Toric Modification on Machine Learning

Keisuke Yamazaki & Sumio Watanabe

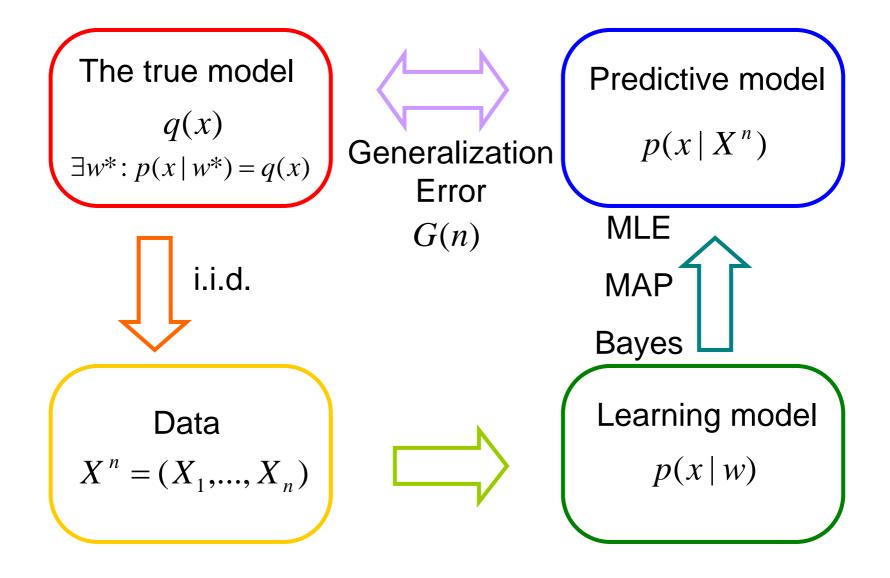
Tokyo Institute of Technology

- Learning theory and algebraic geometry
- Two forms of the Kullback divergence
- Toric modification
- Application to a binomial mixture model
- Summary

Learning theory and algebraic geometry

- Two forms of the Kullback divergence
- Toric modification
- Application to a binomial mixture model
- Summary

What is the generalization error?



Algebraic geometry connected to learning theory in the Bayes method.

The formal definition of the generalization error.

$$G(n) = E_{X^n} \left[\int q(x) \log \frac{q(x)}{p(x \mid X^n)} dx \right]$$

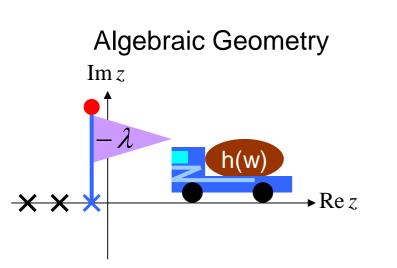
Another Kullback divergence : $H(w) = \int q(x) \log \frac{q(x)}{p(x \mid w)} dx$ Algebraic Geometry G(n)H(w)

The true model Predictive model q(x) $p(x | X^n)$ p(x | w) $X^{n} = (X_{1}, ..., X_{n})$ Learning model Data

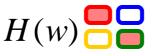
Machine Learning / Learning Theory

The zeta function has an important role for the connection.

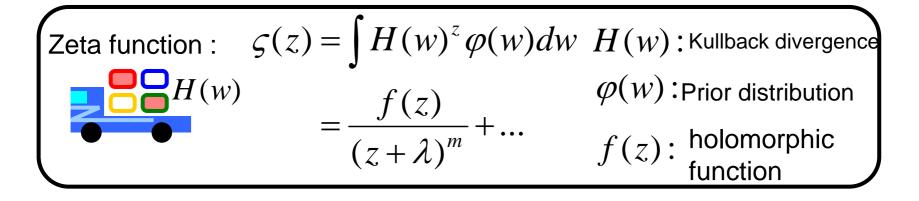
Zeta function :	$\zeta(z) = \int h(w)^z \varphi(w) dw$	h(w): Analytic func.
h(w)	f(z)	arphi(w) : C-infinity func. with compact support
	$=\frac{1}{\left(z+\lambda\right)^{m}}+\ldots$	f(z): holomorphic function

