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Abstract or code), for example that certain covariate groups are se-
lected jointly. Numerous works point to the advantages if
We develop a dictionary learning method which is (i) such structure could be taken into account. The Lasso for-
online, (ii) enables overlapping group structures with)(ii  mulation is improved from this point of view in the group
non-convex sparsity-inducing regularization and (iv) han Lasso framework usingroup/; »-norm, where the coordi-
dles the partially observable case. Structured sparsity an nates of the hidden representation may form distinct groups
the related group norms have recently gained widespread[33]. Recently, [9] presented a general theoretical frame-
attention in group-sparsity regularized problems intheea work underpinning the advantages of such a group based
when the dictionary is assumed to be known and fixed.Lasso assumption. Among the broad spectrum of success-
However, when the dictionary also needs to be learned, theful applications of group norms, one finds multi-task featur
problem is much more difficult. Only a few methods have learning [2], joint subspace/covariate selection for sifas
been proposed to solve this problem, and they can handlecation [22], and structure learning in log-linear modeB][2
two of these four desirable properties at most. To the besttoo.
of our knOWledge, our proposed method is the first one that Recent research Ostructured-sparsit}has shown that
possesses all of these properties. We investigate seweral i more general structures than sparse disjunct groups, such
teresting special cases of our framework, such as the on-as trees or general groups with possible overlaps may help

line, structured, sparse non-negative matrix factori@afi  in many applicationse.g, in multiple kernel learning and
and demonstrate the efficiency of our algorithm with sev- multi-task regression [15]. For more information on tree-
eral numerical experiments. structured group Lasso, and structured sparsity regatariz

tion see [18, 11, 24, 21, 34].
All the above Lasso-like problems assume, however, that
the dictionary is fixed and known. This is not the case in
Sparse signal representation and signal processing are ifnany tasks, and learning a dictionary that leads to sparse
the focus of machine learning research. Insparse cod- ~ codes can be important. This is thiéctionary learning
ing framework one approximates the observations with the task [32] (also called matrix factorization [31]), whichrca
linear combination of a few vectors (basis elements) from be traced back to [23]. Dictionary learning is a general
a fixed dictionary. This principle has been successful in a Problem class that containsg, (sparse) Principal Compo-
number of applications including the processing of natural nent Analysis (PCA) [36], Independent Component Analy-

images, bio-informatics and many others. For a recent re-sis (ICA) [10], and (sparse) Non-negative Matrix Factoriza
view see [29]. tion (NMF) [17, 27, 8], among many others. Considerable

The general task, namely th&-norm solution that research efforts have been devoted to these problems and
searches for the least number of basis elements is NPled to state-of-the-art methods, seeg, the image process-
hard, and thus one often considers the relaxed and conveXng application in [1].
¢, variant of this task, the so-called Lasso problem [28].  Although both dictionary learning and structured sparse
The¢;-norm based approach leads to sparse models, but icoding (when the dictionary is given) are very popular, in-
does not take into account any prior information about the terestingly, very few works focused on the combination of
structure of hidden representation (also called covasjate these two tasks.e., on the learning o$tructured dictionar-

“©2011 IEEE. IEEE Computer Vision and Pattern Recogni- iesb_y pre-assuming certain ;tructures onthe repre{sentation.
tion (CVPR 2011), pages 2865-2872, Colorado Springs, COA.US Ve list a few notable exceptions. Groups are considered on
http://dx. doi.org/10. 1109/ CVPR 2011. 5995712. the observations in [4] with alternating minimization oéth

1. Introduction
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dictionary and the hidden representations subject to grouptive numbersp, ¢, (i) (quasi-)norm¢, of vectora € R¢
¢, and group/y 1 or ¢y » regularization, respectively. Tree g lall, = (ijl |ai|q)%, (ii) ¢, ,-norm of the same vec-
Ibase(_j group structll_JrE is gssumed inf[1h2], and Icliicdtionarytor is(lall,, = [llarllg:- - lape o]l where{P;}/,
earning is accomplished by means of the so-called prox-; i d _ d .
imal methods [6]. The efficiency afon-convex sparsity- 's a partition of the sefl,....d}. 9, = {a € R :
inducing normsn the dictionary has recently been demon-
strated in structured sparse PCA [13]. Geneagedup-
structured but convex sparsity-inducing regularizer is ap-
plied in [20] for the learning of the dictionary by taking
advantage of network flow algorithms. In [25], the authors
take partition (special group structure) on the hidden deva
ates and explicitly limit the number of non-zero elements in
each group in the dictionary learning problem.

