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Assumptions

Each couple ij has a pairwise happiness score cij

Monogamy is enforced, and no person can be
unmatched

Goal is to maximize overall happiness
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Applications

Image Matching (Taskar 2004, Caetano et al. 2007)
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Applications

Machine Translation (Taskar et al. 2005)
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Formulation

Goal: Find a perfect match in a complete bipartite graph:
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Formulation

Solution is a permutation y : {1, . . . ,n} 7→ {1, . . . ,n}

Aggregate pairwise happiness of a collective marriage y :∑
i ciy(i)

Best collective marriage y∗:

y∗ = argmaxy
∑

i ciy(i)

Maximum-Weight Perfect Bipartite Matching Problem.
Also called Assignment Problem.

Exactly solvable in O(n3) (e.g. Hungarian algorithm)
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The Model
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Our Contribution

We relax the assumption that we know the scores cij .

In reality we measure edge features xij = (x1
ij , . . . , x

d
ij )

Instead we parameterize the edge features and perform
Maximum-Likelihood Estimation of the parameters.

cij = f (xij ; θ)
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Maximum-Likelihood Marriage Estimator

Probability of a match given a graph:

p(y |x ; theta) = exp(〈φ(x , y), θ〉 − g(x ; θ))

y = match, x = graph

Most likely match: y∗ = argmaxy 〈φ(x , y), θ〉

IDEA: construct φ(x , y) such that y∗ agrees with best
match

〈φ(x , y), θ〉 =
∑

i ciy(i)
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Maximum-Likelihood Marriage Estimator

〈φ(x , y), θ〉 =
∑

i ciy(i) suggests:

φ(x , y) =
∑

i ψiy(i)

ciy(i) =
〈
ψiy(i), θ

〉
I.e. the pairwise happiness is now parameterized. I.e.
the goal will be to learn which features of people are
more relevant to make them happier collectively (not
individually!!)
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Maximum-Likelihood Marriage Estimation

`(Y |X ; θ) =
∑N

n=1 (g(xn; θ)− 〈φ(xn, yn), θ〉)

Partition function:

exp(g) =
∑

y exp
∑N

i=1 ciy(i) =
∑

y

N∏
i=1

exp ciy(i)︸ ︷︷ ︸
:=Biy(i)︸ ︷︷ ︸

=Permanent of matrix B

Permanent: ]P-complete
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Maximum-Likelihood Marriage Estimation

For learning we need to do gradient descent in `(θ):

∇θ`(X ,Y ; θ) =
∑N

n=1∇θg(xn; θ)− φ(xn, yn)

BAD NEWS

∇θg(x ; θ) =
∑

y φ(x , y)p(y |x ; θ) = Ey∼p(y |xθ)[φ(x , y)]
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Model Estimation
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Maximum-Likelihood Marriage Estimation

GOOD NEWS

A sampler of perfect matches has been recently
proposed (Huber & Law, SODA ’08), which is O(n4 log n)
to generate a sample. This sampler is EXACT.

Previous fastest sampler (Jerrum, Sinclair & Vigoda J.
ACM ’04) was O(n7 log4 n) and was INEXACT (truncated
Markov Chain). This was IMPRACTICAL.
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General Idea of Sampler

Construct an upper bound on the partition function

Use self-reducibility of permutations to generate
successive upper bounds of partial partition functions

Use sequence of upper bounds to generate an
accept-reject algorithm
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General Idea of Sampler
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The Sampler

Let x be a sample obtained after the algorithm is run. Then:

p(Ω) =
∑

y∈Ω w(y) = Z
p(Ω1) =

∑
y∈Ω1

w(y)

p(Ω2) =
∑

y∈Ω2
w(y) = w(x)

Its probability is:

U(Ω1)
U(Ω)

U(Ω2)
U(Ω1)

= U(Ω2)
U(Ω)

= w(x)
U(Ω)

But the probability of accepting is Z
U(Ω)

So p(x) = w(x)/U(Ω)
Z/U(Ω)

= w(x)
Z ⇒ EXACT SAMPLER
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The Upper Bound

The purpose of this work is to present a perfect sam-
pling algorithm that generates random variates exactly
from π where the running time of the algorithm is it-
self a random variable. In addition, the time used to
generate these variates can be used to approximate the
permanent of the matrix at no additional cost. Finally,
the expected running time of the method is polynomial
when the original problem is dense.

Theorem 1.1. For any ε ≥ 0 and δ ∈ (0, 1], there ex-
ists a randomized approximation algorithm whose out-
put comes within a factor of 1+ δ of the permanent of a
nonnegative matrix A with probability at least 1− ε with
random running time T satisfying: for a function R(n),

E[T ] = O(n4 log n + R(n)δ−2 log ε−1),(1.3)
P(T > sE[T ]) ≤ 21−s/2, for all s > 0.(1.4)

When A is a 0-1 matrix such that all the row and
column sums are at least γn and γ ∈ (0.5, 1], then
R(n) = O(n1.5+0.5/(2γ−1)). In particular, if γ ≥ .6,
then the running time is O(n4[log n + δ−2 log ε−1]).

The primary tool in this algorithm is a version of
Bregman’s Theorem similar in form to an inequality of
Soules [26]. Let us first define:

(1.5) h(r) =
{

r + (1/2) ln(r) + e− 1, r ≥ 1
1 + (e− 1)r, r ∈ [0, 1]

Our bound is as follows:

Theorem 1.2. Let A be a matrix with entries in [0, 1].
Let r(i) be the sum of the ith row of the matrix.

