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Abstract

Thanks to the several successful applications, sparsalgigpresentation has become one of the
most actively studied research areas in mathematics. Hawiewthe traditional sparse coding prob-
lem the dictionary used for representation is assumed tonbe/. In spite of the popularity of
sparsity and its recently emerged structured sparse éatemsterestingly, very few works focused
on the learning problem of dictionaries to these codes.

In the first part of the paper, we develop a dictionary leagmmethod which is (i) online, (ii)
enables overlapping group structures with (iii) non-corsgarsity-inducing regularization and (iv)
handles the partially observable case. To the best of ouvledge, current methods can exhibit
two of these four desirable properties at most. We also tigete several interesting special cases
of our framework and demonstrate its applicability in ingaig of natural signals, structured sparse
non-negative matrix factorization of faces and collahivediltering. Complementing the sparse di-
rection we formulate a novel component-wise actingparse coding scheme in reproducing kernel
Hilbert spaces and show its equivalence to a generalizes dfsupport vector machines. More-
over, we embed support vector machines to multilayer p#&mep and show that for this novel
kernel based approximation approach the backpropagatimegure of multilayer perceptrons can
be generalized.

In the second part of the paper, we focus on dictionary legrmaking use oindependent sub-
spaceassumption instead atructured sparsity The corresponding problem is called independent
subspace analysis (ISA), or independent component aeglf3A) if all the hidden, independent
sources are one-dimensional. One of the most fundamestatsef this research field is the ISA
separation principle, which states that the ISA problemlmmsolved by traditional ICA up to per-
mutation. This principle (i) forms the basis of the statetod-art ISA solvers and (ii) enables one
to estimate the unknown number and the dimensions of thesswfficiently. We (i) extend the
ISA problem to several new directions including the coéal the partially observed, the complex
valued and the nonparametric case and (ii) derive sepanatiociple based solution techniques for
the generalizations. This solution approach (i) makesssjie to apply state-of-the-art algorithms
for the obtained subproblems (in the ISA example ICA andtehirsg) and (i) handles the case of
unknown dimensional sources. Our extensive numericalrarpats demonstrate the robustness
and efficiency of our approach.



Chapter 1

Introduction

Sparse signal representation is among the most activaldyestuesearch areas in mathematics. In
the sparse codindramework one approximates the observations with the tigeanbination of a
few vectors (basis elements) fronfiged dictionary[21, 22]. The general sparse coding problem,
i.e., thefp-norm solution that searches for the least number of basiseatts, is NP-hard [23]. To
overcome this difficulty, a popular approach is to apfy(0 < p < 1) relaxations. The = 1
special case, the so-called Lasso problem [20], has becartieydarly popular since in this case the
relaxation leads to a convex problem.

The traditional form of sparse coding does not take into mat@any prior information about
the structure of hidden representation (also called catesj or code). However, usirgjruc-
tured sparsity[32-48, 50-55, 57-83, 85-134, 151], that is, forcing défdrkind of structures
(e.g., disjunct groups, trees, or more general overlapgnogip structures) on the sparse codes
can lead to increased performances in several applicatiomdeed, as it has been theoretically
proved recently structured sparsity can ease featuretegle@nd makes possible robust com-
pressed sensing with substantially decreased observatiotber [33, 41, 58, 99, 104, 119-121].
Many other real life applications also confirm the benefitstofictured sparsity, for example (i)
automatic image annotation [48], learning of visual appree-to-semantic concept representa-
tions [123], concurrent image classification and annatai®4], tag localization (assigning tags
to image regions) [125], (ii) group-structured featureestbn for micro array data processing
[32,34,37,38,40,50,51,53,54,59, 72, 86,110, 129-1 8] multi-task learning problems (a.k.a.
transfer learning, joint covariate/subspace selectiantiple measurements vector model, simulta-
neous sparse approximation) [34, 36, 37,53, 62,70, 7337928108,117,119-122, 132, 151], (iv)
fMRI (functional magnetic resonance imaging) analysis @&, 126], (v) multiple kernel learning
[36,49,88-91,93], (vi) analysis of assocations betwedrtharacteristics and forest diversity [45],
(vii) handwriting, satellite-, natural image and sentirn@assification [34,44,74,75,79,95,114,127],
(viii) facial expression discrimination [39] and face regodtion [76], (ix) graph labelling [69],
(x) compressive imaging [61, 71, 80, 81, 97, 99, 103], (xiusture learning in graphical mod-
els [43,57], (xii) multi-view learning (human pose estima) [46], (xiii) natural language process-
ing [79,94, 116, 117], (xiv) direction-of-arrival problef@00], (xv) high-dimensional covariance
matrix estimation of stochastic processes [101], (xvi)aured sparse canonical correlation anal-
ysis [102], (xvii) Bayesian group factor analysis [105]yi{y prostate cancer recognition [52,54],
(xix) feature selection for birth weight- [41], house pr{é7, 104, 134], wine quality- [75], and
credit risk prediction [72, 128], (xx) trend filtering of finaial time series [85], (xxi) background
subtraction [99, 110, 112], (xxii) change-point detectj@t5]. For a recent review on structured
sparse coding methods, see [96].

All the above mentioned examples only consider the stredtgparse coding problem, where



we assume that the dictionary is already given and availables. A more interesting (and chal-
lenging) problem is the combination of these two tasks, learning the best structured dictionary
and structured representation. This is sreictured dictionary learningSDL) problem, for which
one can find only a few solutions in the literature [145-1%2]1 The efficiency ofnon-convex
sparsity-inducinghorms on the dictionary has recently been demonstratediotsted sparse PCA
(principal component analysis) [146] in casegeieral group structuredn [148], the authors take
partition (special group structure) on the hidden covasand explicitly limit the number of non-
zero elements in each group in the dictionary learning grob[152] considers the optimization of
dictionaries for representations having pairwise stmgtn the coordinates. Dictionary learning is
carried out under the assumption of one-block sparsityhferépresentation (special partition group
structure with one active partition element) in [150], hoetein contrast to the previous works the
approach is blind, that is it can handtessing observationsThe cost function based on structure-
inducing regularization in [149] is a special case of [14Blee based group structure is assumed
in [145], and dictionary learning is accomplished by medrth®@so-called proximal methods [157].
General group-structured, but convex sparsity-inducaumitarizer is applied in [147] for the learn-
ing of the dictionary by taking advantage of network flow algjons. However, as opposed to the
previous works, in [145, 147, 149] the presented dictioneayning approach isnling allowing a
continuous flow of observations.

This novel SDL field is appealing for (i) transformation inizant feature extraction [149], (ii)
image denoising/inpainting [145, 147, 150], (i) muléisk learning [147], (iv) analysis of text cor-
pora [145], and (v) face recognition [146].

We are interested in structured dictionary learning athars that possess the following four
properties:

e They can handle general, overlapping group structures.

e The applied regularization can be non-convex and hence &lss restrictive assumptions on
the problem. Indeed, as it has been recently shown in theespading literature:

— by replacing the; norm with the/,, (0 < p < 1) non-convex quasi-norm, exact recon-
struction of the sparse codes is possible with substanfaller measurements [24, 25].

— The ¢, based approach (i) provides recovery under weaker RIPrifiist isometry
property) conditions on the dictionary than thetechnique, (i) moreover it inherits
the robust recovery property of thfg method with respect to the noise and the com-
pressibility of the code [26, 27].

— Similar properties also hold for certain more general nonvex penalties [28-31].
e We want online algorithms [135, 144,145,147, 149]:

— Online methods have the advantage over offline ones thatdheyprocess more in-
stances in the same amount of time [162], and in many casesdhilead to increased
performance.

— In large systems where the whole dataset does not fit into #raary, online systems
can be the only solutions.

— Online techniques are adaptive: for example in recommesydstems [158] when new
users appear, we might not want to relearn the dictionam fsoratch; we simply want
to modify it by the contributions of the new users.

e We want an algorithm that can handle missing observatio8®,[150]. Using a collaborative
filtering [158] example, users usually do not rate every jtamd thus some of the possible
observations are missing.



Unfortunately, existing approaches in the literature casspss only two of our four requirements at
most. Ourfirst goal (Section2.1) is to formulate a general structured dictionary learnipgraach,
which is (i) online, (ii) enables overlapping group strueti with (iii) non-convex group-structure
inducing regularization, and (iv) handles the partiallygetvable case. We call this problemline
group-structured dictionary learningDSDL).

Traditional sparse coding schemes work in the finite dinmraiEuclidean space. Interestingly,
however the sparse coding approach can also be extendedaeayeneral domain, to reproducing
kernel Hilbert spaces (RKHS) [163]. Moreover, as it has bg@ved recently [164, 165] certain
variants of the sparse coding problems in RKHSs are equitvedene of the most successful, kernel
based approximation technique, the support vector ma¢8wi!) approach [166,167]. Application
of kernels:

e makes it possible to generalize a wide variety of linear [@ois to the nonlinear domain
thanks to the scalar product evaluation property of kertie¢sso-called ‘kernel trick’.

e provides a uniform framework for numerous well-known apgmmation schemes, e.g.,
Fourier, polinomial, wavelet approximations.

e allows to define similarity measures for structured objdéi&ss strings, genes, graphs or dy-
namical systems.

For a recent review on kernels and SVMs, see [168]. In thatlaitorks [164, 165], however the
e-insensitivity parameter of the SVMs—uwhich only penalizies deviations from the target value
larger thare, linearly—was transformed into ‘uniform’ sparsificatidn,the sense that was tran-
formed to the weight of the sparsity-inducing regulariaatierm. Our question was, whether it is
possible to transform the insensitivikynto a component-wise acting;sparse scheme. Osecond
goalwas to answer this kernel based sparse coding problem. We @otthis topic and give positive
answer to this novel sparse coding — kernel based functiproajpmation equivalence in Secti@?2

Beyond SVMs, multilayer perceptron (MLP) are among the nvesi-known and successful
approximation techniques. The basic idea of the MLP newtlork is to approximate the target
function, which is given to us in the form of input-output fgias a composition of ‘simple’ func-
tions. In the traditional form of MLPs one assumes at eacérlafthe network (that is for the func-
tions constituting the composition) a linear function éeled by a component-wise acting sigmoid
function. The parameter tuning of MLP can be carried out eylthckpropagation technique. For an
excellent review on neural networks and MLPs, see [169]. él@r, MLPs consider transformations
only in the finite dimensional Euclidean space at each hidalggr. Ourthird goal was to extend
the scope of MLPs to the more general RKHS construction. el kernel based approximation
scheme, the multilayer kerceptron network and the deawadf generalized backpropagation rules
will be in the focus of Sectiog.3

Till now (Chapter2) we focused on different structured sparse dictionaryliegrproblems, and
the closely related sparse coding, kernel approximatibemses. However, the dictionary learning
task, (a.k.a. matrix factorization [137]) is a general peab class that contains, e.g., (sparse) PCA
[142], independent component analysis (ICA) [143], indefent subspace analysis (ISA) [235]
and (sparse) non-negative matrix factorization (NMF) B#BaL], among many others. In the second
part the paper (Chapt8) we are dealing witindependent subspabased dictionary learning, i.e.,
extensions of independent subspace analysis.

One predecessor of ISA is the ICA task. Independent compamnertysis [179,186] has received
considerable attention in signal processing and patteawgration, e.g., in face representation and

1A preliminary work (without model definition) of ISA appearén [247], where the authors searched for fetal ECG
(electro-cardiography) subspaces via ICA followed bygrsag the estimated ICA elements to different ‘subspaceaset
on domain expert knowledge.



recognition [213, 214], information theoretical image ofanhg [216], feature extraction of natural

images [215], texture segmentation [218], artifact sefgaran MEG (magneto-encephalography)
recordings and the exploration of hidden factors in findrdada [217]. One may consider ICA as

a cocktail party problem: we have some speakers (sourcdgane microphones (sensors), which
measure the mixed signals emitted by the sources. The téslesimate the original sources from
the mixed observations only. For a recent review about 1@4&,[443, 184, 185].

Traditional ICA algorithms arene-dimensionah the sense that all sources are assumed to be
independenteal valued random variables. Nonetheless, applications irchvbnly certain groups
of the hidden sources are independent may be highly reléwgractice, because one cannot ex-
pect that all source components are statistically indepeindn this case, the independent sources
can be multidimensional. For instance, consider the génatian of the cocktail-party problem,
whereindependent groupsf people are talking about independent topics or more thmengooup
of musicians are playing at the party. The separation taglires an extension of ICA, which is
called multidimensional ICA [235], independent subspagalysis (ISA) [241], independent fea-
ture subspace analysis [196], subspace ICA [244] or grodp[R20] in the literature. We will
use the ISA abbreviation throughout this paper. The sewar@dessful applications and the large
number of different ISA algorithms show the importance a$ tiield. Successful applications of
ISA in signal processing and pattern recognition includethe processing of EEG-fMRI (EEG,
electro-encephalography) data [202, 236, 250] and naimnages [210, 241], (ii) gene expression
analysis [197], (iii) learning of face view-subspaces [L9®) ECG (electro-cardiography) analy-
sis [201, 235, 240, 243, 244, 246], (v) motion segmentatdid], (vi) single-channel source separa-
tion [245], (vii) texture classification [249], (iX) actimecognition in movies [232].

We are motivated by:

e acentral result of the ICA research, the ISA separatiorcpia.

e the continuously emerging applications using the relaxatiof the traditional ICA assump-
tions.

The ISA Separation Principle. One of the most exciting and fundamental hypotheses of the
ICAresearch is due to Jean-Francois Cardoso [235], whactumed that the ISA task can be solved
by ICA up to permutation. In other words, it is enough to ctushe ICA elements into statistically
dependent groups/subspaces to solve the ISA problem. TihEgle

e forms the basis of the state-of-the-art ISA solvers. Whikedxtent of this conjecture, th®8A
separation principles still an open issue, we have recently shown sufficient itmms for
this 10-year-old open question [14].

e enables one to estimate the unknown number and the dimensidhe sources efficiently.
Indeed, let us suppose that the dimension of the individulasgaces in ISA is not known.
The lack of such knowledge may cause serious computatiamekh as one should try all
possible

D=di+...+dy (dn>0,M < D) (1.2)

dimension allocationsd(,, stands for estimation of the!" subspace dimension) for the in-
dividual subspaces, where denotes the total source dimension. The number of thesé poss
bilities is given by the so-called partition functigif D), i.e., the number of sets of positive
integers that sum up tB. The value off (D) grows quickly with the argument, its asymptotic
behavior is described by the

D VDTS D 1.2
f()’vm, — 00 (1.2)



formula [193, 194]. Making use of the ISA separation pritejfowever, one can construct
large scale ISA algorithms without the prior knowledge af #ubspace dimensions by clus-
tering of the ICA elements on the basis of their pairwise ralitaformation, see, e.g. [13].

makes it possible to use mature algorithms for the solutfeéheoobtained subproblems, in the
example, ICA and clustering methods.

ICA Extensions. Beyond the ISA direction, there exist numerous excitingctions relaxing
the traditional assumptions of ICA (one-dimensional sesyé.i.d. sources in time, instantaneous
mixture, complete observation), for example:

Post nonlinear mixture: In this case the linear mixing agstion of ICA is weakened to the
composition of a linear and a coordinate-wise acting, ske@¢gost nonlinear (PNL) model.
This is the PNL ICA problem [234]. The direction has recemifyined widespread attention,
for a review see [233].

Complex valued sources/mixing: In the complex ICA probleéhe sources and the mixing
process are both realized in the complex domain. The comlred computations (i) have
been present from the ‘birth’ of ICA [178, 179], (ii) show eipotentials in the analysis of
biomedical signals (EEG, fMRI), see e.g., [175-177].

Incomplete observations: In this case certain parts (éoates/time instants) of the mixture
are not available for observation [219, 220].

Temporal mixing (convolution): Another extension of thegamal ICA task is the blind source
deconvolution (BSD) problem. Such a problem emerges, fampte, at a cocktail party
being held in arechoicroom, and can be modelled by a convolutive mixture relaxhmey t
instantaneous mixing assumption of ICA. For an excelleviere on this direction and its
applications, see [192].

Nonparametric dynamics: The general case of sources withawn, nonparametric dynam-
ics is quite challenging, and very few works focused on timsation [174, 240].

These promising ICA extensions may however often be quéeictive:

they usually handle only one type of extensions, e.g.,

— they allow temporal mixing (BSD), but only for one-dimensabindependent sources.
Similarly, the available methods for complex and incomgliebbservable models are
only capable of dealing with the simplest ICA model.