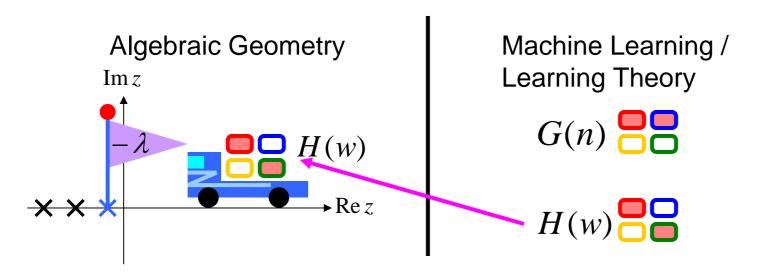


Machine Learning / Learning Theory



The zeta function has an important role for the connection.



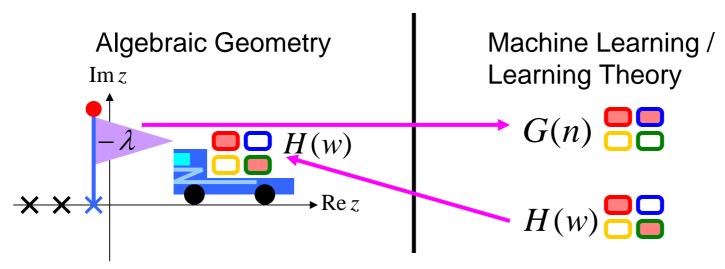


The largest pole of the zeta function determines the generalization error.

Asymptotic Bayes generalization error [Watanabe 2001]

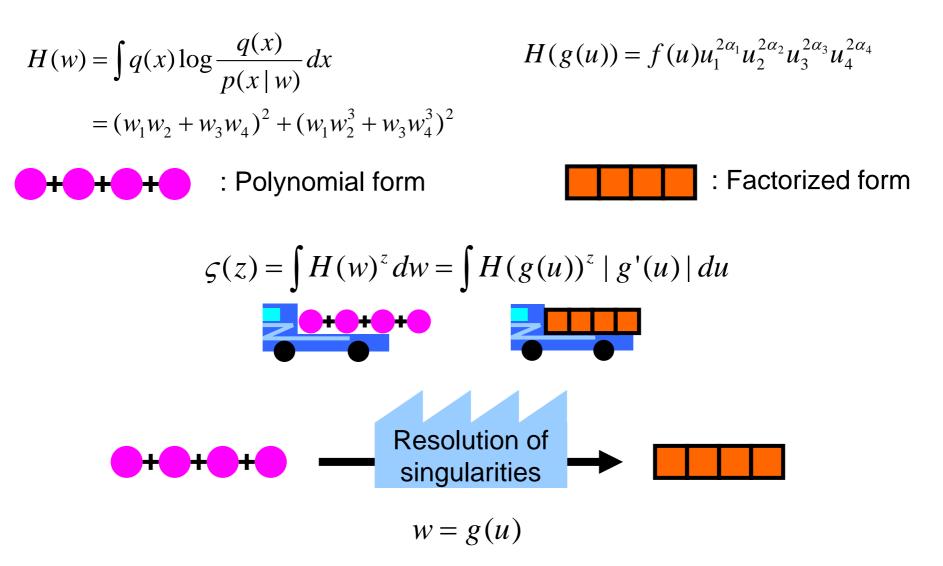
$$G(n) = \frac{\lambda}{n} - \frac{m-1}{n\log n} + o(1/n\log n)$$

$$\zeta(z) = \int H(w)^{z} \varphi(w) dw = \frac{f(z)}{(z+\lambda)^{m}} + \dots$$

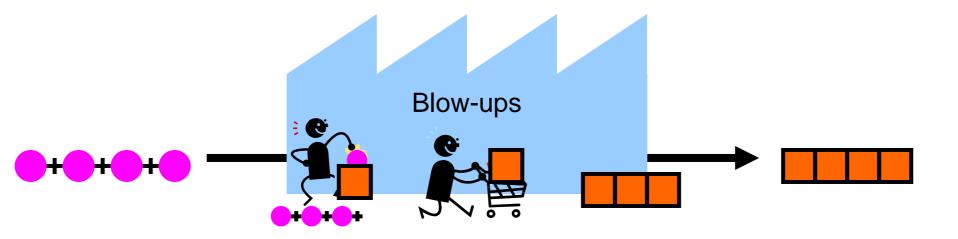


- Learning theory and algebraic geometry
- Two forms of the Kullback divergence
 - Toric modification
 - Application to a binomial mixture model
 - Summary

Calculation of the zeta function requires well-formed H(w).