All the cited algorithms above worgff-line. However,
online methods fit large or slowly varying systems better.
The cost function based on structure inducing regulaorati - 2 Formal problem definition
in [14] is a special case of [13]. However, as opposed to the
previous works, here in [14] the presented dictionary learn  Let us define the online group-structured dictionary
ing approach isnline Lasso and certain convex regulariz- learning task starting from the fully observed case. Our
ers are used for online dictionary learning in [19] allowing goal in dictionary learning is to find a dictionary matrix

a continuous flow of observations, but group structures areD € R%*? that can approximate observationse R
not considered. by the linear combinations of its columns. We assume that

dictionaryD belongs to a closed, convex and bounded set
D (D € D), which is defined by the direct product of con-
straintsD; of columnsd, (atoms, basis elements) of ma-
trix D (D = xf;liDi). We assume further that the hid-
den representation (coefficients) € R of observation

x; belongs to a convex, closed sét(a; € A) subject to
certain structural constraints. Namely, we assume that (i)
a group structurég is given for the hidden representation,
that is, a subset of the power set{df, ..., d,} for which
UgesG = {1,...,d.}, and (ii) weight vectorel® ¢ R«

(G € 9) are also given. For a given weight vectdt, the
coefficients belonging t6' are positive, and the coefficients
not in G are zeros. FofixedD andx, we define the rep-
resentatiorx of x to be the vector imd that minimizes the
following structured sparse representation task

|al, < 1} is the unit sphere associated with in R?.
Pointwise product of vectora,b ¢ R¢ is denoted by
aob = [a1b1;...;aqbg]. FOr any given set systefy ele-
ments of vecton € RIS! are denoted by, whereG < g,
thatisa = (a%)geg. Ile(x) = argmingce||x — c||2 de-
notes the orthogonal projection to the closed and convex
set@ C RY, wherex € R? Partial derivative of func-
tion g with respect to variable at pointxg is %(xo).

R? = {x € R?: ; > 0(Vi)} stands for the non-negative
ortant inR?.

All of these methods deal with the fully observable case.
By contrast, [3] develops an online dictionary learninditec
nigque for PCA subject tmissing observation®ut without
group structures.

Our goal is to develop a dictionary learning method ex-
hibiting all the four properties at a timee., it (i) is online,
(i) enables general overlapping group structures, (ji) a
plies non-convex sparsity inducing regularization, angl (i
can deal with missing information. The above methods can
exhibit two of these features at most. We will see that the
derivation of such an algorithm is far from being trivial. We
will reduce the optimization of dictionary learning to con-
vex subtasks and derive online rules for the update of the
dictionary using block-coordinate descent method. This is
the contribution of our current work.

The paper is built as follows: We define theline group- I(x,D) = lﬁ7n797{dc}ces (x,D) Q)
structured dictionary learnindOSDL) task in Section 2. 1
Section 3 is dedicated to our optimization scheme solving = min |- ||x— Da||§ +rQa)], (2@
the OSDL problem. Numerical examples are shown in Sec- acd |2
tion 4. Conclusions are drawn in Section 5. wherex > 0,7 € (0,1], and

Notations. Vectors have bold faces), matrices are G
written by capital letters4). Thet" coerdinate of vec- QY) = 2.5.(a¢)5, () = l(ld7 0 yll2)ceslly  (3)
tor a is a;, diag(a) denotes the diagonal matrix formed is the structured regularizer for grougs in G and for
from vectora. For a set (number),- | denotes the num-  weightsd®.
ber of elements in the set, (the absolute value of the num- Letx; € R% (i = 1,2,...) be a sequence of i.i.d. (in-

ber). Fora € RY, A € R¥P and for seO C {1,...,d}, dependent identically distributed) observations. Thénenl
ap € RI9 denotes the coordinates of vectarin O, group-structured dictionary learning (OSDL) problem is de
whereasAp € RIOIXP contains the rows of matriA fined as the minimization of the following cost function:

in O. AT is the transposed of matriA. I and0 stand t s

for tlhe identity and the null mgtrlces, respectively. Op- min f;(D) 1= — 1 : (E) I(x:,D), (4)
erationmax acts component-wise on vectors. For posi-  DeD =1/t o\t
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wherep is a non-negative forgetting factor. For the case of
p=0in(4), f(D) = 13! i(x;, D) reduces to the em-
pirical average. Note that here the OSDL task is defined via
the sparsity-inducing regulariz€r[13] aiming to eliminate

the termg|d“ o y||» (G € G) by means of|-|[,. An alter-
native sparsity inducing solution (for fixdd) Is provided

in [11, 24], it searches for non-zero elementscobn the
union of groups irg.

Let us now define the OSDL problem for the partially
observable case. Now, at time instante can access only
acertain subse?; C {1,...,d,} of x;. We modifyl in (2)
by applying the approach of [31, 3], that is, we use the error
on the observed coordinates:

. 1
l(Xoi,Doi) = glel_% |:§ ||XO7: - Doiang + KQ(Q)] )
(5)

and we also changéx;, D) tol(xo,, Do,) in optimization
(4). Inturn, our goal is to solve the following minimization
S G/te

( ) XOi7DO7’,)' (6)
2.1. Interesting special cases

ForO; = {1,...,d,} (Vi) the fully observed OSDL task
is recovered. Further special cases of the OSDL model in-
clude the following:
Special cases fog:

o If |G| = d, and§ = {{1},{2},...,{da}}, then we
assume no dependence between coordinatesnd
the problem reduces to the classical task of learning
‘sparse representation dictionaries’. A further special-
ization is whenD is given,p = 0,np = 1, d’ = e;,
wheree; is theit" canonical basis vector. This corre-
sponds to the Lasso task.

min f;(D) :=

DeD

If || = d., coordinates; make the nodes of a
tree, and§ = {descendantsy,...,descendantsg, },
wheredescendants; stands for thé*” node and its de-
scendants, then we have a tree-structured, hierarchia
representation.

