Algebraic models for multilinear dependence

Jason Morton

Stanford University

December 11, 2008 NIPS

Joint work with Lek-Heng Lim of Berkeley

Univariate cumulants

Mean, variance, skewness and kurtosis describe the shape of a univariate distribution.

- A - E - N

The covariance matrix partly describes the dependence structure of a multivariate distribution.

- PCA
- Gaussian graphical models
- Optimization—bilinear form computes variance

But if the variables are not multivariate Gaussian, not the whole story.

Even if marginals normal, dependence might not be

J. Morton (Stanford University) Algebraic models for multilinear dependence December 11, 2008NIPS 4 / 27

Covariance matrix analogs: multivariate cumulants

- The cumulant tensors are the multivariate analog of skewness and kurtosis.
- They describe higher order dependence among random variables.

- Definitions: tensors and cumulants
- Properties of cumulant tensors
- Insights and models from algebraic geometry
- Algorithms from Riemannian geometry
- Otential applications

Symmetric tensors and actions

A tensor in coordinates is a multi-way array with a multilinear action.

Tensor [[a_{ijk}]] ∈ ℝ^{r×r×r} is symmetric if it is invariant under all permutations of indices

$$a_{ijk} = a_{ikj} = a_{jik} = a_{jki} = a_{kij} = a_{kji}$$

Comes with an action:

Symmetric multilinear matrix multiplication. If Q is an n×r matrix, T an r×r×r tensor, make an n×n×n tensor
 K = (Q, Q, Q) · T or just Q · T where

$$\mathcal{K}_{lphaeta\gamma} = \sum_{i,j,k=1}^{r,r,r} q_{lpha i} q_{eta j} q_{\gamma k} t_{ijk}.$$

 If T is r×r and Q is n×r, we have Q · T = QTQ^T; for d > 2 multiply on 3, 4, ... "sides" of the multi-way array.

Moments and Cumulants are symmetric tensors

Vector-valued random variable $\mathbf{x} = (X_1, \dots, X_n)$. Three natural *d*-way tensors are:

• The *d*th non-central moment $s_{i_1,...,s_d}$ of **x**:

$$S_d(\mathbf{x}) = \left[\mathbb{E}(x_{i_1}x_{i_2}\cdots x_{i_d})\right]_{i_1,\dots,i_d=1}^n.$$

- The *d*th central moment $S_d(\mathbf{x} \mathbb{E}[\mathbf{x}])$, and
- The *d*th cumulant $\kappa_{i_1...i_d}$ of **x**:

$$\mathcal{K}_d({f x}) = \left[\sum_{A_1 \sqcup \cdots \sqcup A_q = \{i_1, ..., i_d\}} (-1)^{q-1} (q-1)! s_{A_1} \dots s_{A_q}
ight]_{i_1, ..., i_d = 1}^n$$

Measuring useful properties.

For univariate x, the cumulants $K_d(x)$ for d = 1, 2, 3, 4 are

- expectation $\kappa_i = \mathbb{E}[x]$,
- variance $\kappa_{ii} = \sigma^2$,
- skewness $\kappa_{iii}/\kappa_{ii}^{3/2}$, and
- kurtosis $\kappa_{iiii}/\kappa_{ii}^2$.

The tensor versions are the multivariate generalizations

 κ_{ijk}

they provide a natural measure of non-Gaussianity.

Alternative Definitions of Cumulants

• In terms of log characteristic function,

$$\kappa_{j_1\cdots j_d}(\mathbf{x}) = (-1)^d rac{\partial^d}{\partial t_{j_1}^{lpha_1}\cdots \partial t_{j_d}^{lpha_d}} \log \mathbb{E}(\exp(i\langle \mathbf{t}, \mathbf{x}
angle) igg|_{\mathbf{t}=\mathbf{0}}$$

• In terms of Edgeworth series,

$$\log \mathbb{E}(\exp(i\langle \mathbf{t}, \mathbf{x} \rangle) = \sum_{\alpha=0}^{\infty} i^{|\alpha|} \kappa_{\alpha}(\mathbf{x}) \frac{\mathbf{t}^{\alpha}}{\alpha!}$$

where $\alpha = (\alpha_1, \ldots, \alpha_d)$ is a multi-index, $\mathbf{t}^{\alpha} = t_1^{\alpha_1} \cdots t_d^{\alpha_d}$, and $\alpha! = \alpha_1! \cdots \alpha_d!$.

