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Abstract. We present a novel solution technique for the blind subspace
deconvolution (BSSD) problem, where temporal convolution of multidi-
mensional hidden independent components is observed and the task is
to uncover the hidden components using the observation only. We carry
out this task for the undercomplete case (uBSSD): we reduce the orig-
inal uBSSD task via linear prediction to independent subspace analysis
(ISA), which we can solve. As it has been shown recently, applying tem-
poral concatenation can also reduce uBSSD to ISA, but the associated
ISA problem can easily become `high dimensional' [1]. The new reduction
method circumvents this dimensionality problem. We perform detailed
studies on the e�ciency of the proposed technique by means of numerical
simulations. We have found several advantages: our method can achieve
high quality estimations for smaller number of samples and it can cope
with deeper temporal convolutions.

1 Introduction

There is a growing interest in independent component analysis (ICA) and
blind source deconvolution (BSD) for signal processing and hidden component
searches. For recent reviews on ICA and BSD see [2] and [3], respectively. The
traditional example of ICA is the so-called cocktail-party problem, where there
are D pieces of one-dimensional sound sources and D microphones and the task
is to separate the original sources from the observed mixed signals. Clearly, ap-
plications where not all, but only certain groups of the sources are independent
may have high relevance in practice. For example, there could be independent

rock bands playing at a party. This is the independent subspace analysis (ISA)
extension of ICA [4]. Strenuous e�orts have been made to develop ISA algo-
rithms, where the theoretical problems concern mostly (i) the estimation of the
entropy or of the mutual information, or (ii) joint block diagonalization. A recent
list of possible ISA solution techniques can be found in [1].

Another extension of the original ICA task is the BSD problem [3], where
the observation is a temporal mixture of the hidden components (echoic cocktail
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party). A novel task, the blind subspace deconvolution (BSSD) [1] arises if we
combine the ISA and the BSD assumptions. One can think of this task as the
separation problem of the pieces played simultaneously by independent rock
bands in an echoic stadium. One of the most stringent applications of BSSD
could be the analysis of EEG or fMRI signals. The ICA assumptions could
be highly problematic here, because some sources may depend on each other,
so an ISA model seems better. Furthermore, the passing of information from
one area to another and the related delayed and transformed activities may
be modeled as echoes. Thus, one can argue that BSSD may �t this important
problem domain better than ICA or even ISA. It has been shown in [1] that
the undercomplete BSSD task (uBSSD)�where in terms of the cocktail-party
problem there are more microphones than acoustic sources�can be reduced to
ISA by means of temporal concatenation. However, the reduction technique may
lead to `high dimensions' in the associated ISA problem. Here, an alternative
reduction method is introduced for uBSSD and this solution avoids the increase
of ISA dimensions. Namely, we show that one can apply linear prediction to
reduce the uBSSD task to ISA such that the dimension of the associated ISA
problem equals to the dimension of the original hidden sources. As an additional
advantage, we shall see that this reduction principle is more e�cient on problems
with deeper temporal convolutions.

The paper is built as follows: Section 2 formulates the problem domain.
Section 3 shows how to reduce the uBSSD task to an ISA problem. Section 4
contains the numerical illustrations. Section 5 contains a short summary.

2 The BSSD Model

We de�ne the BSSD task in Section 2.1. Earlier BSSD reduction principles are
reviewed in Section 2.2.