— the current nonparametric techniques focus on

% the stationary case / constrained mixing case, and
x assume equal and known dimensional hidden independertesour

current approaches in the ICA problem family do not allow tyeplication of con-
trol/exogenous variables, or active learning of the dyrahsystems. The motivation for con-
sidering this combination is many-folded. ICA/ISA basedd®is search for hidden variables,
but they do not include interaction with environment, itee possibility to apply exogenous
variables. Control assisted data mininig of particular interest for real world applications.
ICA and its extensions have already been successfullyepfaicertain biomedical data anal-
ysis (EEG, ECG, fMRI) problems. The application of contrakiables in these problems
may lead to a new generation of interaction paradigms. Byn¢panother example, in finan-
cial applications, exogenous indicator variables can ghayrole of control leading to new
econometric and financial prediction techniques.



These are the reasons that motivate us to (i) develop noketx&nsions, ISA based dictionary
learning approaches (controlled, incompletely obserjatbmplex, convolutive, nonparametric),
where (ii) the dimension of the hidden sources may not beléauoavn, and (iii) derive separation
principle based solution techniques for the problems. Ehiisegoal of Chapter3.

The paper is structured as follows: In Chaffteve focus on (structured) sparse coding schemes,
and related kernel based approximation methods. Our n@4&lbased dictionary learning ap-
proaches are presented in Chatethe efficiency of the structured sparse and ISA based msthod
are numerically illustrated in Chaptéand Chapteb, respectively. Conclusions are drawn in Chap-
ter 6. Longer technical details are collected in AppendlixAbbreviations of the paper are listed in
AppendixB, see Tabld.1.

Notations. Vectors have bold facea), matrices are written by capital letterA). Polynomials
andD; x D, sized polynomial matrices are denotedibjy| andR[z]P1 %Pz, respectivelyR stands
for the real part for the imaginary part of a complex number. T#e coordinate of vectoa is a;,
diag(a) denotes the diagonal matrix formed from vecioiPointwise product of vectoes b € R?
is denoted bya o b = [a1by;...;aqbs]. b = [a1;...;ax] € R4+-Fdx denotes the concatenation
of vectorsa;, € R%. A ® B is the Kronecker product of matrices, thatias; B]. The uniquely
existing Moore-Penrose generalized inverse of matrix RP1*Pz2 is A~ € RP2*P1, For a set
(number),| - | denotes the number of elements in the set, (the absolute wélthe number). For
a c R, A ¢ R™P and for setO C {1,...,d}, ap € RI°l denotes the coordinates of vector
ain O, whereasAo € RIOI*P contains the rows of matriA in O. A7 is the transposed of
matrix A. A* is the adjoint of matrixA. I and0 stand for the identity and the null matrices,
respectively.1 denotes the vector of onlis. OP = {A € RP*P : AAT =1} is the orthogonal
group. UP = {A € CP*P . AA* = T} stands for the unitary group. Operatiamx and
relations>, < act component-wise on vectors. The abbrevatieh x;,...,xy < u stands for
1 <x; <wu,...,1 <xy < u For positive numbers, g, (i) (Quasi-)norm¢, of vectora <
R is ||all, = (Z?:l |ai|q)5, (i) £, ,-norm (a.k.a. group norm, mixed /¢, norm) of the same
vector isflal[, . = [l[llarlg,- - lapg[lg]llp, where{P;} X | is a partition of the sef1,...,d}.

St = {a € R? : |all, < 1} is the unit sphere associated with in R?. For any given set
systemg, elements of vectoa ¢ RIS are denoted by.“, whereG € G, thatisa = (a%)geg.
Ile(x) = argmin.cel|x — c||2 denotes the orthogonal projection to the closed and coneex s
C C R?, wherex ¢ R?. Partial derivative of functio with respect to variabl& at pointx, is
%(XO) andg’(xo) is the derivative ofy atxy. R? = {x € R? : 2; > 0(Vi)} stands for the non-
negative ortant ilR?. R? | = {x € R? : z; > 0(Vi)} denotes the positive ortaril = {0,1,...}

is the set of natural number®., . andN_, denote the set of positive real and the positive natural
numbers, respectively is the characteristic function. The entropy of a randomalde is denoted

by H, E is the expectation anH-, . . ., -) denotes the mutual information of its arguments. For sets,
x and\ stand for direct product and difference, respectively.i~er; integers]i, j] is a shorthand
for the interval{i,i + 1,...,j}.



Chapter 2

Theory — Group-Structured
Dictionary Learning

In this chapter we are dealing with the dictionary learningigbem of group-structured sparse codes
(Section2.1) and sparse coding — kernel based approximation equivedeiectior?.2). We also
present a novel, kernel based approximation scheme inoBex8, we embed support vector ma-
chines to multilayer perceptrons.

2.1 Online Group-Structured Dictionary Learning

In this section, we focus on the problem of online learningyafup-structured dictionaries. We
define the online group-structured dictionary learningPDBtask in Sectior?.1.1 Section2.1.2is
dedicated to our optimization scheme solving the OSDL mwblNumerical examples illustrating
the efficiency of our approach are given in Chagter

2.1.1 Problem Definition

We define the online group-structured dictionary learni@$DL) task [2, 3] as follows. Let the
dimension of our observations be denoteddy Assume that in each time instarit€ 1,2,...)
asetO; C {1,...,d,} is given, that is, we know which coordinates are observabliere i, and
our observation i, € RI9:l. We aim to find a dictionard € R >4 that can approximate the
observationso, well from the linear combination of its columns. We assuns the columns of
D belong to a closed, convex, and boundedBet xf;liDi. To formulate the cost of dictionary
D, we first consider dixedtime instanti, observationxo,, dictionaryD, and define the hidden
representatiorx; associated to this triplex,, D, O;). Representatiow; is allowed to belong
to a closed, convex sel C R? (a; € .A) with certain structural constraints. We express the
structural constraint ony; by making use of a giveff group structure, which is a set system (also
called hypergraph) o#1,...,d,}. We also assume that a set of linear transformatioh§ <
Riexda o is given for us. We will use them as parameters to define thetstred regularization
on the codes. Representatianbelonging to a tripldxo, D, O) is defined as the solution of the
structured sparse coding task

l(x0,D0) =la,xs,{a¢},.qn(*x0: Do) (2.1)
1 2
= min | 5 [|xo — Doal); + wXe) |, (2.2)



wherel(xo, Do) denotes the loss, > 0, and
Qy) = Q5,(a61,,n¥) = (1A yll2)aes (2.3)

is the group structure inducing regularizer associate§land{ A%} g, andn € (0,2). Here, the
first term of @.2) is responsible for the quality of the approximation on thserved coordinates,
and Q.3 performs regularization defined by the group structuneéngraphG and the{A%}gcg
linear transformations. The OSDL problem is defined as themization of the cost function:

, 1 AN
min fi(D) = m ; (;) l(x0,,Do,), (2.4)

that is, we aim to minimize the average loss of the dictionaherep is a non-negative forgetting
rate. Ifp = 0, the classical average

t

fi(D) = + 3" 1(x0,, Do) 25)

i=1

is obtained. Whem < 1, then for a code vectot, the regularizef) aims at eliminating the
A%a terms (G € G) by making use of the sparsity-inducing property of fh, norm [146]. For
0; ={1,...,d,} (Vi), we get the fully observed OSDL task.

Below we list a few special cases of the OSDL problem:

e Special cases fd:

—1f |G| = d, and§ = {{1},{2},...,{d.}}, then no dependence is assumed between
coordinatesy;, and the problem reduces to the classical task of learniigjiodaries
with sparse codes’ [138].

— Ifforall g,h € G, gNh # 0 impliesg C h or h C g, we have a hierarchical group
structure [145]. Specially, iG] = d, and§ = {descy, ..., descq, }, wheredesc; stands
for thei’” node ¢v;) of a tree and its descendants, then we get a traditionastraetured
representation.

— If |G| = do, andG = {N Ny, ..., NNy_}, whereN N; denotes the neighbors of tié
point (o;) in radiusr on a grid, then we obtain a grid representation [149].

—If§={{1},...,{da},{1,...,da}}, then we have an elastic net representation [52].

-9 = {1k} kequ,....du—1}> 1k, da] Y reqo,....a.y } Intervals lead to a 1D contiguous,
nonzero representation. One can also generalize the woofistr to higher dimen-
sions [55].

— If §is a partition of{1,...,d,}, then non-overlapping group structure is obtained. In
this case, we are working with block-sparse (a.k.a. growgsbprepresentation [41].

e Special cases fqfA“ }geg:

— Let (V, E) be a given graph, whefié and E denote the set of nodes and edges, respec-
tively. For eache = (7,j) € E, we also introducew;;, v;;) weight pairs. Now, if we
set
Uy)= Y. wilyi—vigysl, (2.6)
e=(i,j)EE:i<]



then we obtain the graph-guided fusion penalty [53]. Theigsds € G correspond to
the (¢, j) pairs, and in this case

AG = [wij, —wijvij] S R1X2. (27)

As a special case, for a chain graph we get the standard fusssblpenalty by setting
the weights to one [54]:

do—1
y) = FL(y) = ) lyj+1 — yjl. (2.8)
j=1

— The fused Lasso penalty can be seen as a zero-order difeeappcoach. One can also

take first order
do—1

QUy)= > [ —yi-1 42y — yjtl (2.9)
j=2
differences arriving at linear trend filtering (also calledtrend filtering) [84], or its
higher order variants lead to polynomial filtering techragu

— By restricting the§ group structure to have a single elemd§f (= 1) andn to 1, we
obtain the
Qy) = ||Ayll, (2.10)
generalized Lasso penalty [85, 86].

— Let Vy € R%*4z denote the discrete differential of an image= R?: %4z at position
(i,5) € {1, ..., di} x {1,...,do}:

(Vy)i; = [(V¥)i: (V)5 (2.11)

where
(Vy)i; = Wit1 — Vi) X{i<di}» (2.12)
(V)5 = Wijr1 — Yij)X{j<da}- (2.13)

Using these notations, the total variationyois defined as follows [56]:

di do

) = Iylrv =D D I(V¥)ills - (2.14)

i=1 j=1
e Special cases fdD, A:

- D; = S¥= (vi), A = Ré=: columns of dictionaryD are constrained to be in the Eu-
clidean unit sphere.

- D; =S ﬂRi’” (i), A = R‘i‘*: This is the structured non-negative matrix factorization
(NMF) problem.

- D, = S NRY (i), A = R This is the structured mixture-of-topics problem.

- BeyondR?, S¢, 54, S{ NR%, andS¢ NR%, several other constraints can also be moti-
vated forD; and.A. In the above mentioned examples, the group-norm, elastj@and
fused Lasso constraints have been applied in a ‘soft’ mamiitrthe help of the reg-
ularization. However, we can enforce these constraintshaa’ way as well: During
optimization (Sectior2.1.2), we can exploit the fact that the projection to the and. A
constraint sets can be computed efficiently. Such conssats include [135, 155, 156],
e.g., the



* {c:|cll,, <1} group norms,
x {c: i |lc]ly + 72 llcll5 < 1} elastic net, and
x {c:m |lelly + 72 llellz + 13 FL(c) < 1} fused Lasso, y2,73 > 0).
— When applying group norms for both the codesind the dictionaryD, we arrive at a
double structured dictionary learnirgcheme.

In sum, the OSDL model provides a unified dictionary learrfiagnework for several actively
studied structured sparse coding problems, naturallyneistéhem to incomplete observations, and
allows non-convex regularization as well.

2.1.2 Optimization

We consider the optimization of cost functiah4), which is equivalent to the joined optimization
of dictionaryD and coefficient§c; }_;:

arg min ft(Dv {ai}ﬁzl)a (215)
DeD {a;e A},

where

1 i T1 2
f:m;(t) 5 10, ~ Do.aull + rtfa)|. (2.16)

Assume that our samples are emitted from an i.i.d. sourggx), and we can obserse,,. We ex-
ecute the online optimization of dictionaly (i.e., the minimization 0fZ.16) through alternations:

1. For the actual sample,, we optimize hidden representation belonging toxo, using our
estimated dictionaryD;_; and solving the minimization task

.1
a; = argmin {5 |x0, — (Di—1)o, el + m(a)] : (2.17)
ac

2. We use hidden representatidms; }!_; and updatd,_, by means of quadratic optimization

fr(Dy) = min f:(D, {au}t ). (2.18)

In the next subsections, we elaborate on the optimizatiorepfesentatiorx in (2.17 and the
dictionaryD in (2.18.

Representation update &)

Objective function2.17) is not convex ince. We use a variational method to find a solution: (i) we
rewrite the ternf by introducing an auxiliary variable) that converts the expression to a quadratic
one ina, and then (i) we use an explicit solution toand continue by iteration. Namely, we use
Lemma 3.1 of [146]: for any € R? andn € (0,2)

1Ly 1
= min =S Z 4= 2.19
Iyl = min l2gzj+2||zn4, (2.19)

wheres = 2%" and it takes its minimum value at

2=yl (2.20)

10



We apply this relation to the terf in (2.17) (see Eq.2.3), and have that

| |a%al;
20(a) = min_ Z —+ HZHB (2.21)
z=[(2%)ces]ERY] | Geg N
_ win [aTHa + HZHB} ’ (2.22)
z€R.7}
where
H = H(z) = Z (AG)TAG/ZG- (2.23)
Ge§

Inserting .22 into (2.17) we get the optimization task:

: 1 1
argmin  J(a,z) = 5 Ixo, — (Dt_l)otaHg + Ky (aTHa + HZ”ﬁ) . (2.24)
aGA.,zGRer

One can solve the minimization df «, z) by alternations:

1. For givenz: we can use a least mean square solvenfovhen.A = R in (2.24), or a non-
negative least square solver whédn= R‘f;‘. For the general case, the cost functibfax, z)
is quadratic ine and is subject to convex and closed constraints(A). There are standard
solvers for this case [153, 154], too.

2. For givena: According to .19, the minimumz = (ZG)GGS can be found as

2% = |A%al; (A allz)geglh (2.25)

n
Note that for numerical stability, smoothing
z =max(z,¢) (0<e<k1) (2.26)

is suggested in practice.

Dictionary update (D)

We use block-coordinate descent (BCD) [154] for the optatian of 2.18. This optimization is
not influenced by the regulariz€(«), since it is independent @. Thus the task3.18) is similar
to the fully observable case [135], where oy = {1, ..., d,} (Vi) it has been shown that the BCD
method can work without storing all of the vectots o; (i < t). Instead, it is sufficient to keep
certain statistics that characterife which can be updated online. This way, optimizatiorfpin
(2.18 becomes online, too. As it will be elaborated below, (itair statistics describing; can also
be derived for the partially observed case, which (ii) campéated online with a single exception,
and (iii) a good approximation exists for that exceptiore(€hapted).

During the BCD optimization, columns d are minimized sequentially: other columns than
the actually updated; (i.e., d;, i # j) are kept fixed. The functioffi, is quadratic ind;. During
minimization we search for its minimum (denotediy) and project the result to the constraint set

D; (d; « Ilp, (uy)). To find thisu;, we solve the equatiogc{—; (u;) = 0, which leads (as we show
it in AppendixA.1.1-A.1.2) to the following linear equation system

Cj7tuj = bj7t —e;+ Cj7td]‘, (2.27)

11



whereC; ; € R4 is a diagonal coefficient matrix, and

t S\ P
2
Cji=> <g> Aa,, (2.28)

i=1
t i\ .

Bt:z n Axia; = [biy, ..., ba,.l, (2.29)
i=1

t .\ P
€t = Z <%> AiDOéiO@_’j. (230)
=1

Here A, represents a diagonal matrix correspondin@tdelementj in the diagonal i1 if j € O;,
ando otherwise).C, ;s € R4 *4: andB, € R% <4 take the form of

M=) (%)pNi (2.31)

i=1
matrix series/statistics, and thus (as we detail it in AgideA.1.1-A.1.2) they can be updated as
Cj’t = ")/tcj,t—l + Atafj, B, =B + Atxtaf, (232)

with initialization C; o = 0, By = 0 for the case op = 0, and with arbitrary initialization for

p > 0, wherey, = (1 —1)”. For the fully observed case\; = I, Vi), one can pull ouD from

ej; € R, the remaining part is of the forivI;, and thus it can be updated online giving rise to
the update rules in [135], see Appendixl.1-A.1.2. In the general case this procedure cannot be
applied (matrixD changes during the BCD updates). According to our numeeixpaériences (see
Chapterd) an efficient online approximation fe; ; is

et = mejt—1 + AiDyayoy 5, (2.33)
with the actual estimation fdD, and with initializatione; o = 0 (¥j). We note that

1. convergence is often speeded up if the updates of statisti

{{Cj.e 301, By, {ej 192, } (2.34)

are made in batches éfsampleso, ,, ..., X0, , (in R-tuple mini-batches). The pseudocode
of the OSDL method with mini-batches is presented in T@hle2.3 Table2.2 calculates the
representation for a fixed dictionary, and TaBl8learns the dictionary using fixed represen-
tations. Table.1invokes both of these subroutines.

2. The trick in the representation update was that the auyilrariablez ‘replaced’ the(2 term
with a quadratic one ix. One could use furthey(a) regularizers augmenting in (2.1
provided that the correspondidge, z)+¢ () cost function (see Eg2(24) can be efficiently
optimized ina € A.