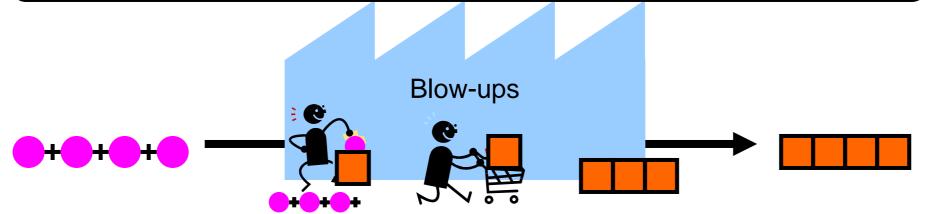


The resolution of singularities with blow-ups is an iterative method.

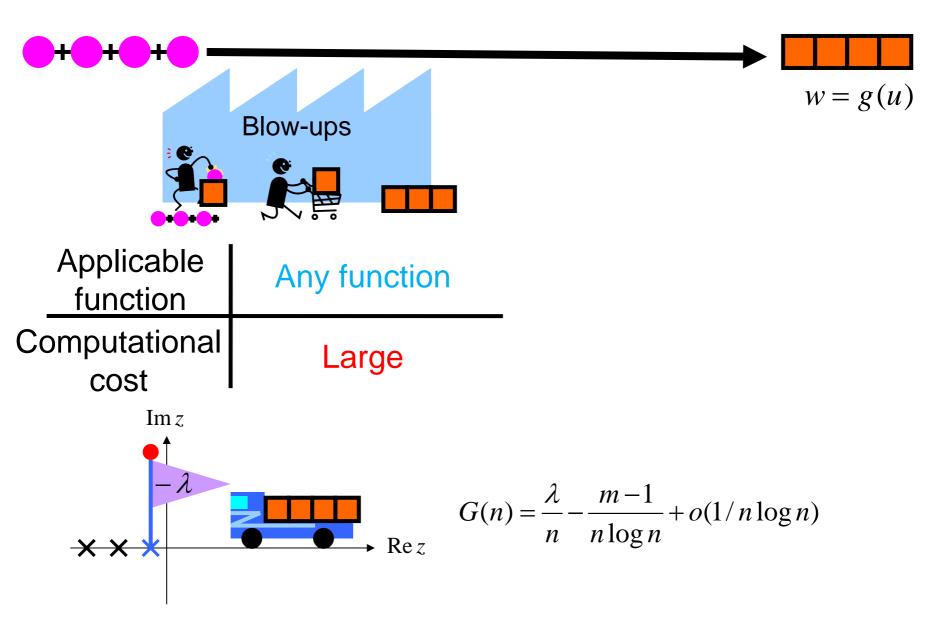


The resolution of singularities with blow-ups is an iterative method.