2.1 The BSSD Equations

Here, we de�ne the BSSD task. Assume that we have M hidden, independent,
multidimensional components (random variables). Suppose also that only their
casual FIR �ltered mixture is available for observation:

x(t) =
L∑

l=0

Hls(t − l), (1)

where s(t) =
[
s1(t); . . . ; sM (t)

]
∈ RMd is a vector concatenated of components

sm(t) ∈ Rd. Here, for the sake of notational simplicity we used identical di-
mension for each component. For a given m, sm(t) is i.i.d. (independent and
identically distributed) in time t, there is at most a single Gaussian component
in sms, and I(s1, . . . , sM ) = 0, where I stands for the mutual information of
the arguments. The total dimension of the components is Ds := Md, the dimen-
sion of the observation x is Dx. Matrices Hl ∈ RDx×Ds (l = 0, . . . , L) describe



the convolutive mixing. Without any loss of generality it may be assumed that
E[s] = 0, where E denotes the expectation value. Then E[x] = 0 holds, as well.
The goal of the BSSD problem is to estimate the original source s(t) by using
observations x(t) only. The case L = 0 corresponds to the ISA task, and if d = 1
also holds then the ICA task is recovered. In the BSD task d = 1 and L is a
non-negative integer. Dx > Ds is the undercomplete, Dx = Ds is the complete,
and Dx < Ds is the overcomplete task. Here, we treat the undercomplete BSSD
(uBSSD) problem.

For consecutive reductional steps we rewrite the BSSD model using operators.
Let H[z] :=

∑L
l=0 Hlz

−l ∈ R[z]Dx×Ds denote the Dx × Ds polynomial matrix
corresponding to the convolutive mixing, in a one-to-one manner, where z is the
time-shift operation. Now, the BSSD equation (1) can be written as x = H[z]s.
In the uBSSD task it is assumed that H[z] has a polynomial matrix left inverse:
there exists polynomial matrix W[z] ∈ R[z]Ds×Dx such that W[z]H[z] is the
identity mapping. It can be shown [5] that for Dx > Ds such a left inverse exists
with probability 1, under mild conditions: coe�cients of polynomial matrix H[z],
that is, the random matrix [H0; . . . ;HL] is drawn from a continuous distribution.
For the ISA task it is supposed that mixing matrix H0 ∈ RDx×Ds has full column
rank, i.e., its rank is Ds.

2.2 Existing Decomposition Principles in the BSSD Problem Family

There are numerous reduction methods for the BSSD problem in the literature.
For example, its special case, the undercomplete BSD task can be reduced (i) to
ISA by temporal concatenation of the observations [6], or (ii) to ICA by means of
either spatio-temporal decorrelation [7], or by linear prediction (autoregressive
(AR) estimation), see e.g., [8]. As it was shown in [1], the uBSSD task can also be
reduced to ISA by temporal concatenation. In Section 3, we show another route
and describe how linear prediction can help to transcribe the uBSSD task to
ISA. According to the ISA Separation Theorem [1, 9], under certain conditions,
the solution of the ISA task requires an ICA preprocessing step followed by a
suitable permutation of the ICA elements. This principle was conjectured in [4]
on basis of numerical simulations. Only su�cient conditions are available in [1,9]
for the ISA Separation Theorem.

3 Reduction of uBSSD to ISA by Linear Prediction

Below, we reduce the uBSSD task to ISA by means of linear prediction. The
procedure is similar to that of [8], where it was applied for undercomplete BSD
(i.e., for d = 1).

Theorem. In the uBSSD task, observation process x(t) is autoregressive and its

innovation x̃(t) := x(t) − E[x(t)|x(t − 1),x(t − 2), . . .] is H0s(t), where E[·|·]
denotes the conditional expectation value. Consequently, there is a polynomial

matrix WAR[z] ∈ R[z]Dx×Dx such that WAR[z]x = H0s.



Proof. We assumed that H[z] has left inverse, thus the hidden s can be ex-
pressed from observation x by causal FIR �ltering, i.e., s = H−1[z]x, where
H−1[z] =

∑N
n=0 Mnz−n ∈ R[z]Ds×Dx and N denotes the degree of the H−1[z]

polynomial. Thus, terms in observation x that di�er from H0s(t) in (1) belong to
the linear hull of the �nite history of x: x(t) = H0s(t) +

∑L
l=1 Hl(H−1[z]x)(t −

l) ∈ H0s(t)+ 〈x(t − 1),x(t − 2), . . . ,x(t − L + N)〉. Because s(t) is independent
of 〈x(t − 1),x(t − 2), . . . ,x(t − L + N)〉, we have that observation process x(t)
is autoregressive with innovation H0s(t).