Properties of cumulants: Multilinearity

• Multilinearity: if **x** is a \mathbb{R}^n -valued random variable and $A \in \mathbb{R}^{m \times n}$

$$K_d(A\mathbf{x}) = A \cdot K_d(\mathbf{x}),$$

where \cdot is the multilinear action.

- This makes factor models work: $\mathbf{y} = A\mathbf{x}$ implies $K_d^Y = A \cdot K_d^X$;
- For example, $K_2^Y = A K_2^X A^\top$.
- Independent Components Analysis finds an A to approximately diagonalize K^X_d.

Properties of cumulants: Independence

Independence:

• $\mathbf{x}_1, \ldots, \mathbf{x}_k$ are mutually independent of variables $\mathbf{y}_1, \ldots, \mathbf{y}_k$, we have

$$\mathcal{K}_d(\mathbf{x}_1 + \mathbf{y}_1, \ldots, \mathbf{x}_k + \mathbf{y}_k) = \mathcal{K}_d(\mathbf{x}_1, \ldots, \mathbf{x}_k) + \mathcal{K}_d(\mathbf{y}_1, \ldots, \mathbf{y}_k).$$

- \$\mathcal{K}_{i_1,...,i_n}(\mathbf{x}) = 0\$ whenever there is a partition of \$\{i_1,...,i_n\$}\$ into two nonempty sets \$I\$ and \$J\$ such that \$\mathbf{x}_I\$ and \$\mathbf{x}_J\$ are independent.
- Why we want to diagonalize in independent component analysis
- Exploitable in other sparse cumulant techniques

Properties of cumulants: Vanishing and Extending

- Gaussian: If **x** is multivariate normal, then $K_d(\mathbf{x}) = 0$ for all $d \ge 3$.
 - Why you might not have heard of them: for Gaussians, the covariance matrix does tell the whole story.
- Support: There are no distributions with a bound *n* so that

$$\mathcal{K}_d(\mathbf{x}) egin{cases}
eq 0 & 3 \leq d \leq n, \\
= 0 & d > n.
end{cases}$$

• Parametrization is trickier when K_2 doesn't tell the whole story.

Making cumulants useful, tractable and estimable

Cumulant tensors are a useful generalization, but too big. They have $\binom{\# vars + d - 1}{d}$ quantities, too many to

- learn with a reasonable amount of data,
- store, and
- optimize.

Needed: small, implicit models analogous to PCA

PCA: eigenvalue decomposition of a positive semidefinite real symmetric matrix. We need a tensor analog.

But, it isn't as easy as it looks...

Tensor decomposition

Three possible generalizations are the same in the matrix case but not in the tensor case. For a $n \times n \times n$ tensor T,

Name	minimum <i>r</i> such that
Tensor rank	$T = \sum_{i=1}^{r} u_i \otimes v_i \otimes w_i$ not closed
Border rank	$T = \lim_{\epsilon \to 0} (S_{\epsilon}), Trank(S_{\epsilon}) = r$ closed but hard to represent; defining equations unknown.
Multilinear rank	$T = (A, B, C) \cdot K, K \in \mathbb{R}^{r \times r \times r}, A, B, C \in \mathbb{R}^{n \times r},$ closed and understood.
	《□》《母》《言》《言》 言 の(

Multilinear rank factor model

Let $\mathbf{y} = Y_1, \ldots, Y_n$ be a random vector. Write the *d*th order cumulant $K_d(\mathbf{y})$ as a best *r*-multilinear rank approximation in terms of the cumulant $K_d(\mathbf{x})$ of a smaller set of *r* factors \mathbf{x} :

$$K_d^Y \approx Q \cdot K_d^X.$$

where

- $\bullet~Q$ is orthonormal , and Q^{\top} projects to the factors
- The column space of Q defines the s-dim subspace which best explains the dth order dependence.
- In place of eigenvalues, we have the core tensor K_d^X , the cumulant of the factors.