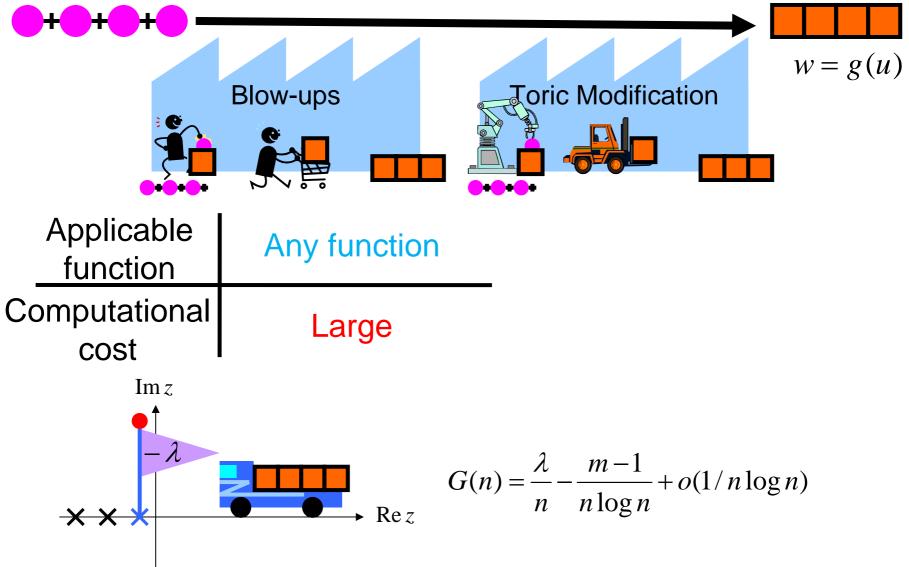
Kullback divergence in ML is complicated and has high dimensional w : $H(w) = (w_1w_2 + w_3w_4)^2 + (w_1w_2^3 + w_3w_4^3)^2$



The bottleneck is the iterative method.

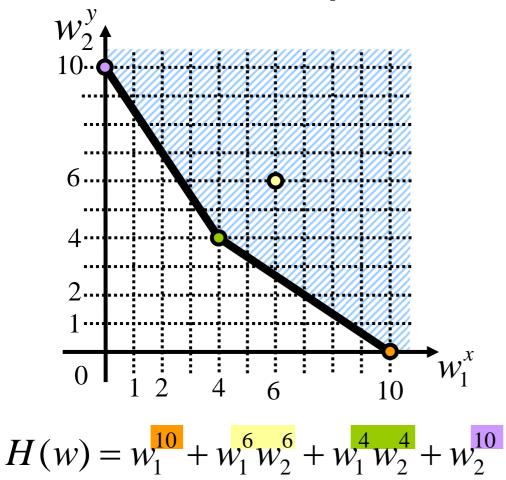


Toric modification is a systematic method for the resolution of singularities.

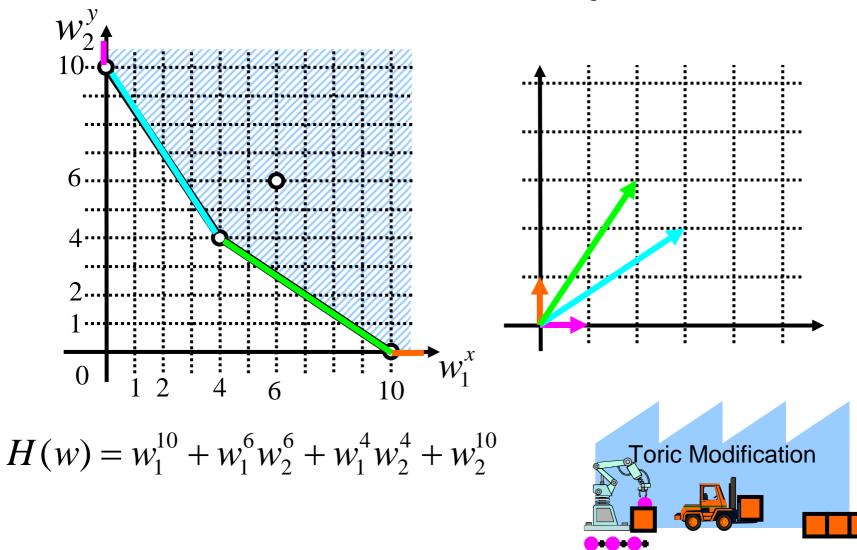


- Learning theory and algebraic geometry
- Two forms of the Kullback divergence
- Toric modification
 - Application to a binomial mixture model
 - Summary

