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Abstract

The application of kernel-based learning algo-
rithms has, so far, largely been confined to real-
valued data and a few special data types, such
as strings. In this paper we propose a general
method of constructing natural families of ker-
nels over discrete structures, based on the matrix
exponentiation idea. In particular, we focus on
generating kernels on graphs, for which we pro-
pose a special class of exponential kernels, based
on the heat equation, called diffusion kernels, and
show that these can be regarded as the discretisa-
tion of the familiar Gaussian kernel of Euclidean
space.

1. Introduction

Kernel-based algorithms, such as Gaussian processes
(Mackay, 1997), support vector machines (Burges, 1998),
and kernel PCA (Mika et al., 1998), are enjoying great pop-
ularity in the statistical learning community. The common
idea behind these methods is to express our prior beliefs
about the correlations, or more generally, the similarities,
between pairs of points in data space

�
in terms of a kernel

function ��� �������	�
 , and thereby to implicitly con-
struct a mapping ��� �
�	���� to a Hilbert space

���
, in

which the kernel appears as the inner product,��������������� �!�"�#���$�%�"���&�!��' (1)

(Schölkopf & Smola, 2001). With respect to a basis of
� �

,
each datapoint then splits into (a possibly infinite number
of) independent features, a property which can be exploited
to great effect.

Graph-like structures occur in data in many guises, and in
order to apply machine learning techniques to such dis-
crete data it is desirable to use a kernel to capture the long-
range relationships between data points induced by the lo-
cal structure of the graph. One obvious example of such
data is a graph of documents related to one another by
links, such as the hyperlink structure of the World Wide
Web. Other examples include social networks, citations be-
tween scientific articles, and networks in linguistics (Albert
& Barabási, 2001).

Graphs are also sometimes used to model complicated or
only partially understood structures in a first approxima-
tion. In chemistry or molecular biology, for example, it
might be anticipated that molecules with similar chemical
structures will have broadly similar properties. While for
two arbitrary molecules it might be very difficult to quan-
tify exactly how similar they are, it is not so difficult to
propose rules for when two molecules can be considered
“neighbors,” for example, when they only differ in the pres-
ence or absence of a single functional group, movement
of a bond to a neigbouring atom, etc. Representing such
relationships by edges gives rise to a graph, each vertex
corresponding to one of our original objects. Finally, ad-
jacency graphs are sometimes used when data is expected
to be confined to a manifold of lower dimensionality than
the original space (Saul & Roweis, 2001; Belkin & Niyogi,
2001) and (Szummer & Jaakkola, 2002). In all of these
cases, the challenge is to capture in the kernel � the local
and global structure of the graph.

In addition to adequately expressing the known or hypoth-
esized structure of the data space, the function � must sat-
isfy two mathematical requirements to be able to serve as a
kernel: it must be symmetric ( �(������� � �)�*���#� � ���+� ) and
positive semi-definite. Constructing appropriate positive
definite kernels is not a simple task, and this has largely
been the reason why, with a few exceptions, kernel methods
have mostly been confined to Euclidean spaces � � � 
�, � ,
where several families of provably positive semi-definite
and easily interpretable kernels are known. When dealing
with intrinsically discrete data spaces, the usual approach
has been either to map the data to Euclidean space first
(as is commonly done in text classification, treating in-
teger word counts as real numbers (Joachims, 1998)) or,
when no such simple mapping is forthcoming, to forgo us-
ing kernel methods altogether. A notable exception to this
is the line of work stemming from the convolution kernel
idea introduced in (Haussler, 1999) and related but inde-
pendently conceived ideas on string kernels first presented
in (Watkins, 1999). Despite the promise of these ideas, rel-
atively little work has been done on discrete kernels since
the publication of these articles.

In this paper we use ideas from spectral graph theory to
propose a natural class of kernels on graphs, which we refer
to as diffusion kernels. We start out by presenting a more
general class of kernels, called exponential kernels, appli-



cable to a wide variety of discrete objects. In Section 3 we
present the ideas behind diffusion kernels and the interpre-
tation of these kernels on graphs. In Section 4 we show
how diffusion kernels can be computed for some special
families of graphs, and these techniques are further devel-
oped in Section 5. Experiments using diffusion kernels for
classification of categorical data are presented in Section 6,
and we conclude and summarize our results in Section 7.

2. Exponential kernels

In this section we show how the exponentiation operation
on matrices naturally yields the crucial positive-definite cri-
terion of kernels, and describe how to build kernels on the
direct product of graphs.