If |§| = d., coordinatesy; make the nodes of a grid,
andG = {NNy,..., NNy}, whereNN; denotes the

neighbors of thé'” point in radius- on the grid, then

we obtain a grid representation.

e If § = {P,...,Px}, where{P,}  is a partition
of {1,...,d,}, then non-overlapping group structure
is obtained.

Special cases foD, A:

o D; = 8% (Vi), A = R%: columns of dictionaryD
are constrained to the Euclidean unit sphere.

e D, = S§ NRY (Vi), A = R%: columns of dic-
tionary D are constrained to the non-negatigeunit
sphere;s are non-negative arfiican arbitrary. This
is the structured NMF model.

D; = S N R% (Vi), A = R columns of dictio-
nary D are constrained to the non-negatiéesphere,
«;S are non-negative ar@ can arbitrary. This is the
structured mixture-of-topics model.

3. Optimization

We consider the optimization of cost function (6), which
is equivalent to the joined optimization of dictionddyand
coefficients{a; }!_;:

argmin f¢(D, {ai}i_y),
DeD {a;e A},

(7)

where

1 e
SoiG/t)e ; <5

7

P
1
fi = )" |3 0. = Posal + nien)]

®)
Assume that our samples; are emitted from an i.i.d.
sourcep(x), and we can observey,. We execute the on-
line optimization of dictionanD (i.e., the minimization of
(7)) through alternations:

1. For the actual samptey, we optimize hidden repre-
sentation; belonging taxo, using our estimated dic-
tionaryD;_; and solving the minimization task

o.alls + KQ(a)

9)

2. We use hidden representatiofis;}!_, and update
D;_; by means of quadratic optimization

1)

.1
a; = argmin | - |[|xo, — (D¢—1)
acA 2

fi(Dy) = ]anei% fi(D, {au}i- (10)

In the next subsections, we elaborate on the optimization of

representation in (9) and the dictionar in (10).

3.1. Representation updated)

Objective function (9) is not convex itr. We use a vari-
ational method to find a solution: (i) we rewrite the term
Q by introducing an auxiliary variablez) that converts the
expression to a quadratic oned) and then (ii) we use an
explicit solution toz and continue by iteration. Namely, we
use Lemma 3.1 of [13]: for any € R? andn € (0, 2)

d 2 1
Iy, = min 5 Z—f +5lal @y
=1
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where = 57— -, and it takes its minimum value af =

lyi*~"|ly|l7—". We apply this relation for the terfi in (9)
(see Eq. (3)), and have that

dG

3 [d€ o o,

Z—[(ZG)GEG]ER‘ 7! |L¥€9

+ IIZIg]

— min {aTdiag(C)a + ||z ﬁ} , (12)
ZER‘_E‘
where¢ = ¢(z) € R%, and
2
(4f)
G= . g (13)
GES,G3j
Inserting (12) into (9) we get the optimization task:
argmin J(a,z), where (14)
aEA,zE]Rf‘
J(o,z) = (15)

1 1 .
= 5 Ixo, = (Di-1)o,all3 + 5 (a” diag(¢)o+ 2] 5)-

One can solve the minimization df«, z) by alternations:

1. For givenz: we can use least mean square solvepfor
whenA = R in (15), and non-negative least square
solver whend = R%~. For the general case, the cost
function J (e, z) is quadratic ina and is subject to
convex and closed constraints (¢ A). There are
standard solvers for this case [16, 5], too.

2. For givena: According to (11), the minimunz
(2%)ceg can be found as

“=a% o al; "1 o all2)cesly . (16)

Note that for numerical stability smoothing,
max(z,¢) (0 < € < 1), is suggested in practice.

3.2. Dictionary update (D)

We use block-coordinate descent (BCD) [5] for the op-
timization of (10). This optimization is not influenced by
the regularizef)(«), since itis independent &. Thus the
task (10) issimilar to the fully observable case [19], where
for O, = {1,...,d,} (Vi) it has been shown that the BCD
method can work without storing all of the vectots «;

During the BCD optimization, columns dd are min-
imized sequentially: other columns than the actually up-
datedd; (i.e., d;,i # j) are kept fixed. The functiogft
is quadratic ind;. During minimization we search for its
minimum (denoted byi;) and project the result to the con-
straint setD; (d; « Ilp,(uy)). To find thisu;, we solve
the equationngfj(uj) = 0, which leads (as we show it in
the supplementary material) to the following linear ecquati
system

