some $m \times s$ matrix Q and NON-diagonal core tensor C_{3},

$$
m K_{3}^{P} \approx V \cdot Q \cdot C_{3}=V Q \cdot C_{3}
$$

and $\Pi=V Q$ is our orthonormal-column projection matrix onto the 'skewmax' subspace.

and combine Eigen-, Skew-, and Kurto-faces.

Combine the information from multiple cumulants:

- Do the same for procedure for the kurtosis tensor (a little more complicated).
- Say we keep the first r principal components (columns of V), s skewfaces, and t kurtofaces. Their span is our optimal subspace.
- These three subspaces may overlap; orthogonalize the resulting $r+s+t$ column vectors to get a final projector.
This gives an orthonormal projector basis W for the column space of A; its
- first r vectors best explain the covariance matrix K_{2}^{P},
- next s vectors, with $W_{1: r}$, best explain the big skewness tensor K_{3}^{P} of the pixels, and
- last t vectors, with $W_{1: r+s}$, best explain pixel kurtosis K_{4}^{P}.

End
 jason@math.stanford.edu