Recall that in the discrete case, positive semi-definiteness
amounts to -.0/01 -.32�/0154 . 4 . 2 ���#�6��� � �87(9 (2)

for all sets of real coefficients : 4 .<; , and in the continuous
case, = 1 = 1 4 �#��� 4 �#� � �+���#�6�>� � �@?A�B?0� � 7 9
for all square integrable real functions 4DCFEHG � � � ; the lat-
ter is sometimes referred to as Mercer’s condition.

In the discrete case, for finite
�

, the kernel can be uniquely
represented by an I � I � I � I matrix (which we shall denote
by the same letter � ) with rows and columns indexed by
the elements of

�
, and related to the kernel by � .J. 2 ��(������� � � . Since this matrix, called the Gram matrix, and

the function �K� �L�M�N�	O
 are essentially equivalent (in
particular, the matrix inherits the properties of symmetry
and positive semi-definiteness), we can refer to one or the
other as the “kernel” without risk of confusion.

The exponential of a square matrix P is defined asQSRUT �WVYX[Z\0]B^`_@acb�d Pe*f \ � (3)

where the limit always exists and is equivalent toQ RAT �hg b P b aikj P G b almj Pon bqpSp3pcp (4)

It is well known that any even power of a symmetric ma-
trix is positive semi-definite, and that the set of positive
semi-definite matrices is complete with respect to limits of
sequences under the Frobenius norm. Taking P to be sym-
metric and replacing e by

i e shows that the exponential
of any symmetric matrix is symmetric and positive semi-
definite, hence it is a candidate for a kernel.

Conversely, it is easy to show that any infinitely divisible
kernel � can be expressed in the exponential form (3). In-
finite divisibility means that � can be written as an e -fold

convolution �r�h�ts>u \Bv �ts>u \wv p3pSp v �ts>u \
for any e CFx (Haussler, 1999). Such kernels form con-
tinuous families :y��� d ���(��� a � R ; , indexed by a real pa-
rameter d , and are related to infinitely divisible probabil-
ity distributions, which are the limits of sums of inde-
pendent random variables (Feller, 1971). The tautology�(� d ��� z ��� a � R u \A{|\ becomes, as e goes to infinity,�}�~V[XYZ\0]�^ _ acb d e ?U�? dN��� RA�@� f

\ �
which is equivalent to (3) for P���� �� R I RA�@� .

The above already suggests looking for kernels over finite
sets in the form �r� Q RAT � (5)

guaranteeing positive definiteness without seriously re-
stricting our choice of kernel. Furthermore, differentiating���0� with respect to d and examining the resulting differen-
tial equation ?? d � R ��PF� R � (6)

with the accompanying initial conditions ���#9U����g , lends
itself natually to the interpretation that ��� d � is the product
of a continuous process, expressed by P , gradually trans-
forming it from the identity matrix ( �(�#9A� ) to a kernel with
stronger and stronger off-diagonal effects as d increases.
We shall see in the examples below that by virtue of this
relationship, choosing P to express the local structure of

�
will result in the global structure of

�
naturally emerging

in � . We call �!�A� an exponential family of kernels, with
generator P and bandwidth parameter d .

Note that the exponential kernel construction is not related
to the result described in (Berg et al., 1984; Haussler, 1999)
and (Schölkopf & Smola, 2001), based on Schoenberg’s
pioneering work in the late 1930’s in the theory of positive
definite functions (Schoenberg, 1938). This work shows
that any positive semi-definite � can be written as��������� � ��� Q���� .�� . 2�� (7)

where � is a conditionally positive semi-definite kernel;
that is, it satisfies (2) under the additional constraint that�h� /01 4 � ��9 .1
Whereas (5) involves matrix exponentiation via (3), for-
mula (7) prescribes the more straight-forward componen-
twise exponentiation. On the other hand, conditionally

1Instead of using the term “conditionally positive definite,”
this type of object is sometimes referred to by saying that �c�
is “negative definite.” Confusingly, a negative definite kernel is
then not the same as the negative of a positive definite kernel, so
we shall avoid using this terminology.



positive definite matrices are somewhat elusive mathemat-
ical objects, and it is not clear where Schoenberg’s beau-
tiful result will find application in statistical learning the-
ory. The advantage of our relatively brute-force approach
to constructing positive definite objects is that it only re-
quires that the generator P be symmetric (more generally,
self-adjoint) and guarantees the positive semi-definiteness
of the resulting kernel � .