Have model, need loss and algorithm.

Principal cumulant components analysis

• Want factors/principal components that account for variation in all cumulants simultaneously

$$\min_{Q \in O(n,r), \ C_d \in S^d(\mathbb{R}^r)} \sum_{d=1}^{\infty} \alpha_d \| \hat{K}_d(\mathbf{y}) - Q \cdot C_d \|^2,$$

- $C_d \approx \hat{K}_d(\mathbf{x})$ not necessarily diagonal.
- Appears intractable: optimization over infinite-dimensional manifold

$$O(n,r) \times \prod_{d=1}^{\infty} S^{d}(\mathbb{R}^{r}).$$

Reduces to optimization over a single Grassmannian Gr(n, r) of dimension r(n - r),

$$\max_{\boldsymbol{Q}\in\mathsf{Gr}(\boldsymbol{n},\boldsymbol{r})}\sum_{d=1}^{\infty}\alpha_{d}\|\boldsymbol{Q}^{\top}\cdot\hat{\mathcal{K}}_{d}(\mathbf{y})\|^{2}.$$

• In practice $\infty = 3$ or 4.

Geometric insights

- Secants of Veronese in S^d(ℝⁿ) and rank subsets— difficult to study.
- Symmetric subspace variety in $S^d(\mathbb{R}^n)$ closed, easy to study.
- Stiefel manifold O(n, r) is set of $n \times r$ real matrices with orthonormal columns.
- Grassman manifold Gr(n, r) is set of equivalence classes of O(n, r) under left multiplication by O(n).
- Parametrization of $S^d(\mathbb{R}^n)$ via

$$\operatorname{Gr}(n,r) \times \operatorname{S}^{d}(\mathbb{R}^{r}) \to \operatorname{S}^{d}(\mathbb{R}^{n}).$$

Coordinate-cycling heuristics

• Alternating Least Squares (i.e. Gauss-Seidel) is commonly used for minimizing

$$\Psi(X,Y,Z) = \|\mathcal{A}\cdot(X,Y,Z)\|_{F}^{2}$$

for $A \in \mathbb{R}^{l \times m \times n}$ cycling between X, Y, Z and solving a least squares problem at each iteration.

• What if $\mathcal{A} \in \mathsf{S}^3(\mathbb{R}^n)$ and

$$\Phi(X) = \left\| \mathcal{A} \cdot (X, X, X) \right\|_{F}^{2}?$$

• Present approach: disregard symmetry of \mathcal{A} , solve $\Psi(X, Y, Z)$, set

$$X_* = Y_* = Z_* = (X_* + Y_* + Z_*)/3$$

upon final iteration.

• Better: L-BFGS on Grassmannian.

Newton/quasi-Newton on a Grassmannian [Savas-Lim]

- Objective $\Phi : \operatorname{Gr}(n, r) \to \mathbb{R}$, $\Phi(X) = \|\mathcal{A} \cdot (X, X, X)\|_F^2$.
- T_X tangent space at $X \in Gr(n, r)$

$$\mathbb{R}^{n\times r} \ni \Delta \in \mathbf{T}_X \qquad \Longleftrightarrow \qquad \Delta^\top X = 0$$

- Sompute Grassmann gradient $\nabla \Phi \in \mathbf{T}_X$.
- Ompute Hessian or update Hessian approximation

$$H: \Delta \in \mathbf{T}_X \to H\Delta \in \mathbf{T}_X.$$

3 At $X \in Gr(n, r)$, solve

$$H\Delta = -\nabla \Phi$$

for search direction Δ .

Opdate iterate X: Move along geodesic from X in the direction given by Δ.