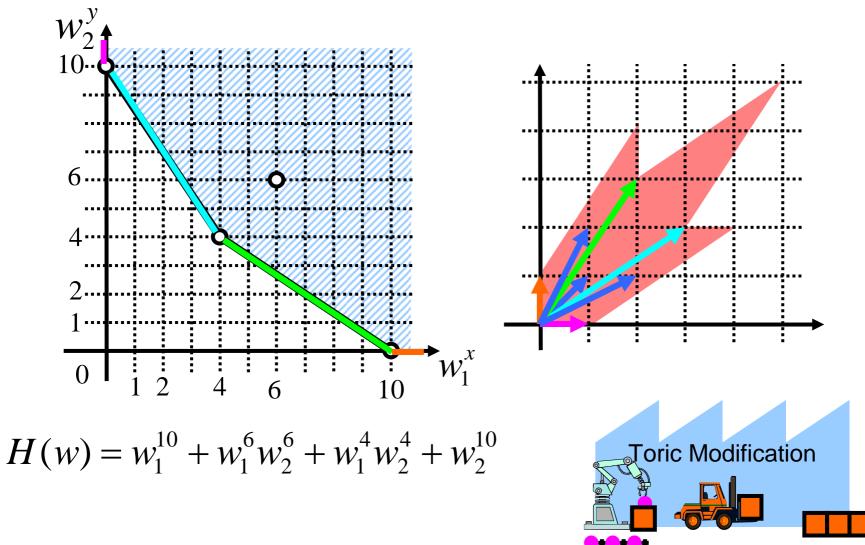
Newton diagram is a convex hull in the exponent space



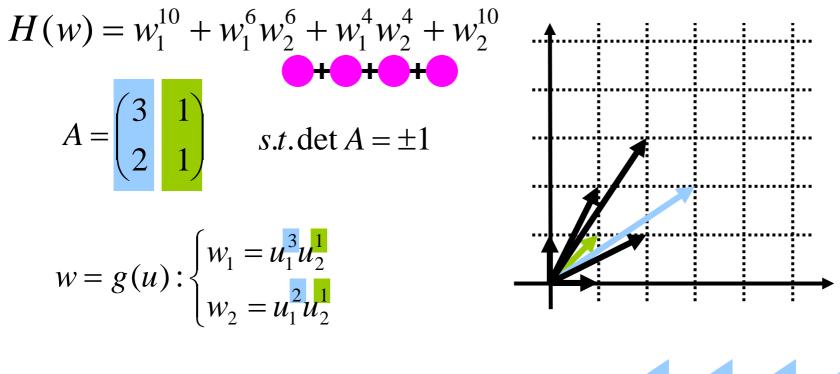
The borders determine a set of vectors in the dual space.



Add some vectors subdividing the spanned area.



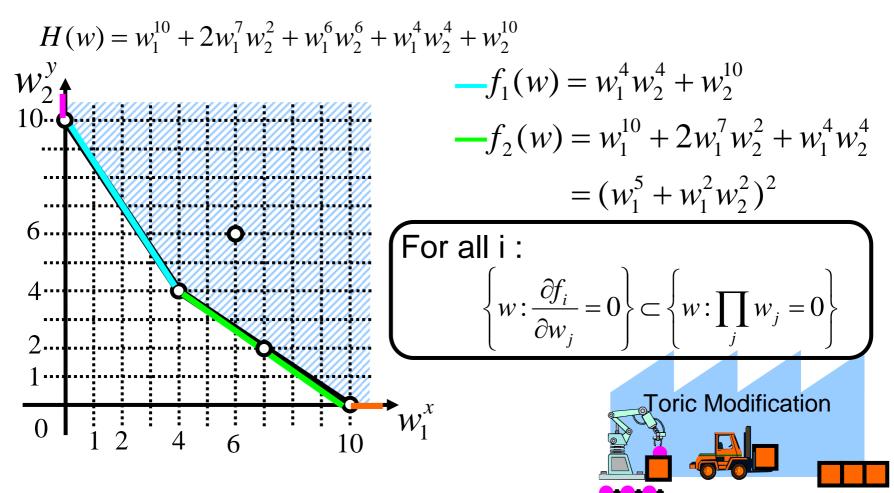
Selected vectors construct the resolution map.