2.2 Generalized Support Vector Machines and-Sparse Repre-
sentations

In this section we present an extension of sparse coding IHRK and show its equivalence to a
generalized family of SVMs. The structure of the sectionsgalows: we briefly summarize the

12



Table 2.1: Pseudocode: Online Group-Structured Dictipheaarning.

| Algorithm (Online Group-Structured Dictionary Learning)

Input of the algorithm
x¢,» ~ p(x), (Observationxop, ., observed positiong); ,.),
T (number of mini-batches}; (size of the mini-batches),
§ (group structure)p (> 0 forgetting factor),
k (> 0 tradeoff-),n (€ (0, 2) regularization constant),
{A%} geg (linear transformations)d (constraint set fory),
Dy (initial dictionary),D = x?;liDi (constraint set foD)
inner loop constants: (smoothing) I, Tp (number of iterations).
Initialization
Cj70 =0¢ R 1 €50 = 0¢e R (] =1,.. .,da), By=0¢€¢ Réaxdor
Optimization
fort=1:T
Draw samples for mini-batch from(x): {xo, ,,..., X0, » }-
Compute thdlay 1 ..., oy g} representations:
oy =Representatior(, ., (D:—1)o,.,, 9, {A%}ceg, k.1, A, €, Tn),

(r=1,...,R).
Update the statistics of the cost function:
7=(1-7)"

C]"t = 'thj,tfl + % Ele AtWa%,r,j’ ] = ]., ey da,
Bt = ’YtBtfl + % Zle Atmxt,rag:ra
€t = ’}/te]‘,tfl,j =1,... ,da. %(part—l)
ComputeD; using BCD:
D,=Dictionary(C;+}92,, B, {e;+}72,, D, Tp, {0} { e, } ).
Finish the update ofe; ; }9=,-s: %(part-2)
€j,t = €j,t + % Zil Ai Do rag g, j=1,...,dq.
end
Output of the algorithm
D (learned dictionary).
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Table 2.2: Pseudocode fapresentatiorestimation using fixed dictionary.
| Algorithm (Representation) |

Input of the algorithm
x (observation)D = [d4, ..., dq,] (dictionary),§ (group structure),
{A%} geg (linear transformations); (tradeoff-),, (regularization constant),
A (constraint set fory), e (smoothing).I,, (number of iterations).
Initialization
a € R,
Optimization
fort=1:T,

Computez: 2& = max (HAGO‘HE_q7 H(HAGO‘HQ)GGS

n—1
,e) ,G eg.
n

Computer:
computeH: H = Yo (A9)TAC /2,
a = argmin |||x — DaHg + maTHa].
acA
end
Output of the algorithm
«a (estimated representation).

basic properties that will be used throughout the sectiokeofiels with the associated notion of
RKHSs and SVMs in SectioB.2.1and Sectior2.2.2 respectively. In SectioB.2.3we present our
equivalence result.

Let us assume that we are givéfx;, y;)}'_, input-output sample pairs, whexe € X (input
space) ang; € R. Our goal is to approximate the— y relation. One can chose the approximating
function from different function classes. In the sequel,wfocus on approximations, where this
function class is a so-called reproducing kernel Hilbesgcsn

2.2.1 Reproducing Kernel Hilbert Space

Below, we briefly summarize the concepts of kernel, featuap feature space, reproducing kernel,
reproducing kernel Hilbert space and Gram matrix.

Let X be non-empty set. Then a functién X x X — R is called akernelon X if there exists a
Hilbert spaceH and a mapp : X — H such that for alk, x’ € X we have

k(x,x") = (@(x), @(x')) 5 (2.35)

We callp afeature mamndJ a feature space @f. Given a kernel neither the feature map, nor the
feature space are uniquely determined. However, one cayaleonstruct a canonical feature space,
namely the reproducing kernel Hilbert space (RKHS) [1633t us now recall the basic theory of
these spaces.

Let X be non-empty set, aril be a Hilbert space ovéX, i.e., a Hilbert space which consists of
functions mapping froni.

e The spaceH is called aRKHSover X if for all x € X the Dirac functionab, : 7 — R
defined byix(f) = f(x), f € H, is continuous.

e Afunctionk : X x X — Ris called a reproducing kernel 6 if we havek(-,x) € H for all
x € X and thereproducing property

J) = (FC) kX)) g (2.36)
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Table 2.3: Pseudocode fdictionaryestimation using fixed representations.
| Algorithm (Dictionary) |
Input of the algorithm

{C;}i2,,B =[by,...,ba,],{e;}I=, (statistics of the cost function),

D= xf;lDi (constraint set foD), T (humber ofD iterations),

{O,}E_,(equivalentto{ A, } F ),

{a,}2_| (observed positions, estimated representations).
Initialization

D=[dy,...,dq]
Optimization

fort=1:Tp

for j = 1: d, %update thg*" column ofD
Compute {e; } 42, -s:
e?emp =e; + % Eil A, Do ay ;.

Computeuj solving the linear equation system:

lelj = bj — e;emp + dej-
Projectu; to the constraint set:

d; = I, (u).

end
end
Output of the algorithm
D (estimated dictionary).

holds for allx € X and f € H.

The reproducing kernels are kernels in the sens@ 85 sincep : X — H defined byp(x) =
k(-,x) is a feature map of. A RKHS space can be uniquely identified by/tseproducing kernel,
hence in the sequel we will use the notatith= (k). The Gram matrixof k£ on the point set
{x1,...,x} (x; € X, Vi) is defined as

G = [Gij]é,jzl = [k(xiaxj)]aj:l' (2.37)

An important property of RKHSs, is that the scalar productthie feature space can be computed
implicitly by means of the kernel. Indeed, let us supposétha H = H(k) has arexpansiorof
the form

N
W= ajp(z), (2.38)
j=1
wherea; € R andz; € X. Then
N
fw(x) = {w, p(x)) ¢ = <Z ;¢ (2)), <P(X)> (2.39)
i=1
N N "
= a; (p(z), (X)) g = > jk(z,x), (2.40)
j=1 j=1

i.e., functionfy, can be evaluated by means of coefficiemfssamples; and the kernek without
explicit reference to representatigrix). This technique is called tHeernel trick In Table2.4we
list some well-known kernels.
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Table 2.4: Kernel examples.

Name Kernel () Assumption
linear kernel k(x,y) = (x,y)

e 2
RBF* kernel k(x,y)=e" b oceR;
Mahanalobis kernel k(x,y) = e N Z 8 = diag (03,...,02)
polynomial kernel k(x,y) = (x,y)? pe N4
complete polynomial kernek(x,y) = ({(x,y) + ¢)? peN i, ceERL

sin L) (z—

Dirichlet kernel k(x,y) = w NeN

Sin T

aRBF stands for radial basis function.

2.2.2 Support Vector Machine

Now, we present the concept of support vector machines (SWUiMhe SVM framework the ap-
proximating function for the (x;, v;)}._, samples are based oa= 3 (k) RKHS, and takes the
form

Jwp(x) = (W, p(x)) 5 + b, (2.41)

Although this functionf ; is nonlinear as afl — R mapping, it is a linear (affine) function of the
feature representatiop(x). For different choices of RKHS{, f.,, may realize, e.g., polinomial,
Fourier, or even infinite dimensional feature represeorati

The cost function of the SVM regression is

!
1 2 )
H(w,b) = C; lyi = Fawo (i)l + 5 Iwlloe = min_, (2.42)

whereC > 0 and
rle = {0, if |r| < & |r| — € otherwisé (2.43)

is thee-insensitive cost. In4.42), the first term is responsible for the quality of approxiimabn the
sample pointg (x;,y;)}._, in e-insensitive sense; the second term corresponds to a rizgtian
by theHwH?{ = (w,w),, squared norm, and balances between the two terms.

Exploiting the special form of the SVM cos?.@42 and the representation theorem in RKHSs
[170], the optimization can be executed and functfgn, can be computed (even for infinite dimen-
sional feature representations) by solving the dua2ef?), a quadratic programming (QP) problem,
which takes the form [168]

1

* T * * T * T :
3 (d*—d) G(d*"—d)—(d"—d) y+(d*"+d) €1 — d*e%l,geﬂa“ (2.44)
subject t ¢1zd%d = 0
J @ -d71 = o0
whereG =[Gyl ;_; = [k(xi,x;)]} ;— is the Gram matrix of théx; }._, samples.

2.2.3 Equivalence of Generalized Support Vector Machinesral ¢-Sparse
Coding

Having the notions of SVM and RKHS at hand, we are now ablet¢asmn sparse coding problems
in RKHSs. Again, it is assumed that we are givesamples {(x;, v;)}._,). First, we focus on
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the noiseless case, i.e., it is assumed jHat;) = y; (Vi) for a suitablef € H. In the noiseless
case, [164] has recently formulated a sparse coding proll€&KHSs as the optimization problem

2

l
fe) - Zaik(-,xi)

5 +ellall, — min, (2.45)

H

wheree > 0. (2.45 is an extension of the Lasso problem [20]: the sectuifl induces sparsity.
However, as opposed to the standard Lasso cost the first teamures the approximation error on
training sample making use of trMeH?{ RKHS norm and not the standard Euclidean one. Let us
further assume thdyf, 1), = 0* and for the tradeoff parameter of SVKI, — co. Let us decompose
the searched coefficieatinto its positive and negativ part, i.e.,

a=a"—a", (2.46)

wherea™, a~ > 0andatoa™ = 0.[164] proved that in this case, th2.45 and .44 problems are
equivalent, in the sense, that the solutiona#§), the @™, a~) pair is identitical to that ofd*, d),
the optimal solution of the dual SVM problem. The equivakeint sparse coding and SVMs can
also be extended to the noisy case by considering a largerR§fpdce encapsulating the noise
process [165].

Both works [164,165] however transform the insensitivigrgmeter) into a ‘uniform’ sparsi-
fication, that is into the weight of the sparsity-inducingutarization term (compare, e.g2.45 and
(2.44). Our question was, whether it is possible to transformrikensitivitye into component-wise
sparsity-inducing regularization. To address this prnoblee first define the extendéd, e)-SVM
and (p, s)-sparse tasks, then the correspondence of these two preleleailing component-wise
e-sparsity inducing is derived.

The (c, e)-SVM Task

Below, we introduce an extended SVM problem family. For tiotel simplicity, instead of ap-
proximating in semi-parametric form (e.@.+ b, whereg € H), we shall deal with the so-called
non-parametric scheme € ). This approach is also well grounded by the representerédme of
kernel based approximations [170].

The usual SVM task,A.42 is modified as follows:

1. We approximate in the form, (x) = (w, ¢(x)) 4.
2. We shall use approximation errors and weights that mdgrdisr each sample point.

Introducing vectok for the e-insensitive costs and for the weights, respectively, the generalized
problem is defined as:

1 2 .
e T3 IWl5 = min,  (c>0.e>0). (247)

l
Zci lyi — fw(xi)
i=1

This problem is referred to as tlie, e)-SVM task The original task of Eq.2.42) corresponds to the
particular choice ofC1,e1) andb = 0. Alike to the original SVM problem, théc, e)-SVM task
also has its quadratic equivalent in the dual space, whiak fellows

Lo T . . T . T :
3 d*-d) Gd"—-d)—(d*—d) y+(d"+d) e— d*E%{I;ERl, (2.48)

subjectto{ ¢ >d*,d > 0 },

1 This restriction gives rise to constralft’_, a; = 0.
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whereG denotes the Gram matrix of kernebn the{x; }!_, sample points. Moreover, the optimal
w and thefy (x) regression function can be expressed making use of thenelitéd,d*) dual
solution as

l
Z di — d)p(x;), (2.49)

l l
Fulx) = <Z<di - dr>so<xi>,so(x>> = 3 "(di — d)k(x,xi). (2.50)
H

i=1 i=1

Let us notice that the optimal solutigfiy (-) can be expressed as the linear combinatiok(gfx; )s.
This is the form that is guaranteed by the representer theft@0] under mild conditions on the
cost function—the coefficient are of course always problpetsic.

The (p, s)-Sparse Task

Below, we introduce an extended sparse coding scheme in RKHi®leed, let us consider the
optimization problem

Fla) = - ;| >0,5>0 251
(a) +Zp|a|—>rr§l§1 (p>0,5>0) (2.51)

I i=1

1
- Zaik(-,xl
i=1

whose goal is to approximate objective functipre 3 = 3(k) on the sample pointéx;, y; }._,.
This problem is referred to as tipeweighted ang-sparse taskor the(p, s)-sparse taskfor short.
For the particular choice dk1, 0) we get back the sparse representation form of E¢5.

Correspondence of the(c, e)-SVM and (p, s)-Sparse Problems

One can derive a correspondence between(¢he)-SVM and (p, s)-sparse problems. Our re-
sult [19], which achieves component-wissparsity inducing, is summarized in the following propo-
sition:

Proposition 1. Let X denote a non-empty set, letoe a reproducing kernel off, and let us given
samples{x;, y;}._,, wherex; € X,y; € R. Assume further that the values of the RKHS target
functionf € 3 = F((k) can be observed in poinis (f(x;) = ;) and let fy, (x) = (W, @(x)) ¢
Then the duals of théc, e)-SVM task (2.47)] and that of the(p, s)-sparse task [2.51)] can be
transformed into each other by the generalized invé&seof the Gram matrixG = [Gi,j]aj:l =
[k(xi,xl,‘)]a]‘:l via (d*,d,G,y) < (d7,d7,G"GG™,G"y) = (d*,d",G~,G™y). [For
proof, see AppendiX.2]

2.3 Multilayer Kerceptron

Now, we embed support vector machines to multilayer peroapt In Sectior2.3.1we briefly
introduce multilayer perceptrons (MLP). We present ourelanultilayer kerceptron architecture
in Section2.3.2 In Section2.3.3 we extend the backpropagation method of MLPs to multilayer
kerceptrons.
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2.3.1 Multilayer Perceptron

The multilayer perceptron (MLP) network [169] is a multi&yapproximating scheme, where each
layer of the network performs the nonlinear mapping

x — g(Wx). (2.52)

These ‘simple’ mappings are the composition of linear ti@msationW, followed by the differen-
tiable, nonlinear mapping. Typical choice forg is a coordinate-wise acting sigmoid function. In
the MLP task, the goal is to tune matric@é of the network to approximate the sampled input-output
mapping given by input-output training paifg(t), d(t)}, wherex(t) € X = R%, d(t) € R?. In
an adaptive approach, the MLP task is to continuously mirénthe instantaneous squared error
function

(1) = (1) = y(®)ll; — | min_ . (2.53)
wherey(t) € R denotes the output of the network at timéhe estimation fod(t). The optimiza-
tion of (2.53 can be carried out by, e.g., making use of the stochasttigradescent technique. In
the resulting optimization, the errors for a given lay® {) are propagated back from the subsequent
layer (W1), this is the well-known backpropagation algorithm.

2.3.2 The Multilayer Kerceptron Architecture

Now, we embed support vector machines to MLPs. To do so, étstd notice that the mapping of
a general MLP layer {.52] can be written as

Xt g <wil, X) , (2.54)

wherew! denotes thé*" row of matrix W. Let us now replace the scalar product terfws, x)
with (w;, (x)) 4, and define the general layer of the network as

(W1, (%)) g¢
X g : . (2.55)

(Wi, (%)) ¢

A network made of such layers will be called multilayer kgriten (MLK). For an illustration of
the MLK network, see Fig2.1 In MLK, the input (') of each layer is the output of the preceding
layer (y'~'). The external world is thé*" layer providing input to the first layer of the MLK.
x! = y!=! ¢ RM, whereN/ is the input dimension of th&" layer. Inputsx’ to layerl are mapped
by featuresp! and are multiplied by the weights!. This two-step process can be accomplished
implicitly by making use of kernek! and the expansion property forls. The result is vector

sl € RVs, which undergoes nonlinear processglgwhere functiorg' is differentiable. The output
of this nonlinear function is the input to the next layer,,ilayerx!*!. The output of the last layer
(layer L, the output of the network) will be referred topsGiven thaty! = x!*+! ¢ RN, the output
dimension of layet is N,

2 We assume that the sample sp&gis the finite dimensional Euclidean space.
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Figure 2.1: Thd'" layer of the MLK,! = 1,2,... L. The input &') of each layer is the output of
the preceding layery¢—'). The external world is the*" layer providing input to the first layer of
the MLK. Inputsx' to layer! are mapped by features mappi@§ undergo scalar product by the
weights ¢v!) of the layer in RKHSH! = ' (k'). The resultis vectas', which undergoes nonlinear
processing', with a differentiable function. The output of this nonlardunction is the input to the
next layer, layex!*!. The output of the network is the output of the last layer.