Cjiuj =bjy

—e€;t+ Cj7tdj, )

whereC;, € R¥*d: is a diagonal coefficient matrix, and

t N\ P
1
Cjt = Z (E) Ai, (18)
i=1
t i P
B, = Z (2) Aixjo; = [b1y,...,ba, +](19)
=1
t i P
et = Z (Z) AiDaiai,j. (20)

i=1

Here A; represents a diagonal matrix correspondin@®io
(element; in the diagonal isl if j € O;, and0 other-
wise). C,;s € Ré%*ds andB; € R*do take the form

of M, = S0 L (3 )’ N; matrix series/statistics, and thus
(as we detall it in the supplementary material) they can be
updated as

Cji=7Cji—1+ AtOétQja (21)

Bt = ’YtBt—l + Atxta?, (22)

with initialization C;, = 0, Bo = 0 for the case of

p = 0, and with arbitrary initialization fop > 0, where

v = (1—1)”. For the fully observed cas&\; = I, ),

one can pull ouD frome;; € R?, the remaining part is

of the formM,, and thus it can be updated online giving
rise to the update rules in [19], see the supplementary ma-
terial. In the general case this procedure can not be applied
(matrix D changes during the BCD updates). According to
our numerical experiences (see Section 4) an efficient on-
line approximation foe; ; is

et = Viej 1+ A¢Dyayay j, (23)

with the actual estimation foD; and with initialization

(i <1). Instead, it is sufficient to keep certain statistics that ¢ | — o (v). We note that

characterlzgﬂ, which can be updated online. This way, op-
timization of f, in (10) becomes online, too. As it will be
elaborated below, (i) certain statistics describfpgan also

be derived for the partially observed case, which (ii) can
be updated online with a single exception, and (iii) a good

approximation exists for that exception (see Section 4).

1. convergence is often speeded up if the updates
of statistics{{C; (}9=,, By, {e;+} =} are made in
batches ofR samplesxop, ,,...,%0,  (in R-tuple
mini-batches). The pseudocode of this OSDL method
is presented in the supplementary material.
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2. Projections tod andD;: For many convex and closed
sets€ (A or D;), the computation of projectiolle
can be done efficiently. For example, f@r= Ri,
le(x) = max(x,0), whereas for the® = S,
Ie(x) = lelzl) Similarly, the projection to the

¢1-sphere §¢) can be done easily, even when we have
extra non-negativity constraints, too. Other famous ex-

amples where this projection can be done efficiently Figure 1: lllustration of the used natural image datasgt. (a
include the elastic net constraints, the fused Lasso con-12 images of similar kind were used to select train¥yg,

straints, and the groupy-sphere as well. For more de-  yajidationX,,,;, and tesX;..; sets. (b): testimage used for
tails, seeg.g, [7, 30, 19] and references therein. We the jllustration of full image inpainting.

note that since group norm projections can be com-

puted efficiently, by choosind; to a group-norm

sphere, one can obtain a double-structured (groupof the dataset to study the first two questions above (see
structure orx and D) dictionary learning scheme as a Fig. 1(a)), and used thi3*" picture for studying the third
special case of our presented OSDL framework. question (Fig. 1(b)). For each of the 12 images, we sampled
131072 = 2'7 pieces of§ x 8 disjunct image patches ran-
domly (without replacement). This patch set was divided to
a training seiX;,- made 0f65536 pieces, and to a validation
(Xya1) and test X.5¢) Set with set size32768. Each patch
was normalized to zero average and ugihorm.

(a) (b)

3. Thetrick in the representation update (Section 3.1) was
that the auxiliary variable ‘replaced’ the2 term with
a quadratic one imx. One could use furthey(«) reg-
ularizers augmenting in (8) provided that the corre-
spondingJ(«, z) + g(«) cost function (see Eq. (15))

can be efficiently optimized in € A. In the first experiment x;s were fully observed4; =
I) and thus the update of their statistics was precise. This is
4. Numerical experiments called the BCD case in the figures. Matfixwas learned on

the setX,,, columnsd; were initialized by using a uniform
We illustrate our OSDL method on inpainting of natural distribution on the surface of th&-sphere. Pixels of the
images (Section 4.1) and on structured non-negative matrixx patches in the validation and test sets were removed with
factorization of faces (Section 4.2). probability p??,. For a given noise-free image patehlet
Xo denote its observed version, whépestands for the in-
dices of the available coordinates. The task was the inpaint

We studied the following issues on natural images: ing of the missing pixels ot by means of the pixels present

1. Is structured dictionar}p beneficial for inpainting of ~ (X0) and by the learned matri?. After removing the rows
patches of natural images, and how does it compare to°f D corresponding to missing pixels gf the resultingd o
the dictionary of classical sparse representation? Dur-andxo were used to estimaie. The final estimation of
ing learning ofD, training samples; were fully ob- x wasx = Da. According to preliminary experiments,
served e, A; =1). learning ratep and mini-batch sizé? were set t32 and64
respectively (the estimation was robust as a functiop of
andR). In the updates af anda (14) only minor changes
were experienced after 2-3 iterations, thus the number of it
erations’,, was set td. Concerning the other parameters,

4.1. Inpainting of natural images

2. Inthisimage patches inpainting problem, we also stud-
ied the case when the training samplgswere par-
tially observed A; # I).