Thus, the AR �t of x(t) can be used for the estimation of H0s(t). This innovation
corresponds to the observation of an undercomplete ISA model1, which can be
reduced to a complete ISA model using principal component analysis (PCA).
Finally, the solution can be �nished by any ISA procedure. We will call the above
uBSSD method linear predictive approximation (LPA). The LPA pseudocode
is given in Table 1. The reduction procedure implies that hidden components
sm can be recovered only up to the ambiguities of the ISA task [10]: that is,
assuming (without any loss of generality) that both the hidden source (s) and
the observation are white � their expectation values are zeroes and the covariance
matrices are identities � the sm components are determined up to permutation
and orthogonal transformation.

Table 1: Linear predictive approximation (LPA): Pseudocode

Input of the algorithm

Observation: {x(t)}t=1,...,T

Optimization

AR �t: for observation x estimate ŴAR[z]

Estimate innovation: x̃ = ŴAR[z]x

Reduce uISA to ISA and whiten: x̃
′
= ŴPCAx̃

Apply ISA for x̃
′
: separation matrix is ŴISA

Estimation

ŴuBSSD[z] = ŴISAŴPCAŴAR[z]

ŝ = ŴuBSSD[z]x

4 Illustrations

We show the results of our studies concerning the e�ciency of the algorithm of
Table 1.2 We compare the LPA procedure with the uBSSD method described
in [1], where temporal concatenation was applied to transform the uBSSD task

1 Assumptions made for H[z] in the uBSSD task implies that H0 is of full column
rank and thus the resulting ISA task is well de�ned.

2 Further details can be found in our accompanying technical report [11].



to a `high-dimensional' ISA task. We shall refer to that method as the method
of temporal concatenation, or TCC for short. Test problems are introduced in
Section 4.1. The performance index that we use to measure the quality of the
solutions is detailed in Section 4.2. Numerical results are presented in Section 4.3.

4.1 Databases

We de�ne four databases (s) to study our LPA algorithm3. These are the
databases used in [1], too. In the 3D-geom, celebrities and letters data sets, the
d-dimensional hidden components sm are 3,2,2-dimensional random variables,
respectively. They are distributed (a) uniformly on geometric forms, (b) accord-
ing to pixel intensities on cartoons of celebrities, and (c) uniformly on images of
letters A and B. We have M = 6, 10, 2 components, thus the dimension of the
hidden source s is Ds = 18, 20, 4. Databases are illustrated in Figs. 1(a)-(c). Our
Beatles database is a non-i.i.d. example. Here, hidden sources are stereo Beatles
songs. 8 kHz sampled portions of two songs (A Hard Day's Night, Can't Buy
Me Love) made the hidden sms (d = 2,M = 2, Ds = 4). In the letters and Bea-

tles test the number of components and their dimensions were minimal (d = 2,
M = 2).

(a) (b) (c)

Fig. 1: Illustration of the (a) 3D-geom, (b) celebrities and (c) letters databases.

4.2 The Amari-index

According to Section 3, in the ideal case, the product of matrix ŴISAŴPCA

and matrix H0, that is matrix G := ŴISAŴPCAH0 ∈ RDs×Ds is a block-
permutation matrix made of d × d blocks. To measure this block-permutation
property, the Amari-error adapted to the ISA task [12] was normalized [9] to
take values in [0, 1] independently from d and Ds. This performance measure,
the Amari-index, was used to compare the TCC and LPA techniques.

3 Smiley : http://www.smileyworld.com, Beatles: http://rock.mididb.com/beatles/ .



4.3 Simulations

The experimental studies concern two questions: (i) the TCC and the LPA meth-
ods are compared on uBSSD tasks, (ii) the performance as a function of convo-
lution length is studied for the LPA technique.