2.3.3 Backpropagation of Multilayer Kerceptrons

Below, we show that (i) the backpropagation method of MLRslm&aextended to MLKs and it (ii)
be accomplished in the dual space requiring kernel compatabnly.
We consider a slightly more general task, which incorpareggularizing terms:

c(t) = e%(t) +r(t) — min , (2.56)
{leawa: l=1,...,L; i:L...,Né}

where
e2(t) = [ld(t) — y(1)ll3 (2.57)
L N )
r(t)=> > N[wi®)|n (A >0) (2.58)
=1 i=1

are the approximation and the regularization terms of ths ftmction, respectively, ang(¢) de-
notes the output of the network for thé input. Parameters! control the trade-off between ap-
proximation and regularization. Fof = 0 the best approximation is searched like in the MLP task
[(2.53)]. With these notations at hand, we can present our resif{sjow.

Proposition 2 (explicit case) Let us suppose that the— (w, ¢!(x)),, and theg' functions are
differentiable(l = 1,..., L). Then, backpropagation rule can be derived for MLK with dosttion

(2.56.
Proposition 3 (implicit case) Assume that the following holds

1. Constraint on differentiability: Kernels' are differentiable with respect to both arguments
and functiong' are also differentiablel(= 1, ..., L).

2. Expansion property: The initial weightg.(1) of the network can be expressed in the dual
representation, i.e.,

Nl
Hswi(l)= > al ()l ;(1) (=1,...,Lii=1,...,N}). (2.59)

Jj=1

20



Then backpropagation can be derived for MLK with cost fumc(R.56). This procedure preserves
the expansion propertf2.59, which then remains valid for the tuned network. The aldonitis
implicit in the sense that it can be realized in the dual spasing kernel computations only.

The pseudocodes of the MLK backpropagation algorithms eweigied in Table2.5 and Ta-
ble 2.6, respectively. The MLK backpropagation can be envisiorssimbows (see Tablé.5and2.6
simultaneously):

1. backpropagated erréf(t) starts froms* (¢) and is computed by a backward recursion via the

i i iods (1]
differential expressmﬁw.

2. expressio [;[lst(lt()t])] can be determined by means of feature mapgingf, or, in an implicit

fashion, through kernefg**.
3. two components play roles in the tuningvofs:

(a) forgettingis accomplished by scaling the weiglt$ with multiplier 1 — 2.4 (t) AL, where
AL is the regularization coefficient.

(b) adaptationoccurs through the backpropagated error. Weights at legsertuned by fea-
ture space representationdft), the actual input arriving at layér Tuning is weighted

by the backpropagated error.

Derivations of these algorithms are provided in ApperiliX.
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Table 2.5: Pseudocode of the explicit MLK backpropagatigothm.

Inputs

sample points{x(t),d(t) }+=1,.. 7.

cost function:\! >0 (1=1,...,L;i=1,...,N})

learning ratesul(t) >0 (1=1,...,L;i=1,...,Ni;t=1,....T)
Network initialization

size: L (number of layers)N}, N, N (1=1,...,L)

parameterswi(1) (I=1,...,L;i=1,...,N%)
Start computation

Choose samplex(t)

Feedforward computation

() (1=2,...,L+1),s(t) (I=2,...,L)3
Error backpropagation

=1L
whilel > 1
if (1=1L)
§E(t) =2[y(t) —d(®)]" (g%) (s¥(1))
else
als' Tt of(wi ). (), 144] !
ST = o] e (") (s'(1)"
Up) — Sl41 ()0 (1)
8'(t) = 811 ()
end
Weight update

foralli: 1 <i < N}
wi(t+1) = (1= 2u{()N)wi(t) — ()5 () (x' (1))
I=1-1
End computation

2 The output of the network, i.ey(t) = x“+1(¢) is also computed.
bHere:i = 1,..., N5
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Table 2.6: Pseudocode of the implicit MLK backpropagatilgoegthm.

Inputs

.....

Network initialization
size: L (number of layers)N}, N, N (1=1,...,L)
parametersw!(1)-expansion$l = 1,...,L;i=1,..., N{)
coefficients:al (1) € RV: ()
ancestorsz, ;(1), wherej = 1,..., N/(1)
Start computation
Choose samplex(t)
Feedforward computation
xt(t)(1=2,....,L+1),s(t) (I=2,...,L)?
Error backpropagation

=L
whilel > 1
if (1=1L)
88(1) = 2[y(1) — d(1))" (g") (1)
else
414 ) ,
= Njgl o O i (0, X (1) | () (')

8l(t) = 8+L(t) 3[;{32&)]
end
Weight update
foralli: 1 <i < Nk
Nit+1)=NHt)+1
aj(t+1) = [(1 - 2u{(H)A]) e(t); —pi(t)o}(1)]
zi (t+1) =1z ;(t) (j=1,...,N\t)
zi;(t+1)=x'(t) (j=N{({t+1))
l=1-1
End computation

2 The output of the network, i.ey(t) = x+1(¢) is also computed.
bi=1,..., Né“. Note also tha(kl)fy denotes the derivative of kernkl according to its second argument.
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Chapter 3

Theory — Independent Subspace
Based Dictionary Learning

In this chapter we present our novel independent subspasa lifictionary learning approaches.
Contrary to Chapte®, where the underlying assumption for the hidden sourcesspassity and
structured sparsityhere we are dealing wittndepedenhon-Gaussian sources. In Secti®i we
unify contolled dynamical systems and independent sulesipased dictionary learning. Sectigr2

is about the extension of the current ISA models to the ghrtidoservable case. In Sectiéh3
and Sectior8.4we are dealing with complex and nonparametric generadimafirespectively. Sec-
tion 3.5is devoted to the convolutive case. We note that the diftaresthods can be used in com-
binations, too. For all the introduced models, we deriveasagion principle based solution. These
separation principles make it possible to estimate the msalen in case of different, or unknown
dimensional independent source components. In Se8twe present a novel random projection
based, parallel estimation technique for high dimensioriaimation theoretical quantities. Numer-
ical experiments demonstrating the efficiency of our mesrer@ given in Chapteé.

3.1 Controlled Models

The traditional ICA/ISA problem family can modkliddenindependent variables, but does not al-
low/handlecontrol variables. In this section we couple ISA based dictionaayrigng methods with
control variables. To emphasize the fact that we are dealittgsources having dynamics, in the
sequel, we will refer to such problems as independent psocaealysis (IPA)—instead of ISA.

In our approach will adapt the D-optimal identification of KRautoregressive with exogenous
input) dynamical systems, that we briefly summarize in ®ecdi.l.1 Section3.1.2defines the
problem domain, the ARX-IPA task. Our solution techniquetfee ARX-IPA problem is derived in
Section3.1.3

3.1.1 D-optimal Identification of ARX Models

We sketch the basic thoughts that lead to D-optimal ideatific of ARX models. The dynamical
system to be identified is fully observed and evolves acogrth the ARX equation

Lo—1 Lu—1
St41 = Z Fisi—i + Z Bju; 1 + e, (3.1)
i=0 =0
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where (i)s € RP+, e € RP (D, = D,) represent the state of the system and the noise, resggctive
(i) u € RP+ represents the control variables, and (i) polynomialnmggiven by matrices; <
RP=*Ds and identity matrix)

Ls—1
Flz] =1— Y F;z'" € R[z|P*P (3.2)
=0
is stable, that is
det(F[z]) # 0, (3.3)
for all ze€C,|z|] <1. Our task is (i) the efficient estimation of paramete®& =
[Fo,...,Fr._1,Bo,...,Br, 1] that determine the dynamics and (ii) nois¢hat drives the pro-

cess by the ‘optimal choice’ of control valuas Formally, the aim of D-optimality is to maximize
one of the two objectives

Jpar(utJrl) = I(®7 St+1 |St7 St—1y++., U1, Ug, - - ')7 (34)
Tnoise(Weg1) = T(€411,Se41[St,St—1, -+, Wg1, Uy, .. -) (3.5)

for u;+1 € U. In other words, we choose control valuefrom the achievable domaiti (e.g.,
from a box domain) such that it maximizes the mutual infoiorabetween the next observation and
the parameters (or the driving noise) of the system. It cashioevn [208], that if (i)® has matrix
Gaussian, (ii)e has Gaussian, and the covariance matrix dfas inverted Wishart distribution,
then in the Bayesian setting, maximization of th@bjectives can be reduced to the solution of a
quadratic programming task, priors & ande remain in their supposed distribution family and
undergo simple updating. The considerations allow for nbut assume full observability about
the state variables. Now, we extend the method to hiddeahias in the ARX-IPA model of the
next section.

3.1.2 The ARX-IPA Problem

In the ARX-IPA model we assume that statef the system cannot be observed directly, but its
linear and unknown mixturex| is available for observation [10]:

L1 L,—1
si1= Y Fisii+ Y Bjwgij + e, (3.6)
i=0 =0
Xt = ASt, (37)

whereL, and L,, denote the number of thE; € RP=*P: B, € RP=*P« matrices in the corre-
sponding sums. We assume
o for thee™ € R% components ok = [e!;...;eM] € RP: (D, = S°M_ d,,) that at
most one of them may be Gaussian, their temporal evolutidihds (independent identically
distributed), and (e'; . ..;eM) = 0; that is, they satisfy thiSA assumption’

e that the polynomial matri¥[z] = I — 37" F,2*! is stable and the mixing matrig e
RP=*Ds is invertible. We note, that compared to Chajen the presented ISA based models
the mixing matrixA plays the role of the dictionary.

1By d.,,-dimensionale™ components, we mean thet*s cannot be decomposed into smaller dimensional independen
parts. This property is calleidreducibility in [242].
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The ARX-IPA task is to estimate the unknown mixing mathix parametergF, } 2= !, {B; }f:’*o‘l,
s ande by means of observationsonly.
In the special case di, = L, = 0, thatis

x = Ae (3.8)

we get back the traditional ISA problem, where the goal isrese the mixing matrixA. and the
hidden source, and there is no control. if,, = 1 (Vm) also holds in ISA, i.e., the independeit
source components are one-dimensional, we obtain the 1GBlgm.

3.1.3 Identification Method for ARX-IPA

Below, we solve the ARX-IPA model, i.e., we include the cohtrariables in IPA. We derive a
separation principle based solution by transforming thienegion into two subproblems: to that of
a fully observed model (Sectidhl.]) and an ISA task.

One can apply the basis transformation rule of ARX proceasdaise§.6) and 3.7) repeatedly
to get

L,—1 L,—1
X1 = Z (AFiA_l)Xt_i + Z (ABj)ut+1_j + (Aet+1). (39)
i=0 7=0

According to the d-dependent central limit theorem [198]itharginals ofAe; ., are approximately
Gaussian and thus the paramet¢8F; A~ '}, {AB;} ;') and the noise4e, ; 1) of process
x can be estimated by means of the D-optimality principle #ssumes a fully observed process.
The estimation ofAe;,; can be seen as the observation of an ISA problem because nentgo
e™ of e are independent. ISA techniques can be used to ideAtignd then from the estimated
parameters of process the estimations dF; andB follow.

Note:

1. In the above described ARX-IPA technique, the D-optimBXAprocedure is aonline esti-
mation for the innovatioe = Ae, the input of the ISA method. To the best of our knowledge,
there is no existing online ISA method in the literature. Hweer, having such a procedure, one
can easily integrate it into the presented approach to gelfyadnline ARX-IPA estimation
scheme.

2. Similar ideas can be used for the estimation of an ARMAX-[H, or post nonlinear model
[11]. In the ARMAX-IPA model, the state equatio8.f) is generalized td.. > 0, i.e.,

Lo—1 Lu—1 Le—1
St41 = Z Fisi_i + Z Bjuiy1j+e1 + Z Hye; . (3.10)
i—0 =0 k=0

In this case, we assume additionally that the polynomialisa[z] = I+ > 1, Hyz* €
R[z]P=*Ps is stable? In the PNL ARX-IPA model, the observation equati@ is general-
ized to

x; = f(As,), (3.11)

wheref is an unknown, but component-wise acting invertible magpin

2Note that this requirement is automatically fullfilled fbg = 0, whenH][z] = I.
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3.2 Incompletely Observable Models

The goal of this section is to search for independent muttigtisional processes subject to missing
and mixed observations. In spite of the popularity of ICA @sdumerous successful applications,
the case of missing observation has been considered ortlyedeimplest ICA model in the literature
[219, 220]. In this section we extend the solution to (i) ndifhensional sources (ISA) and (ii)
ease the i.i.d. constraint; we consider AR processes, thméépendent process analysis (AR-IPA)
problem.

3.2.1 The AR-IPA Model with Missing Observations

We define the AR-IPA model for missing observations (MARJIPAS5]. Let us assume that we can
only partially (at certain coordinates/time instants)ee (y) the mixture k) of independent AR
sources, that is

Ls—1
St+1 = Z Fisi—1 + e, x; = Asy, Ve = My(x¢), (3.12)
=0
where
e the driving noises, or the innovatiorg’ € R (e = [e;...;e)] € RP) of the hidden

sources € RP (D = Z%Zl d,,) are independent, at least one of them is Gaussian, and i.i.d
in time, i.e., they satisfy the ISA assumptions.

e the unknown mixing matriA € RP*? s invertible,
e the AR dynamic®[z] =T — Y7 ' F;z/ 1 € R[z]P*P is stable and

e the M, ‘mask mappings’ represent the coordinates and the timeasdof the non-missing
observations.

Our task is the estimation of the hidden sous@nd the mixing matrixA (or its inverseW) from
observatiory. For the special choice 6f(; = identity (v¢), the AR-IPA problem [173] is obtained.
If Ly = 0 also hold, we get the ISA task.

3.2.2 ldentification Method for mAR-IPA

The mAR-IPA identification can be accomplished as followss€rvationx; is invertible linear
transformation of the hidden AR procesand thus it is also an AR process with innovatida, , ;:

Ls—1
Xep1= > AF AT+ Aeyys. (3.13)
=0

According to the d-dependent central limit theorem [198, inarginals of variabld e are approx-
imately Gaussian, so one carry out the estimation by

1. identifying the partially observed AR procegs and then by

2. estimating the independent componesitsfrom the estimated innovation by means of ISA.
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3.3 Complex Models

Current methods in the ICA literature are only capable ofiegpvith one-dimensional complex
indepedent sources, i.e., with the simplest ICA model. imdbction by extending the independent
subspace analysis model to complex variables, we make sitgeghe tackle problems with mul-
tidimensinal independent sources. First we summarize abfesic concepts for complex random
variables (Sectio.3.]). In Section3.3.2the complex ISA model is introduced. In Secti®3.3we
show, that under certain non-Gaussian assumptions thiécsotf the complex ISA problem can be
reduced to the solution of a real ISA problem.

3.3.1 Complex Random Variables

Below we summarize a few basic concept of complex randonable$, define two mappings that
will be useful in the next section and note that an excelleview on this topic can be found in [172].

A complex random variabler € C is defined as a random variable of the form
v = vy +iv; € CF, where the real and imaginary partswfi.e., vy € RY andv; € R are
real vector random variables. Let us define the: CY — R2L, ), : Clrxl2 oy R2L1x2L2
mappings as

oolv) = v [ 0 ] orr(M) = M [ WA } (3.14)

whereR stands for the real par§y for the imaginary part, subscript™ (* M") for vector (matrix)
and® is the Kronecker product. Known properties of mappipgsy s are as follows [189]:

det[par(M)] = | det(M)|? (M € CExby, (3.15)
om (MiMa2) = on (M1)pnm (Mz) (M, € CEr*E2 M, € Cl2xls), (3.16)
Po(Mv) = o (M)py(v) (M € CH*F2 v e Ch2), (3.17)

<PM(M1 + Mz) = sDM(Ml) + o (M2) (M, M, € ChxF2), (3.18)
A (M) = copr (M) (M € CLlixl2 ¢ ¢ R). (3.19)

In words: @.15 describes transformation of determinant, whitel@, (3.17), (3.18 and @.19
expresses preservation of operation for matrix-matrixtiplication, matrix-vector multiplication,
matrix addition, real scalar-matrix multiplication, respively.

Independence of complex random variables € C% (m = 1,...,M) is defined as the
independence of variables, (v, ), i.e,

I(pp(v1),- oy pu(var)) =0, (3.20)

where! stands for the mutual information agd (v,,,) € R2% (¥m). The entropy of a complex
independent variable ¢ C¢ is defined as

H(v) = H(po(v)). (3.21)

3.3.2 Complex Independent Subspace Analysis

By the definition of independence for complex random vadalletailed above, the complex valued
ISA task [17] can be defined alike to the real caseq)] as

x = Ae, (3.22)
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whereA € CP*P is an unknown invertible mixing matrix, the hidden souecks i.i.d. in timet
and thee™ € C%~ components oé = [e;;...;ex] € CP (D = Zf\le d,,) are independent, i.e.,

I(py(e1),...,pu(ear)) = 0. The goal is to estimate the mixing mate (or its inverse) and the
hidden source by making use of the observatiornly.