There is a canonical way of building exponential kernels
over direct products of sets, which will prove invaluable in
what follows. Let :y� s � d � ; be a family of kernels over the
set
� s with generator P s , and let :J� G � d � ; be a family of

kernels over
� G with generator P G . To construct an expo-

nential kernels over the pairs ��� s �>� G � , with � s C � s and� G C � G , it is natural to use the generatorz P { .y�%� .3�%� . 2 � � . 2� ��z P s { .���� . 2 �m� �#� G ��� �G � b z P G { .J�$� . 2�@� ��� s �>� � s �
where � ���������A� a if �8��� and 9 otherwise. In other words,
we take the generator over the product set

� � � s �t� Gto be P���P s¡  g G b P G   g s , where g s and g G are theI � s I and I � G I dimensional diagonal kernels, respectively.
Plugging into (6) shows that the corresponding kernels will
be given simply byz ��� d � { .���� .J��� . 2 � � . 2� �
z � s � d � { .y�%� . 2 � z � G � d � { .J�$� . 2�£¢
that is, ��� d �c�L� s � d �   � G � d � . In particular, we can lift
any exponential kernel � on

�
to an exponential kernel � \

over length e sequences :k¤t� ��� s �>� G � pSp3p ��� \ �¥��� � C � ;by � \ �#¤8�>¤ � ��� \¦� � s ���#� � ��� �� �§� (8)

or, using the tensor product notation, � \ �h¨ \� � s � .

3. Diffusion kernels on graphs

An undirected, unweighted graph © is defined by a vertex
set ª and an edge set « , the latter being the set of un-
ordered pairs :3¬ s �>¬ G ; , where :J¬ s ��¬ G ; C ª whenever the
vertices ¬ s and ¬ G are joined by an edge (denoted ¬ sm­ ¬ G ).Equation (6) suggests using an exponential kernel with
generator P ��® �°¯±² ±³ a

for ´ ­(µ¶ ? � for ´"� µ9 otherwise � (9)

where ? � is the degree of vertex ´ (number of edges ema-
nating from vertex ´ ).
The negative of this matrix (sometimes up to normaliza-
tion) is called the Laplacian of © , and it plays a central role
in spectral graph theory (Chung, 1997). It is instructive to
note that for any vector · C 
�¸ ¹�¸ ,·»º�P¼·h� ¶ -½ � � ®%¾ /0¿ �#· � ¶ · ® � G �

showing that P is, in fact, negative semi-definite. Act-
ing on functions : 4 �Lª �	 
 ; by �#P 4 �S�����r�� .J2 P .0� . 2 4 ��� � � , P can also be regarded as an operator.
In fact, it is easy to show that on a square grid in À -
dimensional Euclidean space with grid spacing Á , PÃÂ�Á G
is just the finite difference approximation to the familiar
continuous LaplacianÄ �ÆÅ GÅ � G s b Å GÅ � GG b�p3pSpJb Å GÅ � G, �
and that in the limit Á 	 9 this approximation becomes
exact. In analogy with classical physics, where equations
of the form ÅÅ�ÇHÈ ��É

Ä
È

are used to describe the diffusion of heat and other sub-
stances through continuous media, our equation?? d � R �qPo� R (10)

with P as defined in (9) is called the heat equation on © ,
and the resulting kernels are called diffusion or heat ker-
nels.

3.1 A stochastic and a physical model

There is a natural class of stochastic processes on graphs
whose covariance structure yields diffusion kernels. Con-
sider the random field obtained by attaching independent,
zero mean, variance Ê G random variables Ë � �#9U� to each ver-
tex ´ C ª . Now let each of these random variables “send”
a fraction ÌqÍ a of their value to each of their respective
neighbors at discrete time steps Ç � a � i � p3pSp ; that is, letË � � Ç b�a ���LË � � Ç � b Ì -® / ¹§Î ®�ÏÐ���Ë ® � Ç � ¶ Ë � � Ç ��� p
Introducing the time evolution operatorÑ � Ç ���
� aÒb Ì�PF��Ó��ËB� Ç ��� ��Ë s � Ç �$�%Ë G � Ç �$� p3pSp �$Ë ¸ ¹Ò¸ � Ç ��� º can be written asËB� Ç ��� Ñ � Ç �>ËB�#9U� p (11)