We studied the Dx = 2Ds case, like in [1]. Both the TCC and the LPA
method reduce the uBSSD task to ISA problems and we use the Amari-index
(Section 4.2) to measure and compare their performances. For all values of the
parameters (sample number: T , convolution length: L + 1), we have averaged
the performances upon 50 random initializations of s and H[z]. The coordinates
of matrices Hl were chosen independently from standard normal distribution.
We used the Schwarz's Bayesian Criterion to determine the optimal order of the
AR process. The criterion was constrained: the order Q of the estimated AR
process (see Table 1) was limited from above, the upper limit was set to twice
the length of the convolution, i.e., Q ≤ 2(L + 1). The AR process and the ISA
subtask of TCC and LPA were estimated by the method detailed in [13], and by
joint f-decorrelation (JFD) [14], respectively.

We studied the dependence of the precision versus the sample number. In
the 3D-geom and celebrities (letters and Beatles) tests, the sample number T
varied between 1, 000 and 100, 000 (1, 000 and 75, 000), the length of the convo-
lution (L + 1) changed between 2 and 6 (2 and 31). Comparison with the TCC
method and the estimations of the LPA technique are illustrated in Figs. 2(a)-
(b) (Figs. 2(c)-(d)) on the 3D-geom (Beatles) database. According to Fig. 2(a),
the LPA algorithm is able to uncover the hidden components with high pre-
cisions on the 3D-geom database. We found that the Amari-index r decreases
according to power law r(T ) ∝ T−c (c > 0) for sample numbers T > 2000.
The power law is manifested by straight lines on log log scales. According to
Fig. 2(b) the LPA method is superior to the TCC method (i) for all sample num-
bers 1, 000 ≤ T ≤ 100, 000, moreover (ii) LPA can provide reasonable estimates
for much smaller sample numbers. on the 3D-geom database. This behavior is
manifested by the initial steady increase of the quotients of the Amari indices
of the TCC and LPA methods as a function of sample number followed by a
sudden drop when the sample number enables reasonable TCC estimations, too.
Similar results were found on the celebrities and the letters databases, too. The
LPA method resulted in 1.1− 88, 1.0− 87, 1.2− 110-times increase of precision
for the 3D-geom, celebrities and letters database, respectively. For the 3D-geom

(celebrities, letters) dataset the Amari-index for sample number T = 100, 000
(T = 100, 000, T = 75, 000) is 0.19 − 0.20% (0.33 − 0.34%, 0.30 − 0.36%) with
small 0.01 − 0.02 (0.02, 0.11 − 0.15) standard deviations.

Visual inspection of Fig. 2(c) shows that on the Beatles database the LPA
method found the hidden components for sample number T ≥ 30, 000. The TCC
method gave reliable solutions for sample number T = 50, 000 or so. According
to Fig. 2(d) the LPA method is more precise than TCC for T ≥ 30, 000. The
increase in precision becomes more pronounced for larger convolution parameter
L. Namely, for sample number 75, 000 and for L = 1, 2, 5, 10, 20, 30 the ratios
of precision are 1.50, 2.24, 4.33, 4.42, 9.03, 11.13, respectively on the average. For



sample number T = 75, 000 the Amari-index stays below 1% on average (0.4 −
0.71%) and has 0.02 − 0.08 standard deviation for the Beatles test.

According to our simulations, the LPA method may provide acceptable esti-
mations for sample number T = 20, 000 (T = 15, 000) up to convolution length
L = 20 (L = 230) for the 3D-geom and celebrities (letters and Beatles) datasets.
Such estimations are shown in Fig. 3(d) and Fig. 3(h) for the 3D-geom and
letters tests, respectively.
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Fig. 2: Estimation error of the LPA method and comparisons with the TCC method
for the 3D-geom and Beatles databases. Scales are `log log' plots. Data correspond to
di�erent convolution lengths (L + 1). (a) and (c): Amari-index as a function of the
sample number. (b) and (d): Quotients of the Amari-indices of the TCC and the LPA
methods: for quotient value q > 1, the LPA method is q times more precise than the
TCC method. In the celebrities and letters tests, we found similar results as on the
3D-geom data set.