3.3.3 Identification Method for Complex ISA

Now, we show that one can reduce the solution of the compléxh8del to a real ISA problem in
case of certain a ‘non-Gaussian’ assumption. Namely, lat addition assume in the complex ISA
model that at most one of the random variahtege™) € R?%~ is Gaussian. Now, applying trans-
formationy, to the complex ISA equation (Eq3.22) and making use of the operation preserving
properties of transformations,, ¢as [see B.17)], one gets:

o (x) = or(A)py(e). (3.23)

Given that (i) the independence &f* € C¢~ is equivalent to that op, (e™) € R?¥=, and (ii) the
existence of the inverse afy;(A) is inherited fromA [see @3.15], we end up with a real valued
ISA task with observatio, (x) and M pieces of2d,,-dimensional hidden components (e™).
The consideration can also be extended to the non-i.i.@, éaisfurther details, see [6].

3.4 Nonparametric Models

The general ISA problem of separating sources with nonpetrgendynamics has been hardly
touched in the literature yet [174, 240]. [174] focused oa $keparation of stationary and ergodic
source components of known and equal dimensions in casensframed mixing matrices. [240]
was dealing with wide sense stationary sources that (i)ppased to be block-decorrelated for all
time-shifts and (ii) have equal and known dimensional seeamponents. The goal of this section
is to extend ISA to the case of (i) nonparametric, asymptiticstationary source dynamics and
(i) unknown source component dimensions. Particulaijywé address the problem of ISA with
nonparametric, asymptotically stationary dynamicsh@yond this extension we also treat the case
of unknown and possibly different source component dinwssi(iii) we allow the temporal evo-
lution of the sources to be coupled; it is sufficient thattlieiving noises are independent and (iv)
we propose a simple estimation scheme by reducing the golotithe problem to kernel regression
and ISA.

The structure of this section is as follows: Secti®d.1formulates the problem set-up. In
Section3.4.2we describe our identification method.

3.4.1 Functional Autoregressive Independent Process Analis

In this section we formally define the problem set-up [1]. im fsamework we use functional autore-
gressive (fAR) processes to model nonparametric stochtasie series. Our goal is to develop dual
estimation methods, i.e., to estimate both the system petemand the hidden states for the func-
tional autoregressive independent process analysis (P¥R-model, which is defined as follows.
Assume that the observatiog)(is a linear mixture A) of the hidden sources), which evolves
according to an unknown fAR dynamic (vith independent driving noisee); Formally,

st =f(si—1,...,8t-1.) + e, (3.24)
Xt = ASt, (325)
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where the unknown mixing matriA € R?*? is invertible, L, is the order of the process and the
e™ € R% components 0é = [e';...;eM] e RP (D =M 4,,) satisfy the ISA assumptions.
The goal of the fAR-IPA problem is to estimate (i) the mixingimix A (or it inverseW = A1),
(i) the original sources; and (iii) its driving noisee; by using observations; only.

We list a few interesting special cases:

e If we knew the parametric form df, and if it were linear, then the problem would be the
AR-IPA task [173].

e If we assume that the dynamics of the hidden layer is zererohR (L, = 0), then the
problem reduces to the original ISA problem [235].

3.4.2 Identification Method for fAR-IPA

We consider the dual estimation of the system described.B-(3.25. In what follows, we will
propose a separation technique with which we can reduc@fRdRA estimation problem §.24—
(3.29) to a functional AR process identification and an ISA prafldo obtain strongly consistent
fAR estimation, the Nadaraya-Watson kernel regressidmiigcie is invoked.

More formally, the estimation of the fAR-IPA probler3.24-(3.25 can be accomplished as
follows. The observation processis invertible linear transformation of the hidden fAR soairc
process; and thus it is also fAR process with innovatidre,

x; = As; = Af(si—1,...,81—1,) + Aey (3.26)
= Af(Ailxt—la ey AilXt—Ls) + Aet = g(xt—la s )Xt—LS) + ng, (327)

where function
g(uy,...,ur,) = Af(A uy,..., A tuy) (3.28)

describes the temporal evolutionxf, and
n; = Aet (329)

stands for the driving noise of the observation. Making ughie form, the fAR-IPA estimation can
be carried out by fAR fit to observation followed by ISA onin,, the estimated innovation o;.
Note that Eq.8.27) can be considered as a nhonparametric regression probleimave

W= [Xeo1,.-,Xer.], vi=x¢ (t=1,...,T) (3.30)
samples from the unknown relation
vi = g(ug) + ny, (3.31)

whereu, v, andn are the explanatory-, response variables and noise, taésggcandg is the
unknown conditional mean or regression function. Nonpataimtechniques can be applied to
estimate the unknown mean function

g(U) =E(V|U), (3.32)

e.g., by carrying out kernel density estimation for rand@mables (1,v) andu, wherelE stands for
expectation. The resulting Nadaraya-Watson estimattaKgs the simple form

) Yo i ()
(u) = , (3.33)
BTN K (2
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where K andh > 0 denotes the applied kernel (a non-negative real-valuectimthat integrates

to one) and bandwith, respectively. It can be used to prowisteongly consistent estimation of the
regression functiogg for stationaryx, processes [203]. It has been shown recently [204] that for
first order and onlyasymptotically stationar§AR processes, under mild regularity conditions, one
can get strongly constistent estimation for the innovatiphy applying the recursive version of the
Nadaraya-Watson estimator

YL P K (P (u - wy)
L PE((u— )

g(u)

(3.34)

where the bandwith is parameterized®y (0, 1/D).

3.5 Convolutive Models

In this section we address the blind subspace deconvol(B868D) problem; an the extension of
both the blind source deconvolution and the independergpade analysis tasks. One can think of
the BSSD problem as a cocktail party with groups, held in droiecroom. For the undercomplete
case, where we have ‘more microphones than sources’, itdes$hown recently that the problem
can be reduced to ISA by means of temporal concatenation [Héjvever, the associated ISA
problem can easily become ‘high dimensional’. The dimemality problem can be circumvented
by applying a linear predictive approximation (LPA) baseduction [12]. Here, we show that it
is possible to extend the LPA idea to tbempleteBSSD task, where the number of ‘microphones’
equals to the number of ‘sources’n the undercomplete case, the LPA based solution was based
on the observation that the polynomial matrix describiregtdmporal convolution had, under rather
general conditiorfs a polynomial matrix left inverse. In the complete case sacinverse doesn't
exist in general. However, provided that the convolution ba represented by an infinite order
autoregressive process, one can construct an efficientag&in method for the hidden components
via an asymptotically consistent LPA procedure. This thtug used here to extend the technique
of [12] to the complete case.

The section is structured as follows: in Secti®®.1we define the complete blind subspace
deconvolution problem, we detail our solution techniqu8éttion3.5.2

3.5.1 Complete Blind Subspace Deconvolution

Here, we define the BSSD task [14]. Assume that we Wdwadden, independent, multidimensional
componentgrandom variables). Suppose also that only their

L.
x; =Y He (3.35)
=0

convolutive mixture is available for observation, wherec RP= ande, is the concatenation of
the components]” € Ré~, that ise; = [e};...;eM] € RP: (D, = Y>™_, d,,). By describing
the convolution using the the polynomial matiKz] = Zf;o H,z! € R[z]P=*P< one may write
Eqg. 3.35 compactly as

x = H]z]e. (3.36)

3The overcomplete BSSD task is challenging and as of yet nergesolution is known.
4If the coefficients of the undercomplete polynomial matrig drawn from a non-degenerate continuous distribution,
such an inverse exists with probability one [180].
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We assume that the componeetsfullfill the ISA assumptions. The goal of the BSSD problenois t
estimate the original soureg by using observations; only. While D, > D, is theundercomplete
case ,.D, = D. is thecompleteone. The casé. = 0 corresponds to the ISA task, andiif, = 1
(¥m) also holds, then the ICA task is recovered. In the BSD task= 1 (Vm) and L. is a non-
negative integer.

Contrary to previous works [12, 14] focusing on the underplate BSSD problem, here [9] we
address the complete task (= D, = D.). In the complete BSSD problem we assume that the
polynomial matrixH|z] is stable.

3.5.2 Identification Method for Complete BSSD

Below, we derive our separation principle based solutiothodfor the complete BSSD problem.
The invertibility of H[z] implies that the observation processan be represented as an infinite
order autoregressive (AR) process [211]:

x; =Y F;x;_; + Foey. (3.37)

Jj=1

By applying a finite order LPA approximation (fitting an AR peass tox), the innovation process
Fye; can be estimated. The innovation can be seen as the obeargétn ISA problem because
components o are independent: ISA techniques can be used to identify coasmis™. Choosing

the order of the fitted AR processtasp = o(1'%) L%, 6, whereT denotes the number of sam-
ples, guarantees that the AR approximation for the MA (mg\amerage) model is asymptotically
consistent [212].

3.6 Information Theoretical Estimations via Random Projec
tions

The estimation of relevant information theoretical quidedi such as entropy, mutual information,
and various divergences is computationally expensivegh dimensions. However, consistent es-
timation of these quantities is possible by nearest neigi) methods (see, e.g., [228]) that use
the pairwise distances of sample points. Although seanchdarest neighbors can also be expen-
sive in high dimensions [226], low dimensional approximatmetric embedding of points of high
dimensional Euclidean space can be addressed by the Jehimstamstrauss Lemma [221] and the
related random projection (RP) methods [224,225]. The RiPageh proved to be successful, e.g.,
in classification, clustering, search fapproximate NNJANN), dimension estimation of manifolds,
estimation of mixture of Gaussian models, compressioria,steeam computation (see, e.g., [223]).
We note that the RP approach is also related to compresssidg¢222].

In this section [8] we show a novel application of the RP tégha: we estimate information
theoretical quantities using the ANN-preserving progsriof the RP technique. We present our
RP based approach through the ISA problem. The ISA task caieled as the minimization of
the mutual information between the estimated componentsgoivalently as the minimization of
the sum of Shannon’s multidimensional differential entespof the estimated components on the
orthogonal group [239]:

M
JW)=S"H(@y™ in 3.38
(W) Z:l (y") = min, (3.38)
where
y=Wx, y=[ys..;y"], y"eR™ (3.39)



andd,,s are given. Estimation of cost functionhowever involves multidimensional entropy esti-
mation, which is computationally expensive in high dimensi, but can be executed by NN methods
consistently [228]. It has been shown in [227] (in the fieldrofge registration with high dimen-
sional features) that the computational load can be destlessmewnhat by

¢ dividing the samples into groups and then
e computing the averages of the group estimates.

We will combine thisparallelizable ensemble approaalith the ANN-preserving properties of RPs
and get drastic savings. We suggest the following entropgnation method, for each estimated
ISA component := yg:

e divide theT samplegv(1),...,v(T)} into N groupsindexed by sefs, . . ., Iy so that each
group containds samples,

o for all fixed groups take the random projectionvoés

Vare(t) = Ruv(t) (t€ly;n=1,...,N;R, € Runxdm) (3.40)

e average the estimated entropies of the RP-ed groups toeyestimation

R 1L
H(v) = > H(Vare). (3.41)

I
A

Our particular choice foR,,, can be found in Sectiob.3.6

5The idea can be used for a number of information theoretigahtities, provided that they can be estimated by means of
pairwise Euclidean distances of the samples.
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Chapter 4

Numerical Experiments —
Group-Structured Dictionary
Learning

In this chapter we demonstrate the efficiency of structupadse representations. For illustration
purposes we chose the online group-structured dictioreamning approach. The efficiency of the
method is presented in 3 different applications: inpamthnatural images (Sectighl), structured
non-negative matrix factorization of faces (Sectb® and collaborative filtering (Sectich3).

4.1 Inpainting of Natural Images

We studied the following issues on natural images:

1. Is structured dictionard) beneficial for inpainting of patches of natural images, amat Hoes
it compare to the dictionary of classical sparse repreientaDuring learning oD, training
samples; were fully observed (i.e; =1).

2. In this inpainting problem of image patches, we also stidhe case when the training sam-
plesx; were partially observedX; # I).

3. We also show results for inpainting ffll imagesusing a dictionary learned from partially
observed {; # I) patches

In our numerical experiments we usgy} = ng (Vi), A = R?= without additional weighing
(A =1,VG € ). Group structuré of vectora was realized on &6 x 16 torus (., = 256) with
|G| = dn applyingr = 0,1, 2, or 3 neighbors to defin§. Forr = 0 (5§ = {{1},...,{ds}}) the
classical sparse representation is recovered. Our tedtaise was the ICA natural image database.
We chose 12 of the 13 images of the dataset to study the firsgiastions above (see Fig1.1(a)),
and used tha3*" picture for studying the third question (Fig.1(b)). For each of the 12 images,
we sampled 31,072 = 27 pieces of8 x 8 disjunctimage patches randomly (without replacement).
This patch set was divided to a training 3€t. made of65, 536 pieces, and to a validatioX(,,;)
and test (X;.s;) set with set size§2,768. Each patch was normalized to zero average and unit
fo-norm.

1See http://www.cis.hut.fi/projects/ica/data/images/.
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(b)

Figure 4.1: lllustration of the used natural image data&st. 12 images of similar kind were used
to select patches for the traini®j,,., validationX,,,;, and testX,.,; sets. (b): test image used for
the illustration of full image inpainting.

In thefirst experiment x;s were fully observed4; = I) and thus the update of their statistics
was precise. This is called the BCD case in the figures. Mdiwas learned on the s&,,,
columnsd; were initialized by using a uniform distribution on the sué of the/>-sphere. Pixels
of the x patches in the validation and test sets were removed withatibity p22,. For a given
noise-free image patch, let xo denote its observed version, whepestands for the indices of
the available coordinates. The task was the inpainting ®htiissing pixels ok by means of the
pixels present ko) and by the learned matri®. After removing the rows oD corresponding
to missing pixels ok, the resultingDo andxo were used to estimaie. The final estimation of
x wasx = Da. According to our preliminary experiments, learning ratand mini-batch size
R were set ta32 and 64, respectively (the estimation was robust as a functiop ahd R). In
the updates of and « (2.24) only minor changes were experienced after 2-3 iteratitmss the
number of iterationg, was set to5. Concerning the other parameters, we useég 0.5, and
k€ {2719 2718 27101 Thee smoothing parameter wa® >, and the iteration number for
the update oD wasTp = 5. Values ofp??, were chosen from s€i0.3,0.5,0.7,0.9}, so for the
case ofp??, = 0.9, only 10% of the pixels ofx were observed. For each fixed neighborhood size
and parameter’?., x was chosen as the minimum of mean squared error (MSE) iBimgined on
patch seiX,,. and evaluated oX,,;. Having found this optimat on the validation set, we used its
value to compute the MSE dX,.;. Then we changed the rolesXf,,; andX,.;, thatis, validated
on X,.s, and tested oiX ;. This procedure was repeated for four random initializegi®,) and
different corruptionsX a1, Xtest). The average MSE values (multiplied by 100) and their stachd
deviations for different neighbor sizesind corruption rateg/®’, are summarized in Tabke 1 This
table shows that (i) the inpainting error grows with the aption ratep?®.,, (ii) compared to sparse
representation(= 0) small neighborhood size = 1 gives rise to similar results, = 2 is better
andr = 3 seems to be the best for all cases with— 19% improvement in precision for MSE.
Learned and average quality dictionarl@scan be seen in Figl.2 (r = 0 no structurey = 2,3
with torus structure). Based on this experiment we can cmiecthat the structured algorithm gives
rise to better results than ordinary sparse represengation

In the second experimentthe size of the neighborhood was fixed, set'te- 3. We learned
dictionaryD onpartially observecatches {; # I). The probabilityp:, of missing any pixel from
the observations in the training set assumed values frorseth®, 0.1,0.3,0.5,0.7,0.9}. In this
case, we updateglusing the approximation EqR (33, hence we call this method approximate-BCD
(or BCDA, for short). The other experimental details werenitical to the previous case (i.e., when
A; = I). Results and statistics for MSE are provided for a smélle}) and for a larger(.7) value
of py2, in Table4.2for different probability valueg;,. We found that increasing,. up top;, = 0.7
MSE values grow slowly. Note that we kept the number of sampleat 65, 536 identical to the
previous cased; = I), and thus by increasing, the effective number of observations/coordinates
decreases. Learned average quality dictionddeare shown in Fig4.3 for p?%, = 0.7. Note
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Table 4.1: BCD: 100« the MSE averageff std) as a function of neighbors & 0: sparse repre-
sentation, no structure) for differepit?’, corruption rates.

Pyt = 0.3 pred, = 0.5
7 =0 |[0.65 (£0.002) 0.83 (£0.003)
r =1 1/0.60 (£0.005; +6.78%) |0.85 (+0.017; —2.25%)

r =2 |0.59 (£0.005; +10.39%) |0.81 (40.008; +2.67%)
r =3 |0.56 (£0.002; +16.38%) | 0.71 (+0.002; +16.01%)

Pyt = 0.7 prédy = 0.9
r =0 || 1.10 (£0.002) 1.49 (£0.006)
r=1{[1.10 (£0.029; +0.27%) | 1.45 (+0.004; +2.96%)

r=2 |[1.12 (£0.029; —1.09%) |1.46 (+0.029; +2.51%)
r =3 |0.93 (£0.001; +18.93%) | 1.31 (+0.002; +13.87%)

Table 4.2: BCDA ¢ = 3): 100 x the MSE average# std) for differentp??, andp,, corruption
rates.