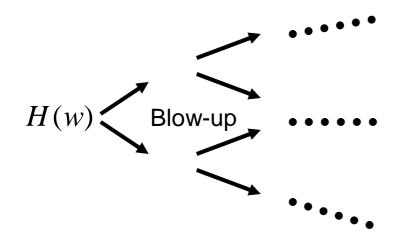
 $H(g(u)) = (u_1^{10}u_2^2 + u_1^{10}u_2^4 + 1 + u_2^2)u_1^{20}u_2^8$

Non-degenerate Kullback divergence

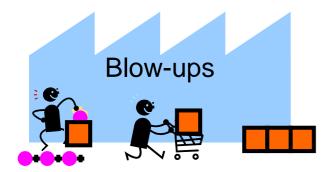
• The condition to apply the toric modification to the Kullback divergence

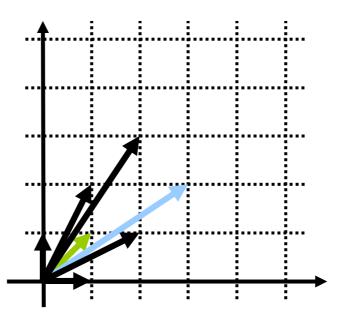


Toric modification is "systematic".



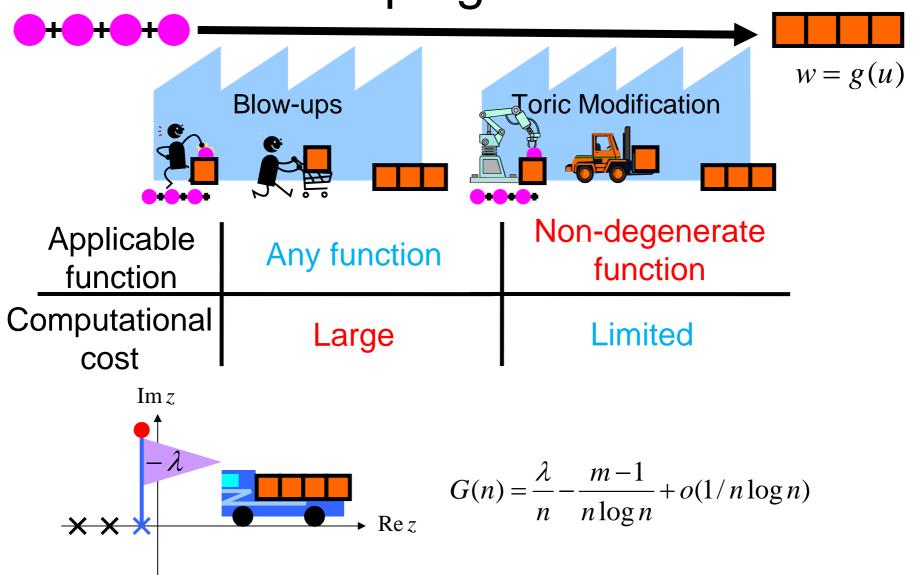
The search space will be large. We cannot know how many iterations we need.





The number of vectors is limited.

Toric modification can be an effective plug-in method.



- Learning theory and algebraic geometry
- Two forms of the Kullback divergence
- Toric modification
- Application to a binomial mixture model
 - Summary