The covariance of the random field at time Ç is

Cov
�Ô® � Ç �Õ�Ö«�z×�ØË � � Ç � ¶ «ÙË � � Ç ���Ú�ØË ® � Ç � ¶ «ÙË ® � Ç �>� {� «�zÔË � � Ç ��Ë ® � Ç � {� «ÜÛSÝ - � 2 Ñ �[� 2 � Ç �>Ë � 2 �!9A��Þ5Ý - ® 2 Ñ ®ß® 2 � Ç �>Ë ® 2 �#9U�àÞ�ák�

which simplifies to

Cov
�Ô® � Ç �â� Ê G -�ã Ñ � ã � Ç � Ñ

ã ® � Ç �� Ê G z Ñ � Ç � G { ��® �qÊ G Ñ ��® � i Ç � (12)



by independence at time zero, «äz Ë � Ë ® { �
Ê G � �#´%� µ � . Note
that ( a i � holds regardless of the particular distribution of
the :�Ë � �!9A� ; , as long as their mean is zero and their variance
is Ê G .
Now we can decrease the time step from a to

Ä Ç by replac-
ing Ç by Ç Â�� Ä Ç � and Ì by Ì Ä Ç in (11) 2, givingÑ � Ç �å� _ acb Ì"Pa Âk� Ä Ç � f Ó u�æ Ó �
which, in the limit

Ä Ç 	 9 , is exactly of the form (3).
In particular, the covariance becomes the diffusion kernel
Cov � Ç �¡�¼Ê G Q G�ç Ó T . Since kernels are in some sense noth-
ing but “generalized” covariances (in fact, in the case of
Gaussian Processes, they are the covariance), this example
supports the contention that diffusion kernels are a natural
choice on graphs.

Closely related to the above is an electrical model. Differ-
entiating (11) with respect to Ç yields the differential equa-
tions ?? Ç Ë � � Ç ���hÌ -® / ¹§Î ��Ï�®�ØË ® � Ç � ¶ Ë � � Ç �>� p
These equations are the same as those describing the re-
laxation of a network of capacitors of unit capacitance,
where one plate of each capacitor is grounded, and the
other plates are connected according to the graph structure,
each edge corresponding to a connection of resistance a Â�Ì .
The :�Ë � � Ç � ; then measure the potential at each capacitor at
time Ç . In particular, ���#´�� µ �¡�
èSékê6�#Ì Ç PF� is the potential
at capacitor ´ , time Ç after having initialized the system by
decharging every capacitor, except for capacitor µ , which
starts out at unit potential.

3.2 The continuous limit

As a special case, it is instructive to again consider the in-
finitely fine square grid on


å,
. Introducing the similarity

function ë . ��� � �������#�6�>� � � , the heat equation (10) gives?? d ë . �#�&�|���
= PÜ���������Ô�Y�Ðë . 2 2 ���&�|�+?A�&�Ô� p

Since the Laplacian is a local operator in the sense that

Ä
4 �#��� is only affected by the behavior of 4 in the neigh-

borhood of � , as long as ë . �#� � � is continuous in � , the
above can be rewritten as simply?? d ë . ��� � �c�

Ä ë . ��� � � p
It is easy to verify that the solution of this equation with
Dirac spike initial conditions ë . �#� � �Ò� � �#� ¶ � � � is just the
Gaussian

2Note that ì is here used to denote infinitesimals and not the
Laplacian.

ë . �#�&�|��� aí îAï d Q0ð ¸ . ð . 2 ¸ � u �òñ>R � �
showing that similarity to any given point � � , as expressed
by the kernel, really does behave as some substance diffus-
ing in space, and also that the familiar Gaussian kernel on
§,

, �(���6�>�&�|��� aí i ï Ê G QAð ¸ . ð . 2 ¸ � u � G�ó � �
is just a diffusion kernel with d �LÊ G Â i . In this sense, dif-
fusion kernels can be regarded as a generalization of Gaus-
sian kernels to graphs.

3.3 Relationship to random walks

It is well known that diffusion is closely related to ran-
dom walks. A random walk on an unweighted graph ©
is a stochastic process generating sequences ô � �>ô s ��ô G � p3pSpwhere ôJõ C ª in such a way that öB�0ôJõò÷ s � µ I@ôJõk�Ü´k�¥�a Â�? � if ´ ­(µ and zero otherwise.