Ptr = 0 Dtr = 0.1 Ptr = 0.3
Py = 0.3][0.55 (£0.003)| 0.56 (£0.001)|0.57 (£0.003)
pvel, = 0.7(10.91 (£0.002)[0.91 (£0.002)|0.91 (£0.002)
Ptr = 0.5 DPtr = 0.7 Ptr = 0.9
Pyl = 0.3][0.59 (£0.001) |0.61 (£0.002)[0.71 (£0.007)
pyal, = 0.7//0.92 (£0.003) |0.93 (£0.002)[0.96 (£0.003)

that the MSE values are still relatively small for missingediprobabilityp;,. = 0.9 (100x MSE
maximum is aboud.96), thus our proposed method is still efficient in this casecdRstruction with
value0.92 (100x MSE) is shown in Fig4.4.

In ourthird illustration we show full image inpainting using dictionaly learned withp,, =
0.5 and using thé 3t* image X) shown in Fig4.1(b). We executed inpainting consecutively on all
8 x 8 patches of imag& and for each pixel of imagX, we averaged all estimatioks from all
8 x 8 patches that contained the pixel. Results are shown idHdor p?%, = 0.3 and0.7 values.
We also provide the PSNR (peak signal-to-noise ratio) wabieur estimations. This measure for
vectorsu, v € R (i.e., for vectors formed from the pixels of the image) is defi as

(max(max; |u;|, max; |v; |))2

PSNR(u,v) =10log,,

, 4.1)
vl

@) (b)

Figure 4.2: lllustration of the online learned group-stuwedD dictionaries with the BCD technique
and MSE closest to the average (see Tdblandp??, = 0.7. (a):r =0, (b): 7 = 2, (c): r = 3.

tes
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(b)

Figure 4.3: lllustration of the online learned group-staredD dictionaries for the BCDA technique
with MSE closest to the average (see Tabl® andp??, = 0.7. (a): ps = 0, (b): ps. = 0.1, (C):
Ptr = 0.5.

(b)

(©) (d)

Figure 4.4: Inpainting illustration using the online leadngroup-structure® dictionaries for the
BCDA technique with MSE closest to the average (see Tal#}eandp,, = 0.5. (a): measured, (b):
estimated, PSNR = 36 dB. (a)-():%, = 0.3. (c)-(d): the same as (a)-(b), but witki*, = 0.7, in
(d) PSNR = 29 dB.

where the higher value is the better. Acceptable values ial@gs transmission (lossy image and
video compression) are aroud — 25 dB (30 dB). By means oD and for missing probability
pvel = 0.3 we achieved6 dB PSNR, whereas for missing probabilityf!, = 0.7 we still have29

dB PSNR, underlining the efficiency of our method.

4.2 Online Structured Non-negative Matrix Factorization on
Faces

It has been shown on the CBCL database that dictionary \egtgrof the offline NMF method can
be interpreted as face components [139]. However, to theolbesir knowledge, there is no existing
NMF algorithm as of yet, which could handle genegajroup structures in an online fashion. Our
OSDL method is able to do that, can also cope with only pdytabserved inputs, and can be
extended with non-convex sparsity-inducing norms. Weitlate our approach on the color FERET
dataset: we seD; = S§* N R (i), A = R, A, = I andy = 0.5. We selected, 736 facial

2See http://face.nist.gov/colorferet/.
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Figure 4.5: lllustration of the online learned structureddictionary. Upper left corner: training
samples.

pictures from the dataset. Using affine transformationsegitipned the noses and eyes to the same
pixel coordinates, reduced the image size$40 x 120, and set theii; norms to be one. These
images were the observations for our ODSL methqdd, = 49, 140 = 140 x 120 x 3 minus some
masking). The group structufewas chosen to be hierarchical; we applied a full, 8-levehbjrtree.
Each node with its corresponding descendants formed the&ét € G (d, = 255). According to
our experiments, the learned dictiondbywas influenced mostly by the constantand similarly

to Sectiond.], it proved to be quite insensitive to the value of the leagrfactorp, and to the size
of the mini-batchesR). Fig. 4.5shows a few elements from the online estimated structureé NM
dictionary (usings = 2719%, p =32, R=8,A =1 (VG € §), T, = 5, Tp = 5 ande = 107°).

We can observe that the proposed algorithm is able to natai@ielop and hierarchically organize
the elements of the dictionary: towards the leaves the éghfitters reveal more and more details.
We can also notice that the colors are separated as welleXhmmple demonstrates that our method
can be used for large problems where the dimension of thenadigmns is abous0, 000.

4.3 Collaborative Filtering

The proliferation of online services and the thriving efenic commerce overwhelms us with alter-
natives in our daily lives. To handle this information owertl and to help users in efficient decision
making, recommender systems (RS) have been designed. BhefgRSs is to recommend per-
sonalized items for online users when they need to choose@s®veral items. Typical problems
include recommendations for which movie to watch, whiche@books/news to read, which hotel
to stay at, or which songs to listen to.

One of the most popular approaches in the field of recommeydegms isollaborative filtering
(CF). The underlying idea of CF is very simple: Users gemgrtpress their tastes in an explicit
way by rating the items. CF tries to estimate the users’ peefees based on the ratings they have
already made on items and based on the ratings of otherasiosers. For a recent review on
recommender systems and collaborative filtering, see[@%8].
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Novel advances on CF show tldittionary learningbased approaches can be efficient for mak-
ing predictions about users’ preferences [160]. The dietiyg learning based approach assumes that
() there is a latent, unstructured feature space (hiddgresentation) behind the users’ ratings, and
(i) a rating of an item is equal to the product of the item ahe user’s feature. To increase the
generalization capability, usuallg regularization is introduced both for the dictionary andtfte
users’ representation.

Here, we extend the application domain of structured dietig learning in the direction of col-
laborative filtering. With respect to CF, further consttaiappear for structured dictonary learning
since (i) online learning is desired and (ii) missing infation is typical. There are good reasons
for them: novel items/users may appear and user preferenagshange over time. Adaptation
to users also motivate online methods. Furthermore, usergvaluate only a small portion of the
available items, which leads to incomplete observationssimg rating values.

To do so, we formulate the CF task as an OSDL optimization Iprobn Sectior4.3.1 Ac-
cording to the CF literature, oftentimes neighbor-baseudentions improve the precision of the
estimation. We also use this technique (Sectidh? to improve the OSDL estimations. Numerical
results are presented in Sectiéi3.3

4.3.1 Collaborative Filtering as Structured Dictionary Learning

Below, the CF task is transformed into an OSDL problem. Gisrsihet'” user's known ratings
as OSDL observationsp,. Let the optimized group-structured dictionary on thesseotations
beD. Now, assume that we have a test user and his/her ratingsxhbec RICl. The task is to
estimatex; ... 4,1\0, thatis, the missing coordinates-fthe missing ratings of the user) that can
be accomplished as follows:

1. Remove the rows of the non-observed . .., d, }\O coordinates fronD. The obtained
|O| x d, sized matriXDo andxo can be used to estimateby solving the structured sparse
coding problemZ2.2).

2. Using the estimated representatipnestimatex as

% = Da. (4.2)

4.3.2 Neighbor Based Correction

According to the CF literature, neighbor based correctahemes may further improve the precision
of the estimations [158]. This neighbor correction apploac

e relies on the assumption that similar items (e.g., jokesie®) are rated similarly and
e it can be adapted to OSDL-based CF estimation in a natutabias

Here, we detail the idea. Let us assume that the similasties R (1,7 € {1,...,d,}) between
individual items are given. We shall provide similarity fios in Sectio4.3.3 Letd*a; € R be
the OSDL estimation for the rating of thé" non-observed item of thé” user ¢ ¢ O,), where
d* ¢ R is the k' row of matrixD € R%*d anda; € R% is computed according to
Sectior4.3.1

Let the prediction error on the observable item neighbgysf the k" item of thet!" user
(j € O:\{k}) bed’a; — z;; € R. These prediction errors can be used for the correctionef th
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OSDL estimationd*«;) by taking into account the;; similarities:

: Ski djOL — T
Tpt = dkat + 7 ZJGOt\{k} J( ! Jt) , or (43)
ZjEOt\{k} Skj
. > ico, skj(do — xjt)
Bt = y0(dFoy) + 71 | =L2 AL =, (4.4)
ZjGOt\{k} Skj

wherek ¢ O;. Here, 8.3 is analogous to the form of [160]4(4) is a simple modification: it
modulates the first term with a separateweight.

4.3.3 Numerical Results

This section is structured as follows: We have chosen thielddataset for the illustration of the
OSDL based CF approach. Itis a standard benchmark for CE.igkihat we introduce first. Then
we present our preferred item similarities. The perforneameasure used to evaluate the CF based
estimation follows. The final part of this section is about numerical experiences.

The Jester Dataset

The dataset [161] contains 136, 360 ratings from73,421 users to100 jokes on a continuous
[-10,10] range. The worst and best possible gradings-até and +10, respectively. A fixed
10 element subset of the jokes is called gauge set and it wasatedlby all users. Two third of the
users have rated at leat jokes, and the remaining ones have rated betwéeand35 jokes. The
average number of user ratings per jokeds

Item Similarities

In the neighbor correction steg.@) or (4.4) we need the;; values representing the similarities of
theit" and;j*" items. We define this value as the similarity of # and;*" rows d* andd’) of
the optimized OSDL dictionard [160]:

S B
o max (0, (d’,d7))
Sl LS = Sy dz,dj =\ T30 a0 , Or (45)
3 = s, &) ( [T, 1T,
) , -8
Sy s‘»:s»‘(di dj): w (4.6)
Lo Il d7l, )

wheref > 0 is the parameter of the similarity measure. Quantiéjesre non-negative; if the value
of s;; is close to zero (large) then th# andj!" items are very different (very similar).

Performance Measure

In our numerical experiments we used the RMSE (root mearrs@ueor) measure for the evaluation
of the quality of the estimation, since RMSE is one of mostylapmeasures in the CF literature.
The RMSE measure is the average squared difference of thamdithe estimated rating values:

RMSE = J é 7 (@ — @2, (4.7)

(i,t)es

where§ denotes either the validation or the test set.
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Evaluation

Here we illustrate the efficiency of the OSDL-based CF edtonaon the Jester database using the
RMSE performance measure. To the best of our knowledge ofheeisults on this database are
RMSE =4.1123 [159] and RMSE =4.1229 [160]. Both works are from the same authors. The
method in the first paper is called item neigbor and it makesafsonly neighbor information.
In [160], the authors used a bridge regression based utistedadictionary learning model—with a
neighbor correction scheme—, they optimized the dictiphgrgradient descent and sét to 100.
These are our performance baselines.

To study the capability of the OSDL approach in CF, we focusethe following issues:

e Is structured dictionaryd beneficial for prediction purposes, and how does it compatied
dictionary of classical (unstructured) sparse dictiofary

e How does the OSDL parameters and the similarity/neighbiection applied affect the effi-
ciency of the prediction?

e How do different group structurékfit to the CF task?

In our numerical studies we chose the Euclidean unit splogr®f = S;lx (Vi), andA = R,
and no additional weighing was applieti{ = y¢, VG € G, wherey is the indicator function). We
setn of the group-structured regulariz@rto 0.5. Group structuré of vectora was realized on

e ad x d toroid (d, = d?) with |G| = d, applyingr > 0 neighbors to defin§. Forr = 0
(G ={{1},...,{da}}) the classical sparse representation based dictionaggivered.

e a hierarchy with a complete binary tree structure. In thiseca

— |G| = d., and group of a; contains the!” node and its descendants on the tree, and

— the size of the tree is determined by the number of leelie dimension of the hidden
representation is thef), = 2! — 1.

The sizeR of mini-batches was set either & or to 16 and the forgetting ratg was chosen from

set{0, 2 51 T IRt 1} The x weight of structure inducing regulariz€r was chosen from
the set{ 511, o, 5. 57 31, 55+ - - - » 5ir . We studied similarities, S [see @.5)-(4.6)] with both

neighbor correction schemest[B-(4.4)]. In what follows, corrections based o4.8) and @.4)
will be called Sy, S, and S?, S9, respectively. Similarity parametgr was chosen from the set
{0.2,1,1.8,2.6,...,14.6}. In the BCD step of the optimization dD, 7,, = 5 iterations were
applied. In thex optimization step, we usétl, = 5 iterations, whereas smoothing parametegs
107°.

We used &0% — 10% random split for the observable ratings in our experimesitsjlarly
to [160]:

e training set 90%) was further divided into 2 parts:

— we chose th&0% observation sefO;} randomly, and optimized® according to the
correspondingo, observations,

— we used the remaining0% for validation, that is for choosing the optimal OSDL pa-
rameters« or [, x, p), BCD optimization parametet), neighbor correctiony;, So,
S, 59), similarity parameterf), and correction weightsy{s in (4.3 or (4.4)).

e we used the remaining)% of the data for testing.

The optimal parameters were estimated on the validatignaset then used on the test set. The
resulting RMSE score was the performance of the estimation.
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Toroid Group Structure. In this section we provide results using toroid group sticet We set
d = 10. The size of the toroid was0 x 10, and thus the dimension of the representation was
ds = 100.

In the first experiment we study how the size of neighborhoog @ffects the results. This
parameter corresponds to the ‘smoothness’ imposed on ¢l giructure: when = 0, then there
is no relation between thé; columns inD (no structure). As we increasethed; feature vectors
will be more and more aligned in a smooth way. To this end, wéhgeneighborhood size to= 0
(no structure), and then increased itl{@, 3, 4, and5. For each(x, p, 3), we calculated the RMSE
of our estimation, and then for each fixed f) pair, we minimized these RMSE valuesgn The
resulting validation and test surfaces are shown in &ig. For the best«, p) pair, we also present
the RMSE values as a function 6f(Fig. 4.7). In this illustration we use®? neighbor correction
andR = 8 mini-batch size. We note that we got similar results ugihg 16 too. Our results can
be summarized as follows.

e For a fixed neighborhood parameteme have that:

— The validation and test surfaces are very similar (see £ige)-(f)). It implies that
the validation surfaces are good indicators for the testrerrFor the best, ~ andp
parameters, we can observe that the validation and tesesas functions off) are
very similar. This is demonstrated in Fid.7, where we used = 4 neighborhood size
and Sy neighbor correction. We can also notice that (i) both cuhas only one local
minimum, and (ii) these minimum points are close to eachrothe

— The quality of the estimation depends mostly on thegularization parameter. As we
increaser, the besk value is decreasing.

— The estimation is robust to the different choices of foliggttactors (see Figt.6a)-(e)).
In other words, this parametgican help in fine-tuning the results.

e Structured dictionaries:(> 0) are advantageous over those methods that do notimpose stru
ture on the dictionary elements & 0). For SY andSY neighbor corrections, we summarize
the RMSE results in Tablé.3. Based on this table we can conclude that in the studied param
eter domain

— the estimation is robust to the selection of the mini-bafzk ¢R). We got the best
results using? = 8. Similarly to the role of parameter, adjustingR can be used for
fine-tuning.

— the S? neighbor correction lead to the smallest RMSE value.

— When we increase up tor = 4, the results improve. However, for= 5, the RMSE
values do not improve anymore; they are about the same thhavweeusing: = 4.

— The smallest RMSE we could achieve wia@774, and the best known result so far was
RMSE =4.1123 [159]. This proves the efficiency of our OSDL based collabvea
filtering algorithm.

— We note that our RMSE result seems to be significantly bettar the that of the com-
petitors: we repeated this experiment 5 more times witheckfit randomly selected
training, test, and validation sets, and our RMSE result® lreever been worse than
4.08.

In the second experimentve studied how the different neighbor correctioss, (Sz, S?, S9)
affect the performance of the proposed algorithm. To thi &re set the neighborhood parameter
tor = 4 because it proved to be optimal in the previous experimeunt.r&sults are summarized in
Table4.4. From these results we can observe that
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Figure 4.6: Validation surfaces [(a)-(e)] and test surfa@dE as a function of forgetting factop)

and regularization). For a fixed(x, p) parameter pair, the surfaces show the best RMSE values
optimized in thes similarity parameter. The group structur@) (s toroid. The applied neighbor
correction wassy. (a): r = 0 (no structure). (b)r = 1. (c): r = 2. (d): » = 3. (e)-(f): r = 4, on

the same scale.
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Figure 4.7: Validation and test curves for toroid group atinve using the optimal neighborhood
sizer = 4, regularization weight: = 2% forgetting factorp = 2% mini-batch sizeR = 8, and
similarity parametep = 3.4. The applied neighbor correction w&$.

