Exponential Family Bipartite Matching

Tibério Caetano

(with James Petterson, Julian McAuley and Jin Yu)

Statistical Machine Learning Group NICTA and Australian National University

Canberra, Australia
http://tiberiocaetano.com

AML Workshop, NIPS 2008

Outline

- The Problem
- The Model
- Model Estimation
- Experiments

The Problem

Overview

Overview

Assumptions

- Each couple $i j$ has a pairwise happiness score $c_{i j}$
- Monogamy is enforced, and no person can be unmatched
- Goal is to maximize overall happiness

Applications

- Image Matching (Taskar 2004, Caetano et al. 2007)

Applications

- Machine Translation (Taskar et al. 2005)

Formulation

- Goal: Find a perfect match in a complete bipartite graph:

Formulation

- Solution is a permutation $y:\{1, \ldots, n\} \mapsto\{1, \ldots, n\}$
- Aggregate pairwise happiness of a collective marriage y :

$$
\sum_{i} c_{i y(i)}
$$

- Best collective marriage y^{*} :

$$
y^{*}=\operatorname{argmax}_{y} \sum_{i} c_{i y(i)}
$$

- Maximum-Weight Perfect Bipartite Matching Problem. Also called Assignment Problem.
- Exactly solvable in $O\left(n^{3}\right)$ (e.g. Hungarian algorithm)

The Model

Our Contribution

- We relax the assumption that we know the scores $c_{i j}$.
- In reality we measure edge features $x_{i j}=\left(x_{i j}^{1}, \ldots, x_{i j}^{d}\right)$
- Instead we parameterize the edge features and perform Maximum-Likelihood Estimation of the parameters.
- $c_{i j}=f\left(x_{i j} ; \theta\right)$

Maximum-Likelihood Marriage Estimator

- Probability of a match given a graph:

$$
\begin{gathered}
p(y \mid x ; \text { theta })=\exp (\langle\phi(x, y), \theta\rangle-g(x ; \theta)) \\
y=\text { match, } x=\text { graph }
\end{gathered}
$$

- Most likely match: $y^{*}=\operatorname{argmax}_{y}\langle\phi(x, y), \theta\rangle$
- IDEA: construct $\phi(x, y)$ such that y^{*} agrees with best match

$$
\langle\phi(x, y), \theta\rangle=\sum_{i} c_{i y(i)}
$$

Maximum-Likelihood Marriage Estimator

- $\langle\phi(x, y), \theta\rangle=\sum_{i} c_{i y(i)}$ suggests:
- $\phi(x, y)=\sum_{i} \psi_{i y(i)}$
- $c_{i y(i)}=\left\langle\psi_{i y(i)}, \theta\right\rangle$
- l.e. the pairwise happiness is now parameterized. I.e. the goal will be to learn which features of people are more relevant to make them happier collectively (not individually!!)

Maximum-Likelihood Marriage Estimation

- $\ell(Y \mid X ; \theta)=\sum_{n=1}^{N}\left(g\left(x^{n} ; \theta\right)-\left\langle\phi\left(x^{n}, y^{n}\right), \theta\right\rangle\right)$
- Partition function:

$$
\exp (g)=\sum_{y} \exp \sum_{i=1}^{N} c_{i y(i)}=\underbrace{\sum_{y} \prod_{i=1}^{N} \underbrace{\exp c_{i y(i)}}_{:=B_{i y(i)}}}_{=\text {Permanent of matrix B }}
$$

Permanent: \sharp P-complete

Maximum-Likelihood Marriage Estimation

- For learning we need to do gradient descent in $\ell(\theta)$:
- $\nabla_{\theta} \ell(X, Y ; \theta)=\sum_{n=1}^{N} \nabla_{\theta} g\left(x^{n} ; \theta\right)-\phi\left(x^{n}, y^{n}\right)$
- BAD NEWS

$$
\nabla_{\theta} g(x ; \theta)=\sum_{y} \phi(x, y) p(y \mid x ; \theta)=\mathbf{E}_{y \sim p(y \mid x \theta)}[\phi(x, y)]
$$

Model Estimation

Maximum-Likelihood Marriage Estimation

- GOOD NEWS

A sampler of perfect matches has been recently proposed (Huber \& Law, SODA '08), which is $O\left(n^{4} \log n\right)$ to generate a sample. This sampler is EXACT.

- Previous fastest sampler (Jerrum, Sinclair \& Vigoda J. ACM '04) was $O\left(n^{7} \log ^{4} n\right)$ and was INEXACT (truncated Markov Chain). This was IMPRACTICAL.

General Idea of Sampler

- Construct an upper bound on the partition function
- Use self-reducibility of permutations to generate successive upper bounds of partial partition functions
- Use sequence of upper bounds to generate an accept-reject algorithm

General Idea of Sampler

$$
\Omega_{2}=\left\{x: x_{1,2}=1, x_{2,3}=1\right\},\left|\Omega_{2}\right|=1
$$

The Sampler

Let x be a sample obtained after the algorithm is run. Then:

$$
\begin{aligned}
& p(\Omega)=\sum_{y \in \Omega} w(y)=Z \\
& p\left(\Omega_{1}\right)=\sum_{y \in \Omega_{1}} w(y) \\
& p\left(\Omega_{2}\right)=\sum_{y \in \Omega_{2}} w(y)=w(x)
\end{aligned}
$$