3. We also show results for inpaintingfofl imagesusing we usedn = 0.5, andx € {2719 2718 2710} The
a dictionary learned from partially observefd { # I) e smoothing parameter wa$)—°, and the iteration num-
patches. ber for the update oD wasTp = 5. Values ofp??,

. . were chosen from s€0.3,0.5,0.7,0.9}, so for the case of
In our numerical experiments we usél, = S%= (i), val ¢0.3,0.5,0.7,0.9}

pye, = 0.9, only 10% of the pixels ofx were observed. For
each fixed neighborhood sizeand parametes??,, x was
chosen as the minimum of mean squared error (MSE) using
D trained on patch s&, and evaluated oX,;. Having
found this optimak on the validation set, we used its value

o0 compute the MSE oX;.,;. Then we changed the roles

f X,ar andX,.s:, thatis, validated oiX .., and tested on
Xyal- This procedure was repeated for four random initial-
1See http://www.cis.hut.fi/projects/ica/data/images/. izations D) and different corruptionsX ,;, Xies:). The

A = R? without additional weighingd® = x¢, VG € G,
wherey is the indicator function). Group structu@e of
vectora: was realized on &6 x 16 torus (., = 256) with

|G| = d. applyingr = 0,1,2, or 3 neighbors to define
G. Forr =0 (5 = {{1},...,{da}}) the classical sparse
representation is recovered. Our test database was the IC
natural image databadeWe chose 12 of the 13 images
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(b)

(b)

Figure 2: lllustration of the online learned group-struetl Figure 3: lllustration of the online learned group-struetl
D dictionaries with the BCD technique and MSE closest to D dictionaries for the BCDA technique with MSE closest
the average (see Table 1) apit}’, = 0.7. (a): 7 = 0, (b): to the average (see Table 2) gujid!, = 0.7. (a): ps = 0,
r=2,(c)r=3. (b): pir = 0.1, (€): ps- = 0.5.

average MSE values (multiplied by 100) and their standard
deviations for different neighbor sizesind corruption rates  #®
pral, are summarized in Table 1. This table shows that (i)
the inpainting error grows with the corruption ra?,, (ii)
compared to sparse representatior=(0) small neighbor-
hood sizer = 1 gives rise to similar results, = 2 is better
andr = 3 seems to be the best for all cases wigh— 19%
improvement in precision for MSE. Learned and average
quality dictionaried can be seenin Fig. 2 (= 0 no struc-
ture,» = 2,3 with torus structure). Based on this exper-
iment we can conclude that the structured algorithm gives
rise to better results than ordinary sparse represengation

In the second experimentthe size of the neighborhood
was fixed, set too = 3. We learned dictionarD on par- (© (d)
tially observedpatches Q; # I). The probabilityp,, of ) o ) ) )
missing any pixel from the observations in the training set F19ureé 4: Inpainting illustration using the online learned
assumed values from the sgt,0.1,0.3,0.5,0.7,0.9}. In gfoup-structured) dictionaries for the BCDA technique
this case, we updateslusing the approximation Eq. (23), With MSE closest to the average (see Table 2) and=
hence we call this method Approximate-BCD (or BCDA, Y-5- (a)l: measured, (b): estimated, PSNR = 36 dB. (a)-
for short). The other experimental details were identioal t (b):l pids = 0.3. (c)-(d): the same as (a)-(b), but with
the previous case.€., whenA,; = I). Results and statistics Piest = 0.7,In (d) PSNR = 29 dB.
for MSE are provided for a smalléf.3) and for a larger
(0.7) value ofp¥®, in Table 2 for different probability val-
uespy,-. We found that increasing.,. up top;,, = 0.7 MSE
values grow slowly. Note that we kept the number of sam-
plesx; at 65536 identical to the previous casé\; = I),
and thus by increasing.. the effective number of observa-
tions/coordinates decreases. Learned average quality-dic
nariesD are shown in Fig. 3 fop?%, = 0.7. Note that the
MSE values are still relatively small for missing pixel prob )
ability pi = 0.9 (100x MSE maximum is about.96), tus  pg iy, v) = 10log,, (max(max; |uil, max; [vi]))
our proposed method is still efficient in this case. Recon- Lu=v|;
struction with value.92 (100 x MSE) is shown in Fig. 4. (24)

In our third illustration we show full image inpainting  where the higher value is the better. Acceptable values in
using dictionaryD learned withp,. = 0.5 and using the  wireless transmission (lossy image and video compression)
13t" image (X) shown in Fig. 1(b). We executed inpainting are around20 — 25 dB (30 dB). By means ofD and for
consecutively on a$ x 8 patches of imag& and for each ~ missing probabilityp??, = 0.3 we achieved6 dB PSNR,

tes

pixel of imageX, we averaged all estimatios from all whereas for missing probabilipf?!, = 0.7 we still have29

est —

8 x 8 patches that contained the pixel. Results are shown indB PSNR, underlining the efficiency of our method.