5 Summary

We presented a novel solution method for the undercomplete case of the blind
subspace deconvolution (uBSSD) task. We used a stepwise decomposition prin-
ciple and reduced the problem with linear prediction to independent subspace



(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3: Illustration of the LPA method on the uBSSD task for the 3D-geom (letters)
database. (a)-(c) [(e)-(g)]: sample number T = 100, 000 [75,000], convolution length
L + 1 = 6 [31]. (a), (e): observed convolved signals x(t). (b) [(f)]: Hinton-diagram
of G, ideally block-permutation matrix with 3 × 3 [2 × 2] blocks. (c) [(g)]: estimated
components (ŝm), Amari-index: 0.2% [0.3%]. (d) [(h)]: estimation of hidden components
(ŝm) for sample number T = 20, 000 [15, 000] and convolution parameter L = 20 [230].

analysis (ISA) task. We illustrated the method on di�erent tests. Our method
supersedes the temporal concatenation based uBSSD method, because (i) it gives
rise to a smaller dimensional ISA task, (ii) it produces similar estimation errors
at considerably smaller sample numbers, and (iii) it can treat deeper temporal
convolutions.

References

1. Szabó, Z., Póczos, B., L®rincz, A.: Undercomplete blind subspace deconvolution.
Journal of Machine Learning Research 8 (2007) 1063�1095

2. Cichocki, A., Amari, S.: Adaptive blind signal and image processing. John Wiley
& Sons (2002)

3. Pedersen, M.S., Larsen, J., Kjems, U., Parra, L.C.: A survey of convolutive blind
source separation methods. In: Springer Handbook of Speech (to appear). Springer
Press (2007) (http://www2.imm.dtu.dk/pubdb/p.php?4924).

4. Cardoso, J.: Multidimensional independent component analysis. In: ICASSP '98.
(Volume 4.) 1941�1944

5. Rajagopal, R., Potter, L.C.: Multivariate MIMO FIR inverses. IEEE Transactions
on Image Processing 12 (2003) 458 � 465

6. Févotte, C., Doncarli, C.: A uni�ed presentation of blind source separation for
convolutive mixtures using block-diagonalization. In: ICA '03. (2003) 349�354

7. Choi, S., Cichocki, A.: Blind signal deconvolution by spatio-temporal decorrelation
and demixing. Neural Networks for Signal Processing 7 (1997) 426�435

8. Gorokhov, A., Loubaton, P.: Blind identi�cation of MIMO-FIR systems: A gener-
alized linear prediction approach. Signal Processing 73 (1999) 105�124



9. Szabó, Z., Póczos, B., L®rincz, A.: Cross-entropy optimization for independent
process analysis. In: ICA '06. Volume 3889 of LNCS., Springer (2006) 909�916

10. Theis, F.J.: Uniqueness of complex and multidimensional independent component
analysis. Signal Processing 84 (2004) 951�956

11. Szabó, Z., Póczos, B., L®rincz, A.: Undercomplete blind subspace deconvolution
via linear prediction. Technical report, Eötvös Loránd University, Budapest (2007)
(http://arxiv.org/abs/0706.3435).

12. Theis, F.J.: Blind signal separation into groups of dependent signals using joint
block diagonalization. In: ISCAS '05. (2005) 5878�5881

13. Neumaier, A., Schneider, T.: Estimation of parameters and eigenmodes of multi-
variate AR models. ACM Trans. on Mathematical Software 27 (2001) 27�57

14. Szabó, Z., L®rincz, A.: Real and complex independent subspace analysis by gen-
eralized variance. In: ICARN '06. (2006) 85�88