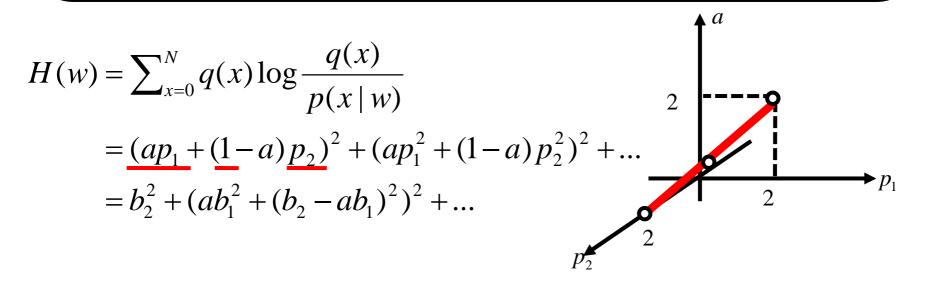
An application to a mixture model

Mixture of binomial distributions

The true model:
$$q(x) = Bin_N(x, p^*) = {N \choose x} p^{*x} (1-p^*)^{N-x}$$

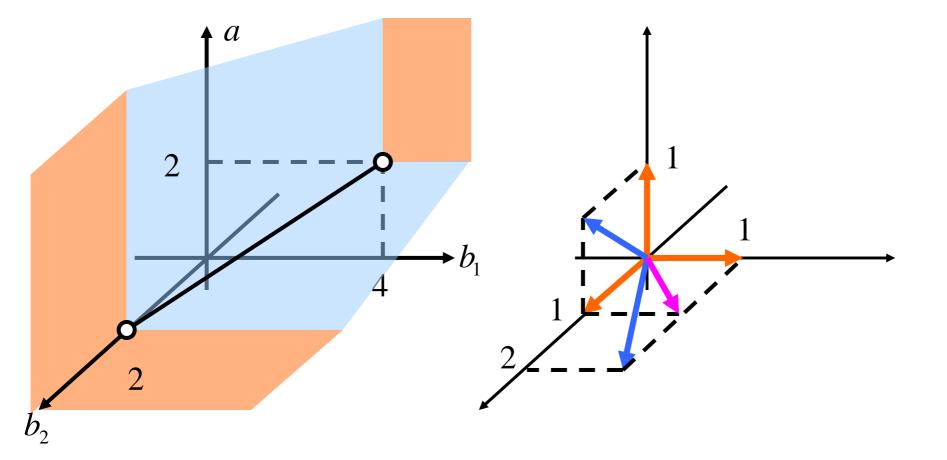
 $\langle \mathbf{n} \mathbf{r} \rangle$

Learning model: $p(x | w) = aBin_N(x, p_1) + (1-a)Bin_N(x, p_2)$

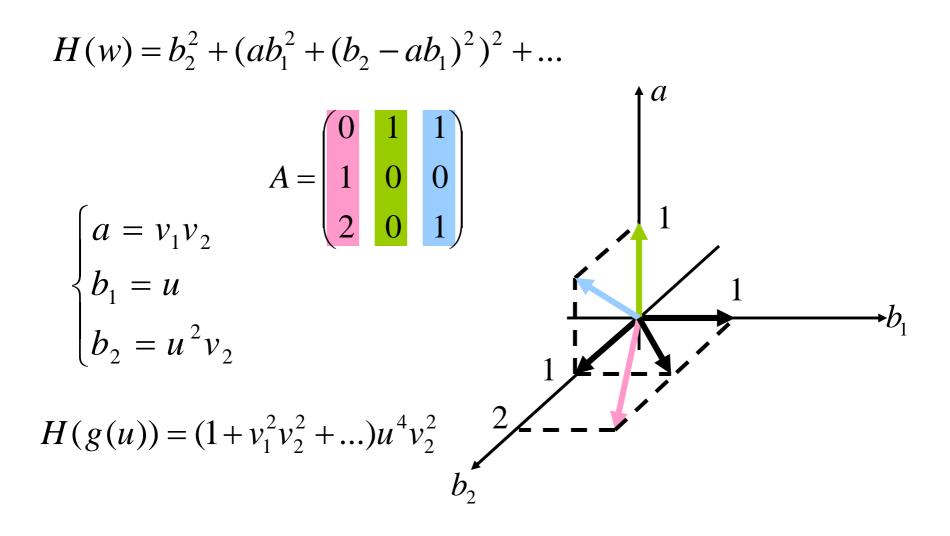


The Newton diagram of the mixture

 $H(w) = b_2^2 + (ab_1^2 + (b_2 - ab_1)^2)^2 + \dots$



The resolution map based on the toric modification



The generalization error of the mixture of binomial distributions

$$H(w) = b_2^2 + (ab_1^2 + (b_2 - ab_1)^2)^2 + \dots$$
 : Polynomial form
$$H(g(u)) = (1 + v_1^2 v_2^2 + \dots) u^4 v_2^2$$
 : Factorized form

$$G(n) = \frac{3}{4n} + o(1/n\log n)$$
 : Generalization error

- Learning theory and algebraic geometry
- Two forms of the Kullback divergence
- Toric modification
- Application to a binomial mixture model

Summary

- The Bayesian generalization error is derived on the basis of the zeta function.
- Calculation of the coefficients requires the factorized form of the Kullback divergence.
- Toric modification is an effective method to find the factorized form.
- The error of a binomial mixture is derived as the application.