A lazy random walk on © with parameter dÕø a Â���Z)ù�é � ? � �is very similar, except that when at vertex ´ , the process will
take each of the edges emanating from ´ with fixed proba-
bility d , i.e. öw��ôJõò÷ s � µ IÒô3õ§�L´<�8� d for ´ ­�µ , and
will remain in place with probability a ¶ ? � d . Consider-
ing the distribution öB��ô�ú�Iàô � � in the limit

Ä Ç 	 9 withû � a Â�� Ä Ç � and d � d �
Ä Ç leads exactly to (3) showing

that diffusion kernels are the continuous time limit of lazy
random walks.

This analogy also shows that ���#´%� µ � can be regarded as a
sum over paths from ´ to µ , namely the sum of the probabili-
ties that the lazy walk takes each path. For graphs in which
every vertex is of the same degree ? � �q? , mapping each
vertex ´ to every path starting at ´ weighted by the square
root of the probability of a lazy random walk starting at ´
taking that path,ü ��´à�Ò� Q ð � R u G -ý /Aþ Î�ÿ�� � � _�d ¸ ý ¸I ý I j f s�u G ý �
where

� �D: ý ���!ô � ��ô s � p3pSp ��ô ¸ ý ¸ �N�Ùô3õ C ªÒ�DôJõ ­ ôJõò÷ s ;is the set of all paths on © , gives a representation of the
kernel in the space �)� � � of linear combinations of paths
of the form��� � þ � � ý � ý � �Ò� � � � ý � ý � � for loops, i.e., ý � � ý ¸ ý ¸� � ý � ý � ��Â í i otherwise �
where ý ��ô ¸ ý ¸ �>ô ¸ ý ¸ ð s � pSpSp �>ô � is the reverse of ý . In the
basis of loops :�� C � �
	 � ��	 I � I ; and linear combinations� � s �ý � aí i � ý b ý �� � G �ý � aí i � ý ¶ ý �



for all pairs : ý � ý ; of non-loops, this does give a diagonal
representation of � , but not a representation satisfying (1),
because there are alternating bwa ’s and ¶ a ’s on the diago-
nal.

3.4 Diffusion on weighted graphs

Finally, we remark that diffusion kernels are not restricted
to simple unweighted graphs. For multigraphs or weighted
symmetric graphs, all we need to do is to set P �Ô® ��´
�� µ
to be the total weight of all edges between ´ and µ and
reweight the diagonal terms accordingly. The rest of the
analysis carries through as before.

4. Some special graphs

In general, computing exponential kernels involves diago-
nalizing the generator Pr� Ñ ð s�� Ñ �
which is always possible because P is symmetric, and then
computing Q RUT � Ñ ð s Q R�� Ñ �
which is easy, because Q R�� will be diagonal with z Q R�� { �Y� �èSékê6� d � �Y� � . The diagonalization process is computation-
ally expensive, however, and the kernel matrix must be
stored in memory during the whole time the learning al-
gorithm operates. Hence there is interest in the few special
cases for which the kernel matrix can be computed directly.

4.1 ë -regular trees

An infinite ë -regular tree is an undirected, unweighted
graph with no cycles, in which every vertex has exactlyë neighbors. Note that this differs from the notion of a
rooted e -ary tree in that no special node is designated the
root. Any vertex can function as the root of the tree, but
that too must have exactly ë neighbors. Hence a 3-regular
tree looks much like a rooted binary tree, except that at the
root it splits into three branches and not two.

Since in this graph every vertex is created perfectly equal,�(��´%� µ �ä��è×ékê6� d PF� can only depend on the relative po-
sitions of ´ and µ , namely the length of the unique path
between them, ?&�#´�� µ � . Chung and Yau (1999) show that���#´�� µ ����� �

ã �
R ��?���´%� µ ���D� (13)iï �!ë ¶ a � =��� Q ð R�� s ð ��� ���U�������� .! ë G ¶ î ��ë ¶ a �#"%$'& G � �� &�X)(8�BzS��ë ¶ a �*&>X+(��#? b�a �<� ¶ &�X)(6�!? ¶ a �<� { ?0�

for ?w��?���´%� µ ��7 a , and�(��´%��´à�å�h� �
ã �

R �!9A�Õ� (14)i ë@��ë ¶ a �ï =��� èSékê¥� ¶ d � a ¶ � � ���U�� "%$�&������,&>X)( G �ë G ¶ î �!ë ¶ a �-".$�& G � ?A�

for the diagonal elements.

