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Abstract

We present a novel solution technique for the blind sub-
space deconvolution (BSSD) problem, where temporal con-
volution of multidimensional hidden independent compo-
nents is observed and the task is to uncover the hidden
components using the observation only. We carry out this
task for the undercomplete case (uBSSD): we reduce the
original uBSSD task via linear prediction to independent
subspace analysis (ISA), which we can solve. As it has
been shown recently, applying temporal concatenation can
also reduce uBSSD to ISA, but the associated ISA prob-
lem can easily become ‘high dimensional’ [1]. The new
reduction method circumvents this dimensionality problem.
We perform detailed studies on the efficiency of the pro-
posed technique by means of numerical simulations. We
have found several advantages: our method can achieve
high quality estimations for smaller number of samples and
it can cope with deeper temporal convolutions.

1. The BSSD Model

1.1 The BSSD Equations
The BSSD (Blind Subspace Deconvolution) model is

x(t) =

L
∑

l=0

Hls(t− l). (1)

That is, only casual FIR filtered mixture of hidden, indepen-
dent, multidimensional components is available for obser-
vation. Shortly,

x = H[z]s, (2)

where H[z] = H0+H1z+. . .+HLzL 1:1
←−→ convolutive mixing.

Task: estimate s(t) by using observation x(t) only.

1.2 uBSSD Assumptions
Notation: s = [s1; . . . ; sM ], s

ms ∈ R
dm are the components.

• for a given m, s
m(t) is i.i.d. in time t (for notational sim-

plicity, ∀dm = d),

• there is at most a single Gaussian component among
s
ms,

• independent components: I(s1, . . . , sM ) = 0 where I is
the mutual information,

• undercomplete task: dim(x) > dim(s).

•H[z] ∈ R
dim(x)×dim(s) has left inverse (∃W[z] ∈

R
dim(s)×dim(x) : W[z]H[z] = I) → ∃ with prob. 1, if un-

dercompleteness + matrix [H0; . . . ;HL] is drawn from a
continuous, non-degenerate distribution.

•without loss of generality: E[s] = 0⇒ E[x] = 0.

1.3 Special Cases

• dm = 1(∀m): Blind Source Deconvolution (BSD),

• L = 0: Independent Subspace Analysis (ISA),

• L = 0 and dm = 1(∀m): Independent Component Analy-
sis (ICA).

2. Decomposition Principles in the BSSD Problem
Family

Former techniques:

• uBSD
temporal concatenation
−−−−−−−−−−−−−−−→ ISA [2],

• uBSD
spat.-temporal decorr. or linear prediction
−−−−−−−−−−−−−−−−−−−−−−−−−−−→ ICA [3, 4],

• uBSSD
temporal concatenation
−−−−−−−−−−−−−−−→ISA} =:TCC [1],

• ISA
Separation Theorem
−−−−−−−−−−−−−−→ ICA + permutation search [5, 6, 1],

• uBSSD
linear prediction
−−−−−−−−−−→ISA, now (alternative for TCC):

Theorem In the uBSSD task, observation process x(t) is
autoregressive and its innovation x̃(t) := x(t)−E[x(t)|x(t−
1),x(t−2), . . .] is H0s(t), where E[·|·] denotes the conditional
expectation value. Consequently, there is a polynomial ma-
trix WAR[z] ∈ R[z]Dx×Dx such that WAR[z]x = H0s.

Thus,

• uBSSD can be solved by applying ARfit (Linear Predictive
Approximation, LPA) + ISA. For pseudocode, see Table 1.

•Recovery of the hidden components s
m:

– only up to ambiguities of the ISA task [7],
– whiteness assumpition [E[s] = 0, cov(s) = I] ⇒ ambi-

guity up to permutation (for components with equal di-
mension) and orthogonal transformation.

Table 1: Linear predictive approximation (LPA):
Pseudocode

Input of the algorithm
Observation: {x(t)}t=1,...,T

Optimization
AR fit : for observation x estimate ŴAR[z]

Estimate innovation : x̃ = ŴAR[z]x

Reduce uISA to ISA and whiten : x̃
′
= ŴPCAx̃

Apply ISA for x̃
′
: separation matrix is ŴISA

Estimation
ŴuBSSD[z] = ŴISAŴPCAŴAR[z]

ŝ = ŴuBSSD[z]x

3. Illustrations

3.1 Databases
Four databases (s; as in [1]) to study our LPA algorithm:

• 3D-geom, letters test: (i) uniformly distributed variables
on geometric shapes/letters, (ii) d = 3, M = 6 (d = 2, M =
10).