Fig. 4 forpya!, = 0.3 and0.7 values. We also provide the
PSNR (peak signal-to-noise ratio) values of our estimation
This measure for vectors v € R (i.e., for vectors formed
from the pixels of the image) is defined as
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| [picl, =03 [preli =05 |pred, =07 |prel, =09 |
r =0 [[0.65 (£0.002) 0.83 (£0.003) 1.10 (£0.002) 1.49 (£0.006)

1 [[0.60 (0.005; +6.78%) |0.85 (£0.017; —2.25%) | 1.10 (£0.029; +0.27%) |1.45 (£0.004; +2.96%)
r =2 [[0.59 (0.005; +10.39%) |0.81 (£0.008; +2.67%) |1.12 (£0.029; —1.09%) |1.46 (£0.029; +2.51%)
r=3 [[0.56 (+0.002; +16.38%) | 0.71 (£0.002; +16.01%) | 0.93 (+0.001; +18.93%) | 1.31 (£0.002; +13.87%)

Table 1: BCD: 10& the MSE averageff std) as a function of neighbors & 0: sparse representation, no structure) for
differentp?®, corruption rates.

test

| |pir =0 [pir =01  [pwr=03  [pr=05 [pr=07 [pir=09 ]
piél, = 0.3]]0.55 (£0.003) | 0.56 (£0.001) [ 0.57 (£0.003) | 0.59 (0.001) | 0.61 (£0.002) [ 0.71 (£0.007)
prel, = 0.7/0.91 (£0.002) [ 0.91 (£0.002) [ 0.91 (£0.002) | 0.92 (+0.003) | 0.93 (£0.002) | 0.96 (+0.003)

Table 2: BCDA ¢ = 3): 100x the MSE average# std) for different for differenp?®, andp;,. corruption rates.

4.2. Online structured non-negative matrix factor-
ization on faces .-.

It has been shown on the CBCL database that dictio- nl
nary vectors ¢;) of the offine NMF method can be in- ...
terpreted as face components [17]. However, to the best =
of our knowledge, there is no existing NMF algorithm as
of yet, which could handle gener8l group structures in
an online fashion. Our OSDL method is able to do that,
can also cope with only partially observed inputs, and can
be extended with non-convex sparsity-inducing norms. We
illustrate our approach on the color FERE@ataset: we
setD; = S&* NRY¥ (vi), A = Re, A; = I and
n = 0.5. We selected 736 facial pictures from this dataset.
Using affine transformations we positioned the noses and
eyes to the same pixel coordinates, reduced the image size
to 140 x 120, and set theili; norms to be one. These
images were the observations for our ODSL methed (
d, = 49140 = 140 x 120 x 3 minus some masking). The
group structurgj was chosen to be hierarchical; we applied gigyre 5: Jilustration of the online learned structured NMF
a full, 8-level binary tree. Each node with its correspoigdin dictionary. Upper left corner: training samples.
descendants formed the sets@fe G (d, = 255). Ac-
cording to our experiments, the learned dictionBrywas
influenced mostly by the constart and similarly to Sec-
tion 4.1, it proved to be quite insensitive to the value of the

Ie_arning factorp, and to the size of the mini—bqtcheR)( In this paper we proposed a new dictionary learning
Fig. 5 shows {afgw elements from thle online estimated Struc'method, which is (i) online, (i) enables overlapping group
tured NMF dictionary (using: = 5%, p = 32, R = 8, structures on the hidden representation/dictionary, &i-

d® = x¢ (VG € §), Ta =5,Tp =5ande = 107°). We pjies non-convex, sparsity inducing regularization, aa (
can observe that the proposed algorithm is able to naturally.gn nandie the partially observable case, too. We reduced
develop and hierarchically organize the elements of the dic o optimization problem of dictionary learning to convex
tionary: towar(;is the leaves the Igarned filters reveal Moreésyptasks, and using a block-coordinate descent approach
and more details. We can also notice that the colors are sepa 3 variational method we derived online update rules for
arated as well. This example demonstrates that our methogpe statistics of the cost of the dictionary. The efficienty o
can be used for large problems where the dimension of they,, algorithm was demonstrated by several numerical ex-

5. Conclusions

observations is aboG0000. periments. We have shown that in the inpainting problem
our method can perform better than the traditional sparse
2See http://face.nist.gov/colorferet/. methods. As a special case, we have also shown that our ap-
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proach can be used for the online structured NMF problem,[16] C.L.Lawson and R. J. Hanso8olving Least Squares Prob-

too,

and it is able to hierarchically organize the elemefts o

the dictionary.