4.2 Complete graphs

In the unweighted complete graph with e vertices, any pair
of vertices is joined by an edge, hence P ��® � a ¶ � �#´%� µ � e .
It is easy to verify that the corresponding solution to (10) is

�(��´%� µ ��� ¯±±±² ±±±³
acb � e ¶ a � Q ð \ Re for ´§� µa ¶ Q ð \ Re for ´/�� µ � (15)

showing that with increasing d , the kernel relaxes expo-
nentially to ���#´%� µ � � a Â e . The asymptotically exponen-
tial character of this solution, and the convergence to the
uniform kernel for finite

�
, are direct consequences of the

fact that P is a linear operator, and we shall see this type
of behavior recur in other examples.

4.3 Closed chains

When © is a single closed chain of length e , �(��´%� µ � will
clearly only depend on the distance ?&�#´�� µ � along the chain
between ´ and µ . Labeling the vertices consecutively from9 to e ¶ a , the similarity function at a particular vertex
(without loss of generality, vertex zero) can be expressed
in terms of its discrete Fourier transform���!9�� µ ���hë � � µ ��� aí e \ ð s-0 �@�21 ë � � µ �,"%$�& i ï�3 µe p
The heat equation implies?? d ë � � µ �� ë � � µ bqa Z4$*5 e � ¶ i ë � � µ � b ë � � µ ¶ a Z6$*5 e �$�
which after some trigonometry translates into?? d 1 ë � � 3 �Ò� ¶ i _+a ¶ ".$�& i ï�3e f 1 ë � � 3 �$�
showing that the Fourier coefficients decay independently
of one another. Using the inverse Fourier transform, the so-
lution corresponding to the initial condition ë � ��´à�k� � ��´%��9A�
at d ��9 will beë � � µ ��� ae \ ð s-0 �@� Q ð27�8 R "%$'& i ï�3 µe
where 9 0 � i;: a ¶ ".$�& G � 0\=< , and the kernel itself will be����´%� µ ��� ae \ ð s-0 �Ð� Q0ð
7 8�R "%$'& i ï�3 ��´ ¶ µ �e p



4.4 The hypercube and tensor products of complete
graphs

Kernels on the special graphs considered above can serve
as building blocks for tensor product kernels, as in (8).
For example, it is natural to identify binary strings ¤*�� � � s � G pSp3p � , ��� � C :y9�� a ; of length À with the vertices�#� s ��� G � pSpSp �>� , � of the À -dimensional hypercube. Con-
structing a diffusion kernel on the hypercube regarded as a
graph amounts to asserting that two sequences are neigh-
bors if they only differ in a single digit. From (15) and (8),
the diffusion kernel on the hypercube will be�(�#¤H�>¤å���?> _ a ¶ Q ð G Racb Q ð G R f � � ¤ � ¤ 2 �� �A@�ùB(DC d � � � ¤ � ¤ 2[� �
which only depends on the Hamming distance ?��#¤8��¤ � � be-
tween ¤ and ¤ � , and is extremely easy to compute. Simi-
larly, the diffusion kernel on strings over an alphabet E of
size I E�I will be�(�#¤H�>¤ � �?> _ a ¶ Q ð ¸ Fc¸ Racb ��I E�I ¶ a � Q ð ¸ FH¸ R f � � ¤ � ¤ 2ò�
where ?��#¤8��¤ � � is the number of character places at which¤ and ¤ � differ.

5. Conjugacy, the method of images and
string kernels

Conjugating the Gram matrix by a not necessarily square
matrix

Ñ � �+G � � Ñ ºå� Ñ
yields a new positive semi-definite kernel � � � G �o� G �	


of the form� �+G � ��� � �>� ® ��� -'H
-!I Ñ � I Ñ ® H ���#ô I �>ô H � p
One application of this is in creating virtual data points.
We have noted above that the distinction between ë -regular
trees and infinite ��ë ¶ a � -ary rooted trees is that arbitrarily
designating a vertex in the former as the root, we find that
it has an extra branch emanating from it (Figure 1). Taking
for simplicity ëÚ� l , the analytical formulæ (13) and (14)
are hence not directly applicable to binary rooted trees, be-
cause if we simply try to ignore this branch by not mapping
any data points to it, in the language of the electrical anal-
ogy of Section 3.1, we find that some current will “seep
away” through it.