• celebrities test: (i) distribution according to pixel intensi-
ties on cartoons of celebrities, (ii) d = 2, M = 10.

• Beatles database: (i) non-i.i.d., (ii) 8 kHz sampled por-
tions of two songs (A Hard Day’s Night, Can’t Buy Me
Love), (iii) d = 2, M = 2.

For illustration (3D-geom-letters-celebrities), see Fig. 1.

Figure 1: Illustration of the 3D-geom (left), (b) celebrities
(center) and (c) letters (right) databases.

3.2 Performance Index: The Amari-index

• Section 2 ⇒ ideally: G := ŴISAŴPCAH0 ∈

R
dim(s)×dim(s) is a block-permutation matrix made of d×d

blocks.

• To compare TCC and LPA the Amari-error adapted to
ISA [8] was normalized [6] to take values in [0, 1] inde-
pendently from d and dim(s): Amari index (r).

•Definition of the Amari-index:

r(G) :=
1

2M(M − 1)





M
∑

i=1

(

∑M
j=1 gi,j

maxj gi,j
− 1

)

+

M
∑

j=1

(

∑M
i=1 gi,j

maxi g
i,j
− 1

)



 , (3)

where

– G is decomposed into d × d blocks: G =
[

G
i,j
]

i,j=1,...,M , (Gi,j ∈ R
d×d),

– gi,j: sum of the absolute values of the elements of Gi,j.

3.3 Simulations
Two questions:

• comparison: TCC and LPA.

• performance of LPA as a funcion of convolution length.

Simulation parameters: dim(x) = 2dim(s), coordinates of
Hl ∼ standard normal, order of ARfit≤ 2(L+1), ISA method
= JFD [9], performance index (average of 50 runs).

3.4 Comparison: TCC and LPA
Simulation domain: (i) 1, 000 ≤ T ≤ 100, 000, 1 ≤ L ≤ 5
(3D-geom, celebrities), (ii) 1, 000 ≤ T ≤ 75, 000, 1 ≤ L ≤ 30
(letters, Beatles). Results are summarized in Fig. 2.

• For the 3D-geom, celebrities and letters tests (1th row of
Fig. 2):

– power law decline of the Amari-index: r(T ) ∝ T−c

(c > 0), T ≥ 2, 000,
– 1.1− 88, 1.0− 87, 1.2− 110-times increase in precision.

• For the Beatles database (2nd row of Fig. 2):

– LPA gives reliable estimations for T ≥ 30, 000 (TCC:
T ≥ 50, 000),

– more pronounce improvement for increasing L,
namely 1.50, 2.24, 4.33, 4.42, 9.03, 11.13-times (L =
1, 2, 5, 10, 20, 30).
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Figure 2: Estimation error: LPA compared to TCC, data-
base 3D-geom (celebrities and letters) and Beatles,‘log log’
plots, different convolution lengths (L + 1). 1st column:
Amari-index as a function of the sample number. 2nd col-
umn: Quotients of the Amari-indices of the TCC and the
LPA methods: for quotient value q > 1, the LPA method is q

times more precise than the TCC method.

3.5 Performance of LPA vs. L

Acceptable estimations up to

• L = 20 (3D-geom, celebrities; T = 20, 000) → right-most
of the 1th row in Fig. 3,

• L = 230 (letters, Beatles; T = 15, 000)→ right-most of the
2nd row in Fig. 3.

Figure 3: Illustration of the LPA method on the uBSSD
task for the 3D-geom ( letters) database. First 3 columns:
sample number T = 100, 000 [75,000], convolution length
L + 1 = 6 [31]. 1th column: observed convolved signals x(t).
2nd column: Hinton-diagram of G, ideally block-permutation
matrix with 3×3 [2×2] blocks. 3rd column: estimated compo-
nents (ŝm), Amari-index: 0.2% [0.3%]. 4th column: estimation
of hidden components (ŝm) for sample number T = 20, 000
[15, 000] and convolution parameter L = 20 [230].
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