Table 4.3: Performance (RMSE) of the OSDL prediction usioigit group structureq) with

different neighbor sizes (r = 0: unstructured case). First-second row: mini-batch g$ize- 8,

third-fourth row: R = 16. Odd rows:S?, even rows:S9 neighbor correction. For fixef, the best
performance is highlighted with boldface typesetting.

| | | r=0]r=1]r=2]r=3] r=4 |

R=8 [ Sy | 41594 | 4.1326 | 4.1274 | 4.0792 | 4.0774
SY | 4.1765 | 4.1496 | 4.1374 | 4.0815 | 4.0802
R=16 | SY | 4.1611 | 4.1321 | 4.1255 | 4.0804 | 4.0777
SY 1 4.1797 | 4.1487 | 4.1367 | 4.0826 | 4.0802

e our method is robust to the selection of correction meth8dsilarly to thep and R parame-
ters, the neighbor correction parameter can help in finaxuthe results.

e The introduction ofy, in (4.4) with the application of5Y and.SS instead ofS; andS; proved
to be advantageous in the neighbor correction phase.

e For the studied CF problem, th# neighbor correction method (witR = 8) lead to the
smallest RMSE valuel.0774.

e The R € {8,16} setting yielded us similarly good results. Even with= 16, the RMSE
value wast.0777.

Table 4.4: Performance (RMSE) of the OSDL prediction fofed#nt neighbor corrections using
toroid group structureg). Columns: applied neighbor corrections. Rows: mini-batize R = 8
and16. The neighbor size was setito= 4. For fixed R, the best performance is highlighted with
boldface typesetting.

| [ S [ S [ ST [ S|
R=28 | 4.0805 | 4.0844 | 4.0774 | 4.0802
R =16 | 4.0809 | 4.0843 | 4.0777 | 4.0802
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Hierarchical Group Structure. In this section we provide results using hierarchiealepresen-
tation. The group structurgéwas chosen to represent a complete binary tree.

In our third experiment we study how the number of level§ ©f the tree affects the results.
To this end, we set the number of levelsite= 3, 4, 5, and6. Sinced,, the dimension of the
hidden representation, equals ta2! — 1, thesel values give rise to dimensions, = 7, 15, 31,
and63. Validation and test surfaces are provided in FigXa)-(c) and (e)-(f), respectively. The
surfaces show for eadl, p) pair, the minimum RMSE values taken in the similarity pargeng.
For the bestx, p) parameter pair, the dependence of RMSE3as presented in Figd.&d). In this
illustration we useds? neighbor correction, and the mini-batch size was sdt te 8. Our results
are summarized below. We note that we obtained similartewith mini-batch size? = 16.

e For fixed number of levelg similarly to the toroid group structure (where the sizef the
neighborhood was fixed),

— validation and test surfaces are very similar, see Ei§(b)-(c). Validation and test
curves as a function gf behave alike, see Fig.gd).

— the precision of the estimation depends mostly on the regalion parametex; forget-
ting factorp enables fine-tuning.

e The obtained RMSE values are summarized in Tdlfdor S andSY neighbor corrections.
According to the table, the quality of estimation is abowt same for mini-batch sizB = 8
andR = 16; the R = 8 based estimation seems somewhat more precise. Consideeng
neighbor correction schem&$ andSY, S? provided better predictions.

e As afunction of the number of levels, we got the best result fo 4, RMSE =4.1220; RMSE
values decrease uniil= 4 and then increase fér> 4.

e Our best obtained RMSE value ds1220; it was achieved for dimension only, = 15.
We note that this small dimensional, hierarchical groupditire based result is also better
than that of [160] with RMSE =.1229, which makes use of unstructured dictionaries with
d, = 100. The result is also competitive with the RMSELA 123 value of [159].

In ourfourth experiment we investigate how the different neighbor correctiosts Sz, S?, S9
affect the precision of the estimations. We fixed the numbénels tol = 4, since it proved to be
the optimal choice in our previous experiment. Our resukssammarized in Tablé.6. We found
that

e the estimation is robust to the choice of neighbor correstio

e it is worth including weighty, [see @.4)] to improve the precision of prediction, that is, to
apply corrections andSY instead ofS; andS,, respectively.

e the studiedR € {8, 16} mini-batch sizes provided similarly good results.

e for the studied CF problem the best RMSE value was achievied $§ neighbor correction
and mini-batch sizé&k = 8.
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Figure 4.8: Validation surfaces [(a)-(b), (e)-(f)] andttegrfaces (c) as a function of forgetting factor
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parameter. (a)t = 3. (b)-(c):l = 4, on the same scale. (d)= 5. (f): [ = 6.
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Table 4.5: Performance (RMSE) of the OSDL prediction fofedtéint number of levelsY using
binary tree structured). First-second row: mini-batch size = 8, third-fourth row: R = 16. Odd
rows: 59, even rows:S9 neighbor correction. For fixe®, the best performance is highlighted with
boldface typesetting.

| [ [ i=3] 1=4 [ i=5 [ 1=6 |
R=8 S? 4.1572 | 4.1220 | 4.1241 | 4.1374
SS 4.1669 | 4.1285 | 4.1298 | 4.1362

R=16 | SY | 4.1578 | 4.1261 | 4.1249 | 4.1373
SY 1 4.1638 | 4.1332 | 4.1303 | 4.1383

Table 4.6: Performance (RMSE) of the OSDL prediction fofedt#nt neighbor corrections using
binary tree structured). Rows: mini-batch sizé? = 8 and16. Columns: neighbor corrections.
Neighbor sizer = 4. For fixedR, the best performance is highlighted with boldface typespt

| [ S [ % [ SY [ SF |
R=8 | 4.1255 | 4.1338 | 4.1220 | 4.1285
R =16 | 4.1296 | 4.1378 | 4.1261 | 4.1332
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Chapter 5

Numerical Experiments — Indepedent
Subspace Based Dictionary Learning

In this chapter we illustrate the efficiency of the propoded éstimation methods (Chapté. Test
databases are described in Sectich To evaluate the solutions, we use the performance measure
given in Sectiorb.2 Our numerical results are presented in Sechiid

5.1 Test Datasets

We conducted experiments using the following datasetsdesasthe efficiency and robustness of
our methods:

ABC, 3D-geom: In the ABC database, the distribution of the hidden sour€&svere uniform on
2-dimensional imageslf, = 2) of the English alphabet. The number of components can be
M = 26. For illustration, see Figh.1(b).

In the3D-geonteste™s were random variables uniformly distributed on 3-dimenal geo-
metric forms ¢,, = 3, M = 6), see Fig5.1(a).

celebrities, smiley: Thecelebritiesandsmileytest has 2-dimensional source componedis £ 2)
generated from cartoons of celebritied (= 10) and 6 basic facial expressions/(= 6), re-
spectively! Sources™ were generated by sampling 2-dimensional coordinatesyptiopal
to the corresponding pixel intensities. In other wordsjrahsional images were considered
as density functions. For illustration, see Fsgl(c)-(d).

d-geom, d-spherical: In the d-geomdatasek™s were random variables uniformly distributed on
d,,-dimensional geometric forms. Geometrical forms were ehass follows. We used: (i)
the surface of the unit ball, (ii) the straight lines that meat the opposing corners of the unit
cube, (i) the broken line betweeh, + 1 points0 — e; —e; +ex — ... e +...+eq,,
(wheree; is thei canonical basis vector iR, i.e., all of its coordinates are zero except the
it", which is 1), and (iv) the skeleton of the unit square. Thiis,rtumber of componentg
was equal tal, and the dimension of the componenis, ] can be scaled and different. For
illustration, see Fig5.1(f).

1see http://www.smileyworld.com.
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In the d-sphericaltest hidden sources™ were spherical random variables [188]. Since
spherical variables assume the foum= pu, whereu is uniformly distributed on thel,,-
dimensional unit sphere, andis a non-negative scalar random variable independent, of
they can be given by means pf We chose3 pieces of stochatistic representatigng was
uniform on|0, 1], exponential with parameter = 1 and lognormal with parameters= 0,

o = 1. For illustration, see Figh.1(g). In this case, the number of component wids= 3,
and the dimension of the source componeds)(can be varied.

ikeda: In theikedatest, the hiddes;” = [s}",, s7,] € R? sources realized the ikeda map

sit11 =14+ An [s;’fl cos(wy") — 81" sin(w;")], (5.1)

5110 = Am[syy sin(wi") + sty cos(wy")], (5.2)
where),, is a parameter of the dynamical system and

6
m=04-— . 5.3
wi TT ()2 1 (572 (>-3)

M = 2 was chosen with initial points] = [20;20], s = [-100; 30] and parameters; =
0.9994, Ay = 0.998, see Fig5.1(e) for illustration.

all-k-independent: In theall-k-independendatabase [18,238], th&, -dimensional hidden compo-
nentsv := e™ were created as follows: coordinatgs(i = 1, ..., k) were independent uni-
form random variables on the set {0,. .. ,k-1}, wheregs;, was settonod(v1 +. .. + vk, k).
In this construction, everj-element subset ofvy, ..., vx41} is made of independent vari-
ablesandi,, = k + 1.

Beatles: Our Beatlestest is a non-i.i.d. example. Here, hidden sources arecsieatles songs.
8 kHz sampled portions of two songs (A Hard Day’s Night, CanityBVie Love) made the
hiddens™s. Thus, the dimension of the componefiswas2, the number of the components
M was2, and the dimension of the hidden souigevas4.

5.2 Performance Measure, the Amari-index

Below, we present the performance index that was used tourestie quality of the estimations.
First, we focus on the ISA problem. Identification of the ISAdel is ambiguous. However, the
ambiguities of the model are simple: hidden components eadebermined up to permutation of
the subspaces and up to invertible linear transformatiatismthe subspaces [171, 242]. Thus, in
the ideal case, the product of the estimated ISA demixingima¥ sa and the ISA mixing matrix
A, i.e., matrix
G = WisaA (5.4)

is a block-permutation matrix (also called block-scalingtrix [240]). This property can also be
measured for source components with different dimensigrsssimple extension [1] of the Amari-
index [181], that we present below. Namely, assume that we aaveight matrixy € RM*M made
of positive matrix elements. Loosely speaking, we shrirgkdhx d; blocks of matrixG according
to the weights of matri®v and apply the traditional Amari-index for the matrix we dhta=ormally,
one can (i) assume without loss of generality that the corapbdimensions and their estimations
are ordered in increasing ordeh (< ... < das, di < ... < da), (i) decomposes into d; x d;

2See http://irock.mididb.com/beatles/.
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Figure 5.1: lllustration of th&8D-geom(a), ABC (b), celebrities(c), smiley(d), ikeda(e),d-geom(f)
andd-spherical(g) datasets.

blocks G = [G”’L.j:1 ;) and defingy”/ as the sum of the absolute values of the elements of

the matrixG € R4, weighted withV;:

U

di %
= ‘/;,] | G” kl | (55)
k=11=1

~

Then the Amari-index with paramete¥scan be adapted to the ISA task of possibly different com-
ponent dimensions as follows

rv(G) - i(z%g )+Z< =1 9" 1) . (5.6)
2M(M —1) ~ \ max g max; g%

One can see thét < rv(G) < 1 for any matrixG, andry(G) = 0 if and only if G is block-
permutation matrix withl; x d; sized blocksry (G) = 1is in the worst case, i.e, when all th¥
elements are equal. Let us note that this novel meaSugig invariant, e.g., for multiplication with
a positive constant:.v = rv (Ve > 0). Weight matrixV' can be uniform¥;; = 1), or one can use
weighing according to the size of the subspadés== 1/(d;d;). We will use the shorthand-) for
the first variant, if not stated otherwise. We note that onddcalso use other norms in the definition
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of g7, for example, .5 could be extended to

k=1 l=1

d; dj %
g7 =V (Z [(GY), Q> (g>1). (5.7)

Similarly, for the problems presented in Chapdepne can estimate the hidden source compo-
nents only up to the ISA ambiguities. Thus, having the miximagrix A at hand, the performance of
the estimations can be measured by the block-permutatapepty of matrixG = Wisa A, where
W s denotes the estimated demixing matrix of the derived ISAosaltlems. In case of the

e complex ISA problem, we measure the block-permutation @rtypof G = VV.SA@M(A)
using the associated componentdimensions over the reaidoine. 2 xd,, (m =1, ..., M).

e BSSD problem, where the mixing is described by a convolutistead ofx = Ae, we
choseG as the linear transformation that optimally approximalesrelatiore — &, wheree
denotes the estimated hidden source.

5.3 Numerical Results

Here, we illustrate the efficiency of the proposed IPA estiometechniques. In Sectiof.3.1 Sec-
tion 5.3.2 Section5.3.3 Section5.3.4and Sectiorb.3.5we are dealing with the ARX-IPA, mAR-
IPA, complex ISA, fAR-IPA and complete BSSD problem, redpety. Numerical results demon-
strating the efficiency of random projection based entrgtiyr@tions are given in Sectidn3.6

In our numerical experiments, the ISA subtask was solvedrdarg to the ISA separation theo-
rem [14, 235]: we grouped/clustered the computed ICA coraptsr One may apply different clus-
tering methods—beyond the exhaustive search, which bexoapélly prohibitive as the dimension
of the problem is increasing—e.g.,

Greedy search: We exchange two estimated ICA components belonging tordiftesubspaces, if
the exchange decreases the value of the ISA cost as longlapaius exist.

Global search: One may apply global permutation search methods of highapatational burden.
The cross-entropy solution suggested for the travelingssaan problem (TSP) [190] can,
for example, be adapted to our case [18]. In the TSP problepgrmutation of cities is
searched for and the objective is to minimize the cost ofineet. We are also searching for
a permutation, but now the travel cost is replaced by the I&# function.

Spectral clustering: An efficient method with good scaling properties has beerfgath in [13, 15]
for searching the permutation group for the ISA separati@wotem (see, Tablg.1). This
approach builds upon the fact that the mutual informatiamben different ISA subspaces
e is zero due the assumption of independence. The method assbat coordinates ef”
that fall into the same subspace can be paired by using theatinformation between the
coordinates only.

The mutual information of the computed ICA elements can fieiefntly estimated, e.g., by
the generalized variance [17], the kernel canonical catiai analysis (KCCA) method [187],
or the robustness of the estimation against noise can bewegifurther by applying copula
methods [248]. One may carry out the clustering step, eygspectral clustering methods;
such a technique is the NCut method [191]. Spectral clugiariethods scale well since a
single machine can handle a million observations (in oue eatimated ICA elements) within
several minutes [209].
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Table 5.1: Approximation that scales well for the permatatsearch task in the ISA separation
theorem.

Construct an undirected graph with nodes correspondindC#d ¢oordinates and edge
weights (similarities) defined by theairwise statistical dependencies, i.e., the mutual jin-

formation of the estimated ICA elementS = [I(é.CA,i,émAJ)]Ej:l. Cluster the ICA
elements, i.e., the nodes using similarity magix

Finally, it may be worth noting that one can construct exasphat do not satisfy the con-
ditions detailed in Tablé.1 The all-k-independentonstruction [18, 238] belongs to this
family.

In our experiments the ICA components were estimated by glekmown fastICA algorithm [182].
The performance of our methods are also summarized by rbtobeed plots, which show the
quartiles @1, Q2, @s3), depict the outliers, i.e., those that fall outside of & [, — 1.5(Q3 —
Q1),Qs3+1.5(Q3— Q1)] by circles, and whiskers represent the largest and smalhesoutlier data
points.

5.3.1 ARX-IPA Experiments

Here, we illustrate the efficiency of the proposed ARX-IPAiraation technique (Sectiod.1) [10];
results on databas&®-geom(d,,, = 3, M = 6, Dy, = 3 x 6 = 18), ABC(d,, = 2, M = 10,

D, = 2 x 10 = 20) andcelebrities(d,, = 2, M = 10, D, = 2 x 10 = 20) are provided. For
each individual parameter, the performanc@@fandom runs were averaged. Our parameters are:
T, the sample number of observatians L, the order of dynamics of the AR palit,,, the tempo-
ral memory of the effect of the control applietl,, the upper limit of the magnitude of the control
(U := {u : max; |u;| < d,}), and), parameter of the stabE[z]. ‘Random run’ means random
choice of quantitie¥[z], B;s, A ande. In each simulatiom was a random orthogonal mattix
sample numbe¥ varied betweeri, 000 and100, 000, we optimizedJ,,,s andJ,qise ON intervals
[1,7/2]and[T/2+1, T}, respectively (see footno8, the dimension of the control was equal to the
dimension ok (D,, = D,), the ISA task was solved by using the JFD (joint f-decotrefg gener-
alized variance dependence, greedy permutation sear¢hpdfl 7], the elements of matric&s;
were generated independently from standard normal disimifos, and the stabE[z] was generated

as follows
Ls—1

Flz]= [[ @-X0i2) (Al <LA€ER), (5.8)
=0
where matrice®; € R”=*Ps were random orthogonal); € OP+).
We sum up our experiences about the ARX-IPA method here:

1. Dependence of,: We studied the effect of the magnitude of cont@])(on the precision
of the estimation for ‘smallL,, L, (Ls, L, < 3) values and for\ = 0.95. We found that
for a range of not too large control valués the estimation is precise (Fi§.2a)) and the
error follows a power law in the number of samplesT’) o« T7¢ (¢ > 0) is a straight

3We note that the InfoMax objectiveg,q, and J,,.is. look forward only by one-step, so the method is greedy. The
objective could be extended to include long-term cumulatatributions, but the solution is not yet known for thisktas
According to experiences, estimation of noisean proceed by using,.- first for a some iterations and then u$g,;s. to
compute the control values [208].