The crucial observation is that the graph possesses mirror
symmetry about the edge connecting this errant branch to
the rest of the graph. Mapping each vertex ´ of the binary

p

p’

q

q’

Figure 1. The three-regular tree (left), which extends to infinity
in all directions. A little bending of the branches shows that it is
isomorphic to two rooted binary trees joined at the root (right).
The method of images enables us to compute the diffusion kernel
between vertices of the binary tree by mapping each to a pair of
vertices JLK
MAK�N)O and JAPQM�P.NRO on the three-regular tree and summing
the contributions from STJLK
MUPVO , STJLK
M�P N O , STJLK N MWPVO and STJLK N M�P N O
(16).

tree to the analogous vertex on one side of this plane of
symmetry ö¥� ü �#´à� in the

l
-regular tree and its mirror im-

age ö � � ü � �#´ß� on the other side solves the problem, because,
by symmetry, in the electrical analogy, the flow of current
across the critical edge connecting the two halves of the
graph will be zero. This construction, called the method of
images, corresponds to a transformation matrix of the form

Ñ �YXZZZ[ sG sG pSp3psG sG sG sG...
. . .

\.]]]^
and yields in analytical form the diffusion kernel for infinite
binary trees�(��´%� µ ��� ai � � n �R �!?&�#´�� µ ��� b ai � � n �R �!?&�#´��`_�� b ?&�a_�� µ � bqa �

(16)

where _ designates the root and ? measures distances on
the binary tree.

Another application of conjugated diffusion kernels is in
the construction of string kernels sensitive to matching non-
contiguous substrings. The usual approach to this is to in-
troduce “blank” characters b into the strings ¤ and ¤ � to be
compared, so that the characters of the common substring
are aligned..

Using the tensor product of complete graphs approach de-
veloped above, it is easy to add an extra character to the
alphabet E to represent b . We can then map ¤ and ¤ � to a
generalized hypercube E \ of dimensionality e 7�I ¤¡I b I ¤ � I
by mapping each string to the vertices corresponding to
all its posssible extensions by b ’s. Let us represent an
alignment between ¤ and ¤ � by the vector of matchesc � �>�ed s �>¬ s �$�J�ed G �>¬ G �×� pSp3p �3�ad ¸ c ¸ ��¬ ¸ c ¸ ��� where a ø d sgfd G f pSp3p f d ¸ c ¸ ø I ¤�I , a ø ¬ shf ¬ G f p3pSp f ¬ ¸ c ¸ ø I ¤ � I ,



�
ikj��*� �l j and let m �#¤���¤ � � be the set of all alignments
between ¤ and ¤ � . Assuming that all virtual strings are
weighted equally, the resulting kernel will be���!¤8�>¤ � ��� -c /Qn � ¤ � ¤ 2 �ko �#¤8��¤ � �qp \ ð ¸ c ¸ (17)

for some combinatorial factor o �#¤8��¤ � � andp�� d �Ò� a ¶ Q ð � ¸ Fc¸ ÷ s � Racb I E�I Q ð � ¸ Fc¸ ÷ s � R p
In the special case that e 	sr

, the combinatorial factor
becomes constant for all pairs of strings and (17) becomes
computable by dynamic programming by the recursionë � ÷ s � ® ÷ s �tp��!ë � � ® ÷ s b ë � ÷ s � ® � bvu � ÷ s � ® ÷ s ë � � ®
where u � � ® � � a if � � ÷ s ��� �® ÷ sp otherwise.

For the derivation of recursive formulæ such as this, and
comparison to other measures of similarity between strings,
see (Durbin et al., 1998).

6. Experiments on UCI datasets

In this section we describe preliminary experiments with
diffusion kernels, focusing on the use of kernel-based
methods for classifying categorical data. For such prob-
lems, it is often quite unnatural to encode the data as vec-
tors in Euclidean space to allow the use of standard kernels.
However as our experiments show, even simple diffusion
kernels on the hypercube, as described in Section 4.4, can
result in good performance for such data.

For ease of experimentation we use a large margin classi-
fier based on the voted perceptron, as described in (Freund
& Schapire, 1999).3 In each set of experiments we com-
pare models trained using a diffusion kernel, the Euclidean
distance, and a kernel based on the Hamming distance.

Data sets having a majority of categorical variables were
chosen; any continuous features were ignored. The diffu-
sion kernels used are given by the natural extension of the
hypercube kernels given in Section 4.4, namely� R �#¤8��¤ � �?> \¦� � s _ a ¶ Q ð ¸ Fxw>¸ RaÒb �mI E � I ¶ a � Q ð ¸ F w ¸ R fhy � . w � . 2w �
where I E � I is the number of values in the alphabet of the´ -th attribute.

