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The Problem

Assumptions

@ Each couple jj has a pairwise happiness score ¢;

@ Monogamy is enforced, and no person can be
unmatched

@ Goal is to maximize overall happiness
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The Problem

Applications

@ Image Matching (Taskar 2004, Caetano et al. 2007)
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The Problem

Applications

@ Machine Translation (Taskar et al. 2005)
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Formulation

@ Goal: Find a perfect match in a complete bipartite graph:
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Formulation

@ Solution is a permutation y : {1,....n} — {1,...,n}

@ Aggregate pairwise happiness of a collective marriage y:
i Ciyti)
@ Best collective marriage y*:

y* =argmax, ; Ciy(j

@ Maximum-Weight Perfect Bipartite Matching Problem.
Also called Assighment Problem.

@ Exactly solvable in O(n®) (e.g. Hungarian algorithm)
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The Model
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Our Contribution

@ We relax the assumption that we know the scores c;.

@ In reality we measure edge features x; = (x;, ..., x{)

@ Instead we parameterize the edge features and perform
Maximum-Likelihood Estimation of the parameters.

o C,'j = f(x,-j;H)
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The Model

Maximum-Likelihood Marriage Estimator

@ Probability of a match given a graph:
p(y|x; theta) = exp((¢(x, ¥),0) — g(x;0))
y = match, x = graph
@ Most likely match: y* = argmax, (¢(x, y),0)

@ |IDEA: construct ¢(x, y) such that y* agrees with best
match

(DX, ¥),0) = > Ciy(iy
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The Model

Maximum-Likelihood Marriage Estimator

@ (4(x,y),0) = >, Cy(iy suggests:
@ o(X,¥) =i Vi)
@ Ciyi) = (Vi 0)

@ l.e. the pairwise happiness is now parameterized. |.e.
the goal will be to learn which features of people are
more relevant to make them happier collectively (not
individually!!)
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The Model

Maximum-Likelihood Marriage Estimation

o U(YIX:0) =N, (g(x";8) — (6(x", y"),6))

@ Partition function:

N
N
exp(9) =3, exp S cyiy = > [ [ exp ey
y =1 _é_
-=Piy(i)

N

-

=Permanent of matrix B

Permanent: tP-complete
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The Model

Maximum-Likelihood Marriage Estimation

@ For learning we need to do gradient descent in ¢(6):

@ Vol(X,Y;0) =N Vyg(x";8) — (x", y")

e BAD NEWS
Veg(x;0) =3, 6(X, Y)P(Y|X: 0) = Eyopiyixe) [6(X, ¥)]
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Model Estimation
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Model Estimation

Maximum-Likelihood Marriage Estimation

@ GOOD NEWS

A sampler of perfect matches has been recently
proposed (Huber & Law, SODA '08), which is O(n* log n)
to generate a sample. This sampler is EXACT.

@ Previous fastest sampler (Jerrum, Sinclair & Vigoda J.
ACM *04) was O(n’ log* n) and was INEXACT (truncated
Markov Chain). This was IMPRACTICAL.
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General Idea of Sampler

@ Construct an upper bound on the partition function

@ Use self-reducibility of permutations to generate
successive upper bounds of partial partition functions

@ Use sequence of upper bounds to generate an
accept-reject algorithm
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General Idea of Sampler

QZZ{X2X172: 1-/X2,3: 1}7‘92’ =1
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The Sampler

Let x be a sample obtained after the algorithm is run. Then:

p) =2 yeqwly) =2
P(21) =2y cq, W(Y)
p(Q2) =2 ycq, W(y) = w(x)

Its probability is:

U() U(2) _ U(Q)
u@) uy)  U©Q)

But the probability of accepting is ﬁ

So p(x) = Y4 = #) — EXACT SAMPLER
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Model Estimation

The Upper Bound

(1.5) h(r) = { r+(1/2)In(r)+e—-1, r>1

14+ (e—1)r, r € [0,1]
Our bound is as follows:

THEOREM 1.2. Let A be a matriz with entries in [0, 1].
Let r(i) be the sum of the ith row of the matriz.

(1.6) per(4) <[ h(re(i)).

i=1

(Huber & Law, SODA 2008)
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Monte Carlo

@ Why is this good?
@ From samples y; ~ p(y|x; 6), approximate expectation:

® E, yioo(x.y)] = =5 o(x, i)
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Optimization

@ Given the approximated gradient, we perform a
quasi-Newton optimization to obtain the
Maximum-Likelihood Estimate (we actually use a prior
and do MAP estimate).
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Experiments
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Experiments

Matching with vs without learning
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Matching with vs without learning
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Matching with vs without learning
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Experiments

Ranking

@ Ranking
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Experiments

Ranking

@ Ranking
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Experiments

Ranking

Can be formulated as a Matching Problem (Le et al, 2007)

Documents retrieved by query Ranking of the documents
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Ranking

Data: gy, {d’};, {sh}:

gn: n'" Query

{d!};: Set of documents retrieved by query

{s'};: Labeled scores for documents retrieved by query.

Typically s!, € {0, ..., N} where 0 =‘bad’ and N =‘excellent’.
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Ranking

® c; =s(d', g)f(y)
@ Where f is monotonically decreasing

@ Therefore

argmaxy Zi Ciy(iy = argsorty(s(dy(ﬂ, Q), . S(dy(last)’ q))

@ (argmax, (v, w(y)) is obtained by sorting v according to
y if w is non-increasing)
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Ranking

Experiments

LETOR Dataset (TD2003)

TD2003 (30 runs)
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Ranking

Experiments

LETOR Dataset (TD2004)
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Experiments

Ranking
LETOR Dataset (OHSUMED)

OHSUMED (10 runs)
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Experiments

Final remarks

@ We use a linear model, with competitive results

@ Best competitors are highly non-linear models

@ We can instead use kernels and obtain a non-linear
exponential family model, and it is still a convex problem
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Experiments

Thanks
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