One possible extension of our online group-structured
dictionary learning framework may touch the nonparamet- [18]
ric Bayesian dictionary learning approach [35], recently i
troduced for the (traditional, unstructured) sparse diry
learning problem.
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In this note we will derive the update equations for the stz describing the minimum point g?{ (Sec-
tion 2). During the derivation we will need an auxiliary lermamoncerning the behavior of certain matrix series.
We will introduce this lemma in Section 1. The pseudocodeuwf@SDL method is provided in Section 3.

1 Theforgetting factor in matrix recursions

LetN, € RE+*E2 (t = 1,2,...) be a given matrix series, and lgt= (1 — 1)”, p > 0. Define the following
matrix series with the help of these quantities:

M, = M, +N,eR*E2 (t=12 ), (1)
t

.\ P

=1
Lemmal. If p =0, thenM, = M, + M, (Vt > 1). Whenp > 0, thenM, = M} (V¢ > 1).
Proof.

1. Casep = 0: Sincey; = 1 (V¢ > 1), thusM; = M, + Y./, N,. We also have tha(t};)0 =1(Vi > 1),
and thereford/; = 2221 N;, which completes the proof.

2. Casep > 0: The proof proceeds by induction.

e ¢t = 1: In this casey; = 0, M; = 0 x My + N; = N; andM} = Ny, which proves that
M, = Mj.

e ¢ > 1: Using the definitions oM, and M, and exploiting the fact tha¥l, _; = M, _, by induc-
tion, after some calculation we have that:

1 p [t—1 i P
t = YeMy_1 + Ny ( t) Z(t—l)

i=1
_ 1\~ [t1 : p p t A\ P
(B (B @
i=1

i=1

+ Ny (3)




2 Online update equations for the minimum point of f,

Our goals are (i) to find the minimum of

t -\ P

R 1 2

/(D) = (3)" [3 0. - Do.ax + e ©)
Z] 1 j/t ) 12:; 2 ’

in d; while the other column vectors & (d; (¢ # ])) are being fixed, and (ii) to derive online update rules for

the statistics off, describing this minimum pointf, is quadratic ind;, hence in order to find its minimum, we
simply have to solve the following equation:

8ft

8d ( )_07 (6)

whereu; denotes the optimal solution. We can treattheand thew terms in (5) as constants, since

they do not depend od;. Let D_; denote the slightly modified version of matdi; its jth column is set to
zero. Similarly, leto; —; denote the vectat; where itsj** coordinate is set to zero. Now, we have that

8ft 0 ! (Z)p 2
0= =—— - [[Ai(x: — Day)|| (7
od;  0d; [z_; t 2
0 [ /i)’ )
=3 > 7 ) 1Al = Dojei ;) — djaigll; (8)
7 Li=1
0 [ /i)’ )
= 5 7)) Qiaig)d; — Ai(x; — D—ja ;)5 (9)
J =1
t i P
=2 <g> Ao (A j)d; — Ai(x; —D_je, )] (10)
i=1
t Z P ) t Z P
= 22 (g) Aial"jdj — 22 (g) AiOéi7j(X1' — D_jai7_j), (11)
=1 =1
where we used the facts that
X0; — Doiai = Ai(xi — Dai), (12)
2
a”Ay_bHQ :2AT(Ay—b), (13)
y
A; = AT = (A) (14)

After rearranging the terms in (11), we have that

t N\ P : < p
¢ )
<Z (%) Am?g) u; = Z <%> A i(x; —D_joy—j) (15)
=1 i=1
: ) P t 7 P
-3 (i) awe =3 (5) a0 oo
t N . .
= Z 7 A0 5 — Z P AiD_ja;j+djoi; — djey )iy (A7)
i=1 =1
t Z g i Z P t Z 14 )
= Z 7 Axio 5 — Z P A;Do;oy; ; + Z ; A2, | d;. (18)
= i=1 i=1



We note that (16) is a system of linear equations, and itdisalu; does not depend aty;. We have introduced
the ‘d;o;; — djoy;’ term only for one purpose; it can help us with deriving theursive updates fon; in a
simple form. Define the following quantities

t -\ P
Cji= Z (%) Aol € RTXE (=1, dy), (19)
i=1
t Z P
B =) (E) Axial =[byy,...,ba, ] € RI¥=Xde (20)
i=1
t ’L P
€t = Z (Z) AiDaiam S Rdm (] =1,.. ,do,) (21)
=1

Here (i) C; s are diagonal matrices and (ii) the update rul@Bgfcontains the quantit;x;, which isxo,
extended by zeros at the non-observable (. ., d, } \ O;) coordinates. By using these notations and (18), we
obtain thatu; satisfies the following equation:

Cj,tuj = bjﬂg — €5t + Cjﬂgdj. (22)

Now, according to Lemma 1, we can see that (i) whea 0 andC;, = 0, By = 0, or (ii) p > 0 andC; o, By
are arbitrary, then th€; , andB, quantities can be updated online with the following reaursi

Cjt=%Cji1+ AtOétQ,j, (23)
B = %Bi1 + Axeaf, (24)

wherey, = (1 — 1)”. We use the following online approximation fey,;:
e+ = 1ej i1+ A¢Dagoy 5, (25)

with initializatione; o = 0 (Vj), andD is theactual estimation for the dictionary. This choice seems to be
efficient according to our numerical experiences.