Table 1 shows sample results of experiments carried out on
five UCI data sets having a majority of categorical features.

3SVMs were trained on some of the data sets and the results
were comparable to what we report here for the voted perceptron.

In each experiment, a voted perceptron was trained, using
10 rounds, for each kernel. Results are reported for the set-
ting of the diffusion coefficient d achieving the best cross-
validated error rate. Since the Euclidean kernel performed
poorly in all cases, the results for this classifier are not
shown. The results are averaged across 50 random splits
of the training and test data. In addition to the error rates,
also shown is the average number of support vectors (or
perceptrons) used. In general, we see that the best classi-
fiers also have the sparsest representation. The reduction in
error rate varies, but the simple diffusion kernel generally
performs well.
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Figure 2. The average error rate (left) and number of support vec-
tors (right) as a function of the diffusion coefficient z on the{'|
}�~*�'�'�k�

data set. The horizontal line is the baseline perfor-
mance using the Hamming kernel.

The performance over a range of values of d on the
{'|2}!~�����'�V�

data set is shown in Figure 2. We note that this is a
very easy data set for a symbolic learning algorithm, since
it can be learned to an accuracy of about 99.50% with a
few simple logical rules. However, standard kernels per-
form poorly on this data set, and the Hamming kernel has
an accuracy of only 96.64%. The simple diffusion kernel
brings the accuracy up to 99.23%.

7. Conclusions

We have presented a natural approach to constructing ker-
nels on graphs and related discrete objects by using the
analogue on graphs of the heat equation on Riemannian
manifolds. The resulting kernels are easily shown to sat-
isfy the crucial positive semi-definiteness criterion, and
they come with intuitive interpretations in terms of ran-
dom walks, electrical circuits, and other aspects of spectral
graph theory. We showed how the explicit calculation of
diffusion kernels is possible for specific families of graphs,
and how the kernels correspond to standard Gaussian ker-
nels in a continuous limit. Preliminary experiments on cat-
egorical data, where standard kernel methods were previ-
ously not applicable, indicate that diffusion kernels can be
effectively used with standard margin-based classification
schemes. While the tensor product construction allows one
to incrementally build up more powerful kernels from sim-
ple components, explicit formulas will be difficult to come
by in general. Yet the use of diffusion kernels may still be
practical when the underlying graph structure is sparse by
using standard sparse matrix techniques.



Hamming Distance Diffusion Kernel Improvement

Data Set #Attr Z)ù�éÚI E�I error I ��ª�I error I �Òª�I d
Ä

error

Ä I ��ª�I�������D}!�t���k�����B�
9 10 7.64% 387.0 3.64% 62.9 0.30 62% 83%�*�Q�*�B���V�2��}

13 2 17.98% 750.0 17.66% 314.9 1.50 2% 58%�!���B�k�D�
11 42 19.19% 1149.5 18.50% 1033.4 0.40 4% 8%{'|
}�~*�'�'�k�
22 10 3.36% 96.3 0.75% 28.2 0.10 77% 70%�D�B���D}
16 2 4.69% 286.0 3.91% 252.9 2.00 17% 12%

Table 1. Results on five UCI data sets. For each data set, only the categorical features are used. The column marked ���.�#� ��� indicates
the maximum number of values for an attribute; thus the

�*�B�*�*}
data set has binary attributes. Results are reported for the setting of the

diffusion coefficient z achieving the best error rate.

It is often said that the key to the success of kernel-based al-
gorithms is the implicit mapping from a data space to some,
usually much higher dimensional, feature space which bet-
ter captures the structure inherent in the data. The motiva-
tion behind the approach to building kernels presented in
this paper is the realization that the kernel is a general rep-
resentation of this inherent structure, independent of how
we represent individual data points. Hence, by construct-
ing a kernel directly on whatever object the data points nat-
urally lie on (e.g. a graph), we can avoid the arduous pro-
cess of forcing the data through any Euclidean space alto-
gether. In effect, the kernel trick is a method for unfolding
structures in Hilbert space. It can be used to unfold non-
trivial correlation structures between points in Euclidean
space, but it is equally valuable for unfolding other types
of structures which intrinsically have nothing to do with
linear spaces at all.
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