(1.6) per(A) ≤
n∏

i=1

h(r(i))
e

.

The next section describes the algorithm in detail.
Section 3 describes the history of the original Bregman’s
Theorem and proves Theorem 1.2. In Section 4, the
bound on the running time in Theorem 1.1 is proven.
In Section 5 further applications are considered.

2 The Algorithm.

The algorithm is an extension of ideas in [12]. There the
algorithm only ran on 0-1 matrices, and had a provably
polynomial running time only when the matrix was γ
dense (defined below) for some γ ∈ (0, 1] and regular
in the sense that all the row and column sums were
identical. The algorithm presented here dispenses with
the regularity requirement by first scaling the matrix so
that all the row and column sums are close to 1, then
scaling the matrix to make the row sums as large as

possible, then applying the idea in [12] using the new
generalization of Bregman’s theorem.

For simplicity, in this section the algorithm is
presented only for 0-1 matrices, and where the δ of
Theorem 1.1 lies in (0, 1]. For arbitrary nonnegative
matrices, see Section 5. Let A be a 0-1 matrix. Then
to determine if the permanent is zero or nonzero, the
Hopcroft and Karp algorithm [11] can be used to find
a permutation in O(n2.5) time (for weighted bipartite
graphs, the Hungarian Algorithm [1] can be employed,
but takes O(n3) time.) When the permanent is nonzero,
this method finds a permutation σ with A(i, σ(i)) = 1
for all i, so per(A) ≥ 1. Then changing any zeros in A
to α1 = (δ/3)(n!)−1 increases the permanent by at most
a factor of 1 + δ/3.

Definition 2.1. A 0-1 matrix A is γ-dense if every
row and column sum is at least γn.

When a matrix is (1/2)-dense the choice of α1 need
not be so extreme. Work in [5, 14] implies that for (1/2)-
dense matrices, when α1 = (δ/3)n−3, the permanent
increases by at most a factor of 1 + δ/3.

Phase I: Nearly Doubly Stochastic Scaling.
For diagonal matrices X and Y , XAY is a scaling of the
matrix A where each row i is multiplied by X(i, i) and
each column j is multiplied by Y (j, j). In our work A
must be scaled to be nearly doubly stochastic so that the
rows and columns each sum to almost 1. To be precise,
following the same definition in [18], we say diagonal
matrices X and Y scale A to accuracy α2 if

(2.7) ||XAY~1−~1||∞ < α2, ||Y AT X~1−~1||∞ < α2,

where ~1 is the vector of all 1’s. In [18], the ellipsoid
method was used to show that accuracy α2 could
be achieved after O(n4 log(nα−1

2 log α−1
1 )) arithmetic

operations on numbers with O(log(n/(α1α2))) digits,
where α1 is the minimum nonzero element of the matrix.
In our algorithm, α2 will be Θ(n−2).

The drawback of the ellipsoid method is its com-
plexity. A slightly slower but much easier method to
implement is the Sinkhorn method [25]. First all the
rows are normalized by dividing by their row sum,
then the columns, and this two step procedure is re-
peated until the accuracy falls below α2. This re-
quires O((α−1

2 + log n)
√

n log α−1
1 ) steps, each of which

take Θ(n2) time. This makes the Sinkhorn method
O(n4.5[n log n + log δ−1]) for general matrices, and
O(n4.5[log n+log δ−1]) for (1/2)-dense matrices. There-
fore in the dense case this method is slower than the
ellipsoid method by a factor of n1/2.

Phase II: row scaling. Let m(i) denote the max-
imum entry of row i of the nearly doubly stochastic

682

(Huber & Law, SODA 2008)
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Monte Carlo

Why is this good?

From samples yi ∼ p(y |x ; θ), approximate expectation:

Ey∼p(y |x ;θ)[φ(x , y)] ≈ 1
m

∑m
i=1 φ(x , yi)
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Optimization

Given the approximated gradient, we perform a
quasi-Newton optimization to obtain the
Maximum-Likelihood Estimate (we actually use a prior
and do MAP estimate).
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Experiments
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Matching with vs without learning
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Matching with vs without learning
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Ranking

Can be formulated as a Matching Problem (Le et al, 2007)

Documents retrieved by query Ranking of the documents
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Ranking

Data: qn, {d i
n}i , {si

n}i

qn: nth Query

{d i
n}i : Set of documents retrieved by query

{si
n}i : Labeled scores for documents retrieved by query.

Typically si
n ∈ {0, . . . ,N} where 0 =‘bad’ and N =‘excellent’.
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Ranking

cij = s(d i ,q)f (y)

Where f is monotonically decreasing

Therefore

argmaxy
∑

i ciy(i) = argsorty (s(dy(1),q), . . . , s(dy(last),q))

(argmaxy 〈v ,w(y)〉 is obtained by sorting v according to
y if w is non-increasing)
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Ranking
LETOR Dataset (TD2003)
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Ranking
LETOR Dataset (TD2004)
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Ranking
LETOR Dataset (OHSUMED)
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Final remarks

We use a linear model, with competitive results

Best competitors are highly non-linear models

We can instead use kernels and obtain a non-linear
exponential family model, and it is still a convex problem
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Thanks

Thanks
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