Note. In the fully observable special casee(, whenA; = I, Vi) the (19)(21) equations have the following

simpler form:
: ’ o? (26)
=1 t n

t N\
B; = ; (Z) x;al (27)
t i\ t i\
e = ; (E) Doja; ; = D; (E) o . (28)
Define the following term: .
i\"
A, = ; <g> aia;fp € Raxda, (29)
and leta; ; denote the'** column ofA,. Now,(28) can be rewritten as
e;+ = Daj, (30)
and thug(22) has the following simpler form:
(A¢)j u; = bje — Daj; + (Ay);5d;. (31)



| Algorithm (Online Group-Structured Dictionary L earning)

Input of the algorithm
x¢,r ~ p(x), (Observationxop, ., observed positiong); ,.), Dy (initial dictionary),
T (number of mini-batches}; (size of the mini-batchesy, (group structure),
p (> 0 forgetting factor)« (> 0 tradeoff-),n (€ (0, 1] regularization constant),
{d%}ceg (> 0, weights),A (constraint set forx), D = x = D, (constraint set foD),
inner loop constants: (smoothing) 1., o (number of iterations).

Initialization
Cjo=0€eR% (j=1,...,dy),Bp=0€ R%* e, =0 R (j=1,....dy).
Optimization
fort=1:T
Draw samples for mini-batch from(x): {xo0, ,,-.,X0, r }-

Compute thqlov 1 . . ., oy g} representations:
o, ,=Representation(, ., (Di-1)o,.,, 9. {d%}ces, k,n, A e, Tn), r =1,...,R.
Update the statistics of the cost function:
1\~
T = (1 - ;) )
Cj7t = 'Yth,t—l + % Ele At,ra%mj; ] = 1, ey da,
B =vB:_1 + % Ele At,rxt,ragjra
€t = ’ytej7t_1,j =1,..., dy. %(part-l)
ComputeD; using BCD:
D,=Dictionary((C; ;}92,, By, {e;:}2,, D, Tp, {0, iy, {0, }L)).
Finish the update ofe; ;}=,-s: %(part-2)
em = em + % Zle At7TDtat77-Oét77>7j, ] = 1, ey do,
end
Output of the algorithm
D7 (learned dictionary).

Table 1: Pseudocode: Online Group-Structured Dictionagrhing.

Here(-); ; stands for thej, j)*" entry of its argument. By applying again Lemma 1(®8), we have that when
(i) p=0and Ay = 0, or (i) p > 0 and Ay is arbitrary, thenA, can be updated online with the following
recursion:

A; =vAi g+ aal. (32)

We also note that in the fully observable c&24)reduces to
B = %Bi1 +x0 (33)
and thus [1] is indeed a special case of our model:
e We calculateu; by (31).
e To optimizef,, it is enough to keep track @, andB; instead of{Cja}ie1, By, {102

e The quantitiesA; andB; can be updated online KB2) and (33).

3 Pseudocode

The pseudocode of the OSDL method with mini-batches is ptedein Table 1-3. Table 2 calculates the
representation for a fixed dictionary, and Table 3 learnsdibonary using fixed representations. Table 1
invokes both of these subroutines.



| Algorithm (Representation) |
Input of the algorithm
x (observation)D = [dy, ..., dg,] (dictionary),
§ (group structure){d“} e (weights),x (tradeoff-),n (regularization constant)
A (constraint set forx), e (smoothing).T;, (number of iterations).

Initialization
a € Rda_
Optimization
fort=1:T,
_ n—1
computes; =6 = mas (a9 o a7 [(a% o el )| ) G e
n
Computex:
O
computel: (; = > o J=1,...,da,
Ge§,G3j
« = argmin [Hx - Da||g + /{aTdiag(C)a} .
acA

end
Output of thealgorithm
« (estimated representation).

Table 2: Pseudocode fogpresentatiorestimation using fixed dictionary.

| Algorithm (Dictionary)

Input of the algorithm
{Cj}i=,, B =[by,...,bg,], {e;}}, (statistics of the cost function),
D= X?;Di (constraint set foD), Tp (humber ofD iterations),
{0, }2 | (equivalentto{ A, } ), {a, }E_, (observed positions, estimated representatio
Initialization
D =[dy,...,dq.].
Optimization
fort=1:Tp
for j = 1: d, %update thg*" column of D
Compute {e;}7=, s
e?emp =ej+ % Zf‘:l A, Do,y ;.
Computeu; solving the linear equation system:
lelj = bj — e;emp + dej.
Projectu; to the constraint set:
d;j = Ilp, (u;).
end
end
Output of thealgorithm
D (estimated dictionary).

Table 3: Pseudocode fdictionaryestimation using fixed representations.
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