Its probability is:

$$
\frac{U\left(\Omega_{1}\right)}{U(\Omega)} \frac{U\left(\Omega_{2}\right)}{U\left(\Omega_{1}\right)}=\frac{U\left(\Omega_{2}\right)}{U(\Omega)}=\frac{w(x)}{U(\Omega)}
$$

But the probability of accepting is $\frac{Z}{U(\Omega)}$
So $p(x)=\frac{w(x) / U(\Omega)}{Z / U(\Omega)}=\frac{w(x)}{z} \Rightarrow$ EXACT SAMPLER

The Upper Bound

(1.5) $\quad h(r)= \begin{cases}r+(1 / 2) \ln (r)+e-1, & r \geq 1 \\ 1+(e-1) r, & r \in[0,1]\end{cases}$

Our bound is as follows:
Theorem 1.2. Let A be a matrix with entries in $[0,1]$.
Let $r(i)$ be the sum of the ith row of the matrix.

$$
\begin{equation*}
\operatorname{per}(A) \leq \prod_{i=1}^{n} \frac{h(r(i))}{e} . \tag{1.6}
\end{equation*}
$$

(Huber \& Law, SODA 2008)

Monte Carlo

- Why is this good?
- From samples $y_{i} \sim p(y \mid x ; \theta)$, approximate expectation:
- $\mathbf{E}_{y \sim p(y \mid x ; \theta)}[\phi(x, y)] \approx \frac{1}{m} \sum_{i=1}^{m} \phi\left(x, y_{i}\right)$

Optimization

- Given the approximated gradient, we perform a quasi-Newton optimization to obtain the Maximum-Likelihood Estimate (we actually use a prior and do MAP estimate).

Experiments

Matching with vs without learning

Matching with vs without learning

Matching with vs without learning

Ranking

- Ranking

Google mios

Web Images Video

NIPS : NIPS $\times-4$ visits $-12 / 10 / 07$
The Foundation: The Neural Information Processing Systems (NIPS) Foundation is a non-profit corporation whose purpose is to foster the exchange of research ... nips.cc/ - 9k - Cached - Similar pages -

2008 Program	Accepted Papers
Proceedings	2007 Conference
My Account	Call For Papers
Workshops	Demonstrations

More results from nips.cc *

NIPS : Conferences : 2008: 2008 Conference \times 厈 $\overline{-27}$ visits - 10:38am
The NIPS Conference features a single track program, with contributions from a large number of intellectual communities. Presentation topics include: ...
nips.cc/Conferences/2008/-10k - Cached - Similar pages -
Advances in Neural Information Processing Systems (NIPS) $\times-10$ visits - Dec 10
Advances in Neural Information Processing Systems (NIPS). Searching volumes 0-20
(1987-2007) 200720062005200420032002 ..
books.nips.co/ - 3k - Cached - Similar pages -

Ranking

－Ranking

roogle ${ }^{\text {nips }}$ Preferenoes

```
Web Images Video
NIPS:NIPS 原趹-4 visits - 12/10/07
```

The Foundation: The Neural Information Processing Systems (NIPS) Foundation is a
non-profit corporation whose purpose is to foster the exchange of research ...
nips.cc/ - 9k - Cached - Similar pages - E

2008 Program	Accepted Papers
Proceedings	2007 Conference
My Account	Call For Papers
Workshops	Demonstrations

\square More results from nips．cc n
NIPS：Conferences ：2008： 2008 Conference \times 同 $X-27$ visits－10：38am
The NIPS Conference features a single track program，with contributions from a large number of intellectual communities．Presentation topics include：．．． nips．cc／Conferences／2008／－10k－Cached－Similar pages－
3
Ruvances in Neural Information Processing Systems（NIPS）\times 厈 10 visits－Dec 10
Advances in Neural Information Processing Systems（NIPS）．Searching volumes 0－20
（1987－2007） 200720062005200420032002 ．．
books．nips．cc／－3k－Cached－Similar pages－

Ranking

Can be formulated as a Matching Problem (Le et al, 2007)

Ranking

Data: $q_{n},\left\{d_{n}^{i}\right\}_{i},\left\{s_{n}^{i}\right\}_{i}$
$q_{n}: n^{\text {th }}$ Query
$\left\{d_{n}^{i}\right\}_{i}$: Set of documents retrieved by query
$\left\{s_{n}^{i}\right\}_{i}$: Labeled scores for documents retrieved by query.
Typically $s_{n}^{i} \in\{0, \ldots, N\}$ where $0=$ 'bad' and $N=$ 'excellent'.

Ranking

- $c_{i j}=s\left(d^{i}, q\right) f(y)$
- Where f is monotonically decreasing
- Therefore
$\operatorname{argmax}_{y} \sum_{i} c_{i y(i)}=\operatorname{argsort}_{y}\left(s\left(d^{y(1)}, q\right), \ldots, s\left(d^{y(l a s t)}, q\right)\right)$
- (argmax ${ }_{y}\langle v, w(y)\rangle$ is obtained by sorting v according to y if w is non-increasing)

Ranking

LETOR Dataset (TD2003)

Ranking

LETOR Dataset (TD2004)

Ranking

LETOR Dataset (OHSUMED)

Final remarks

- We use a linear model, with competitive results
- Best competitors are highly non-linear models
- We can instead use kernels and obtain a non-linear exponential family model, and it is still a convex problem

Thanks

Thanks