L-BFGS on Grassmannian

- BFGS update must be adjusted: on the Grassmannian, the vectors are defined on different points belonging to different tangent spaces.
- Parallel transport along a geodesic to new position.
- Limited memory version.

Convergence

• Compares favorably with Alternating Least Squares.

Mean-variance portfolio optimization

Markowitz mean-variance portfolio optimization defines risk to be variance.

$$\min w^{\top} K_2(\mathbf{x}) w \qquad s.t. \qquad w^{\top} \mathbb{E}[\mathbf{x}] > \underline{r}$$

Evidence indicates that investors optimizing variance with respect to the covariance matrix accept unwanted skewness and kurtosis risk.

- Extreme example: selling out-of-the-money puts looks safe and uncorrelated
- Many hedge funds essentially do this

Muti-moment portfolio optimization

So, take skewness and kurtosis into account in the objective.

- Need to use skewness K_3 and kurtosis K_4 tensors.
- Use low multilinear rank model to regularize and make optimization computable with many assets (linear vs. cubic)

With mean-zero returns in a $\#assets = m \times n = \#periods$ matrix A,

- Choose an s, need $m \times s$ orthonormal projector Q
- Approximate cumulant $nK_d = A^{ op} \cdot \Delta_{d,n} \approx Q \cdot C$
- Multilinear forms $w^{\top} \cdot K_d \approx w^{\top}Q \cdot \frac{1}{n}C$ give variance, skewness and kurtosis

Analogously to Eigenfaces,

Cumulants give features supplementing the PCA varimax subspace.

- In eigenfaces, we have a centered #pixels= n × m =#images matrix A, m ≪ n.
- The eigenvectors of the covariance matrix K_2^P of the *pixels* are the eigenfaces.
- For efficiency, we compute the covariance matrix K_2^{Images} of the *images* instead. The SVD gives both implicitly.

$$USV^{\top} = svd(A^{\top})$$

 $mK_2^{Images} = A^{\top}A = U\Lambda U^{\top}$
 $nK_2^{Pixels} = AA^{\top} = V\Lambda V^{\top}$

Orthonormal columns of V, eigenvectors of K_2^P , are the eigenfaces.

we can compute Skewfaces,

Centered #pixels= $n \times m = \#$ images matrix A.

- Let K_3^P be the (huge) third cumulant tensor of the pixels.
- Analogously, we want to compute it implicitly
- We just need the projector Π onto the subspace of skewfaces that best explain K_3^P .
- Let $A^{\top} = USV^{\top}$ with dims $(m^2, m^2, m \times n)$.

$$nS_{3}^{\prime} = A^{\top} \cdot \Delta_{n} = U \cdot S \cdot V^{\top} \cdot \Delta_{n}$$
$$mK_{3}^{P} = A \cdot \Delta_{m} = V \cdot (S \cdot U^{\top} \cdot \Delta_{m})$$

Pick a small multilinear rank s. If $(S \cdot U^{\top} \cdot \Delta_m) \approx Q \cdot C_3$ for some $m \times s$ matrix Q and NON-diagonal core tensor C_3 ,

$$mK_3^P \approx V \cdot Q \cdot C_3 = VQ \cdot C_3$$

and $\Pi = VQ$ is our orthonormal-column projection matrix onto the 'skewmax' subspace.

and combine Eigen-, Skew-, and Kurto-faces.

Combine the information from multiple cumulants:

- Do the same for procedure for the kurtosis tensor (a little more complicated).
- Say we keep the first r principal components (columns of V), s skewfaces, and t kurtofaces. Their span is our optimal subspace.
- These three subspaces may overlap; orthogonalize the resulting r + s + t column vectors to get a final projector.

This gives an orthonormal projector basis W for the column space of A; its

- first r vectors best explain the covariance matrix K_2^P ,
- next s vectors, with $W_{1:r}$, best explain the big skewness tensor K_3^P of the pixels, and
- last t vectors, with $W_{1:r+s}$, best explain pixel kurtosis K_4^P .

End jason@math.stanford.edu

- 4 三 2 4 三 3

< 🗇 🕨

3