“4In our studied ISA based problems, one can assume withasibfogenerality that the\ mixing matrix belongs to the
orthogonal family, this corresponds to a simple normatjzissumption.
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Figure 5.2: ARX-IPA problem, estimation error (Amari-inges a function of sample number on
log-log scale for different control magnitudes (a), ancatdases (b).

SRS
*@Q

Figure 5.3: ARX-IPA problem, illustration for thBD-geomdatabasel{s = L, = 3, 6, = 0.2,

A = 0.95, T = 50,000), for an estimation with average estimation error (20@mari-index =
0.55%). (a): observed signat;. (b) Hinton-diagram ofG: the product of the estimated demixing
matrix and the mixing matrix of the derived ISA task (= appmately block-permutation matrix
with 3 x 3 blocks). (c): estimated components—recovered up to theat8Biguities.

@ (b)

line on log-log scale. Similar results were found for alledérdatabases in all experiments
(Fig. 5.2(b)). Figureb.3illustrates the results of the estimations. In the rest efdfudies we
fixed the maximum of the control magnitudedip = 0.2 and show the results of t/#-geom
database.

2. Dependence oh,: Increasing the temporal memory of the effect of the corapplied ¢, =
3,5,10,20,50) precise estimation was found even oy = 50. The estimation errors are
shown in Fig5.4(a).

3. Dependencies oh, and\: We found that the order of the dynamics of the AR procés$ (
can be increased provided thain Eq. (6.8) is decreased: Fdr, = 1 and forL; = 5, 10, 20,
50, the estimation is precise up to values approximately efpual= 0.85 — 0.9, 0.65 — 0.7,
0.45 — 0.5, 0.25 — 0.3, respectively. Results are depicted in Fgi(b).

For further illustration concerning the ARMAX-IPA and PNLRX-IPA models, see [7,11].
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Figure 5.4: ARX-IPA problem, estimation error (Amari-inges a function of (a) temporal memory
of control L, and (b) order of the AR proceds.

5.3.2 mAR-IPA Experiments

Here, we illustrate the efficiency of the proposed mAR-IP#neation technique (Sectio®?) [4,5];
results on databasesBC (d,,, = 2, M = 3, D = 2 x 3 = 6), 3D-geom(d,, = 3, M = 2,

D =3 x 2 = 6) andBeatleqd,, = 2, M = 2, D = 2 x 2 = 4) are provided. For each individual
parameter, the performance bi random runs A, F|[z], e) were averaged. Our parameters are:
T, the sample number of observatiops L, the order of the AR procesg, the probability of
missing observation iV, (z:;S, the coordinates of process were not observed with probability
p, independently), and, the (contraction) parameter of the stable polynomial mdz]. It is
expected that if the roots @f[z] are close to the unit circle then our estimation will deteate. We
investigated this by generating the polynomial maFix] as

Ls—1
Flz]= [[ @-X0iz) (A <L A€R), (5.9)

i=0

where matrice®; € RP>*? were random orthogonal); € ©) and thex — 1 limit was stud-
ied. Mixing matrix A was a random orthogonal matrix. AR fit subject to missing ola@ns
was accomplished by means of (i) the maximum likelihood (Mtihciple [206], (ii) the subspace
technique [205], and (iii) in a Bayesian framework usingmal-inverted Wishart (shortlNIW)
conjugate prior and filling in the next missing data using teximum-a-posteriori estimation of
the parameters [207]. The dependency of the estimated |EAearits elements was estimated by
means of the KCCA method [187]. The performance of the methedmmarized by notched boxed
plots.

The L, order of the AR process wasand?2 for the ABC and the3D-geontasks, respectively,
contraction parameter was varied between valu@sl and0.99, the probability of missing obser-
vations took different valuegp(= 0.01, 0.1, 0.15, 0.2), and sample numbéfF was set tol, 000,
2,000, and5, 000. According to our experiences, the methods are efficientath tasks. The most
precise method i8IL followed by thesubspacanethod and th&lIW technique (see Figh.5a)).
Running time of the algorithms is the opposite andNMietechnique is computation time demand-
ing (see Fig5.9b)). Considering the ratio of missing observations — in plaeameter range we
studied — theML, the subspacend theNIW method can handle paramejeup t00.2 — 0.3 (see
Fig.5.5c)-(d)),p = 0.15—0.2,andp = 0.1 — 0.15, respectively. Figur&.5c)-(d) demonstrate that
the ML method works robustly for the contraction parametand provides reasonable estimations
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for values around 1. Figuie5e)-(j) illustrate the ML component estimations for difetp values.
Because of the high computation demands ofNtetechnique, the performances of thgb-

spaceand NIW methods were studied on tfgeatlestest. According to the Schwarz’s Bayesian

criterion we used the crude; = 10 AR estimation. Results for sample numi¥er= 30, 000 are

summarized in Fig5.6. According to the figure, the methods give reasonable estmaup to

p = 0.1 — 0.15. In accord with our previous experiences, tubspacenethod is more precise, but

it is somewhat slower.

5.3.3 Complex ISA Experiments

Here, we illustrate the efficiency of the presented comfxinethod (SectioB.3) [6]. We provide
empirical results on thd-sphericaldataset {/ = 3). In our experiments, the™ ¢ C?= complex
source components were defined by2Hg, -dimensionad-sphericaktonstruction making use of the
@, bijection. By the technique described in SectRBthe complex ISA problem was mapped to a
real valued ISA problem. Then, the KCCA technique [187] wasliad to estimate the dependence
of the estimated ICA elements. The dimension of the compbexponentsd,,,) were unknown to
the algorithm, the clustering of the computed ICA coordasaind the estimation of the component
dimensions were accomplished by the NCut [191] spectrateting technique.

For all parameter values, the average performances tfpaandom initializations of and
A were taken. Our parameters includédthe sample number of observationg andd,,s, the
dimensions of the componemd.he mixing matrixA was chosen uniformly from the unitary group
uP (b ="M_. d,,).5 The sample number of observatianschanged ag, 000 < 7' < 50, 000.

In the first experiment the (complex) dimension of the hidseuarces were equal, and varied as
k x [1;1; 1] wherek was chosen from the s€2, 3, ..., 12}. We investigated the estimation error as
a function of the sample number. Our results for the obtaavedage Amari-indices are summarized
in Fig.5.7(a). The figure demonstrates that the algorithm was ablditn&® the hidden components
with high precision. Moreover, as it can be seen the estonadirors are approximately linear as a
function of the sample number, that is the Amari-index dases according to power law") o
T (¢ > 0). The estimated source components are illustrated by Hidiagrams, see Fid.7(c).
Exact numerical values for the estimation errors can bedanable5.2

In our second experiment the (complex) dimension of thecsucould be different and took the
valuesk x [1;1;2], wherek was the element of the sé2, 3,...,12}. The obtained performance
values are plotted in Figh.7(b). As it can be seen, (i) the method is able to uncover thderid
source components with high precision and the Amari-irgliegain follow a power law decay.
Hinton-diagram of the estimated sources with average Aindex are presented in Fi.7(d).
Exact numerical values for the Amari-indices are given ihlgé®.3

These results show the efficiency of our complex ISA method.

5.3.4 fAR-IPA Experiments

Now we illustrate the efficiency of the fAR-IPA algorithm [fifesented in SectioB.4. We provide
empirical results on themiley(d,,, =2, M =6, D = 2 x 6 = 12),d-geom(d; = 2, d2 = d3 = 3,

dy =4, M =4,D = 2+3+3+4 = 12), andikedadatasetsd,,, = 2, M =2, D = 2x2 = 4). For
illustration purposes, we chose fAR order = 1 and used the recursive Nadaraya-Watson technique
(3.39 for functional AR estimation with the Gaussian kernel. TKECA technique [187] was

5In the Amari-index the possible non-equality of the compurdimensionsd,,,) were also taken into account through
the V;; = 1/(2d;2d;) construction, see Sectidh2 Here, the 2d;’ and ‘2d;’ terms correspond to the associated real
valued problem dimensions.

6Similarly to the real ISA problem, where the mixing matéxcan be supposed to be ortogonal, here the unitary property
of the mixing matrixA can be assumed without loss of generality.
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Figure 5.5: mAR-IPA problem, illustration of the estimatfoon the3D-geomand ABC datasets.
(@), (b): Amari-index and elapsed time, respectively asmation of the probability of missing ob-
servation p) for the3D-geondataset on log-log scale and for AR order= 1 and sample number
T = 5,000. (c)-(d): Amari-index for theML method forp = 0.2 and forp = 0.3 as a function of
the AR order for theABC test. (e)-(j): illustration of the estimation for thdL method: L, = 1,
T = 5,000, A = 0.9; (e) observation before mappidd; (x). (g): estimated componen&() with
average Amari-index fop = 0.01. (f): Hinton-diagram of matrixG for (g)—it is approximately a
block-permutation matrix wit x 2 blocks. (h)-(j): like (g), but fop = 0.1, p = 0.2, andp = 0.3,
respectively.
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Figure 5.6: mAR-IPA problem, illustration of theubspacend theNIW methods for theéBeatles
dataset for sample numb&r= 30,000 and AR orderL.; = 10. (a): Amari-index as a function of
the rate of missing observation®n log-log scale, (b): elapsed time.
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Figure 5.7: lllustration of the complex ISA estimations.)-(h): the average Amari-indices are
plotted as a function of the sample number on log-log scalg.tle hidden source dimensions are
equal,k x [1;1;1]. (b): the hidden source dimension can be differénk [1;1;2]. (c): Hinton-
diagram of matrixG with Amari-index closest to the average performance for'the [1;1; 1]’
problem withk = 12 and sample numbéf = 50,000. The G matrix is approximately block-
permutation matrix with{2 x 12) x (2 x 12) sized blocks. (d): the same as (c), but for the different
dimensionak x [1; 1; 2] case withk = 12. For exact performance values, see TéabBand Table.3
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Table 5.2: 100x Amari-index (that is, in percentage) for the complex ISAkdem on the & x
[1;1; 1] test: averaget standard deviation. Number of samplé&s= 50, 000.

| k=2 | k=4 | k=6 |
[ 0.55% (+0.08%) [ 0.70% (£0.04%) | 0.83% (+0.03%) |
k=38 k=10 k=12

0.96% (£0.04%) | 1.07% (£0.03%) | 1.18% (+£0.02%)

Table 5.3: 100x Amari-index (that is, in percentage) for the complex ISAlgem on the k x
[1;1; 2] test: averaget standard deviation. Number of samplé&s= 50, 000.

| k=2 | k=4 | k=6 |
[ 0.56% (+0.04%) [ 0.82% (£0.03%) [ 0.97% (+0.02%) |
k=38 k=10 k=12

1.13% (£0.02%) | 1.24% (£0.02%) | 1.37% (£0.03%)

applied to estimate the dependence of the computed ICA elsmEhe clustering was carried out by
greedy optimization for tasks when the component dimerssicare knowngmiley ikedadatasets).
We also studied the case when these component dimensiorsunwknown ¢-geomdataset); in
this case we used the NCut [191] spectral technique to cltisteestimated ICA components into
ISA subspaces. Mixing matriA was random orthogonal. For datasetileyandd-geom f was
the composition of a rando@ matrix with entries distributed uniformly on intervfi, 1] and the
noninvertible sine functionf(u) = sin(Fu). For each individual parameter, the performance of
10 random runs were averaged. Our parameters inclddettie sample number of observations
x¢, and bandwith3d € (0,1/D) to study the robustness of the kernel regression approaetas
reparameterized as = 2 andj3, was chosen from the s¢t, 1, 1. 4. 5. &} The performance
of the method is summarized by notched boxed plots.

For thesmileydataset, Fig5.8 demonstrates that the algorithm was able to estimate ttikehid
components with high precision. Fi§.8@a) shows the Amari-index as a function of the sample
number, forM = 2 (D = 4). The estimation error is plotted on log scale for differbahdwith
parameters. Figh.8(c-d) indicate that the problem with/ = 6 components) = 12) is still
amenable to our method when the sample size is large endugh 100, 000). Fig.5.8(c) shows
the estimated subspaces, and Big(d) presents the Hinton-diagram. It is approximately a kloc
permutation matrix witt2 x 2 blocks indicating that the algorithm could successfullimeate the
hidden subspaces.

Our experiences concerning tdegeomdataset are summarized in Fi9. In contrast to the
previous experiment, here the dimensions of the hidden coemits were different and unknown to
the algorithm. As it can be seen from Fig9a), our method provides precise estimations on this
dataset for sample siZé = 100,000 — 150,000. The Hinton-diagram of matrixc with average
(closest to the median) Amari-index is depicted in F5gX(b). Again, this is close to a block-
permutation matrix indicating that the proposed methodatds to estimate the hidden subspaces.

We ran experiments on thkedadataset too. Fig5.1(a) illustrates that if we simply use a
standard autoregressive approximation method (AR-IPA3]lthen we cannot find the proper sub-
spaces. Nevertheless, the Amari-index values of EigjJa) show that the functional AR-IPA ap-
proach was able to estimate the hidden subspaces for sampleen?” > 10, 000. The figure also
shows that the estimation is precise for a wide range of bahgarameters. The Hinton-diagram
of matrix G with average (closest to the median) Amari-index is degidteFig. 5.1Qc). This is
a block diagonal matrix, which demonstrates that our methasl able to separate the mixed sub-
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Figure 5.8: fAR-IPA problem, illustration of the estimat®on thesmileydataset. (a): Amari-index
as a function of the sample number, far = 2. (b): observed signat,, the first two 2-dimensional
projections whenV/ = 6. (c): estimated component&™() with average (closest to the median)
Amari-index forM = 6, 8. = é, T = 100, 000. (d): Hinton-diagram of matrixz.
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Figure 5.9: fAR-IPA problem, illustration of the estimat®on thed-geondataset. (a) Amari-index
on log scale as a function of the sample number for differamidiwith parameters on tltegeom
dataset (with component dimensionk: = 2, ds = d3 = 3, dy = 4). (b): Hinton-diagram olG
with average (closest to the median) Amari-index for ddtdsgeom 5. = 3—12 T = 150,000-it is
approximately a block-permutation matrix with ohex 2, two 3 x 3 and onel x 4 sized block.
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Figure 5.10: lllustration of the estimations on tkedadataset. (a): Amari-index as a function of the
sample number for different bandwith parameters, for AR-dRd the proposed fAR-IPA approach.

(b): Observationx;. (c): Hinton-diagram ofG with average (closest to the median) Amari-index.
(d): Estimated subspaces using the fAR-IPA meth&d % T = 20, 000).

spaces. The estimated hidden sources (with average Antik) are illustrated in Figh.1Q(d).

Our model (Eq.38.24-(3.25) belongs to the family of state space models. Though thamhyrs
of the hidden variables, is nonlinear, one might wonder whether with a standard tidgaamical
system (LDS) based identification method we could identiyparameteA and the driving noise
e:. The following experiment demonstrates that this is notcdge; while our method is efficiently
able to cope with this problem, the LDS based identificateadk to very poor results. For this
purpose we treated the observationsas if they had been generated by an LDS with unknown
parameters. We estimated its parameters with the EM me2@, P30], and then using these
estimated parameters we applied a Kalman smoother [23Hfitmae the hidden dynamical layer
s: and the driving noise;. After this estimation we post-processed the estimateder#giwith
ISA. We performed these estimations on #mileyand d-geomdatasets. Using 10 independent
experiments, the EM-LDS based estimators led to 0.56 andr = 0.48 Amari-indices (minima
of the Q> medians), respectively. These results are very poor; thd B based method was not
able to identify the noise components. On the contrary, thpgsed fAR-IPA method successfully
estimated the noise components and provided(0.0041 andr = 0.0055 Amari-indices (Fig5.8,
Fig.5.9).

5.3.5 Complete BSSD Experiments

Now we illustrate the efficiency of the complete BSSD methmbpnted in Sectiod.5. Results on
databasesmiley(d,, =2, M =6, D =2 x 6 = 12), 3D-geom(d,, =3, M =4, D =3 x4 =12)
andBeatles(d,, = 2, M = 2, D = 2 x 2 = 4) are provided here. For each individual parameter,
the performance 20 random runs were averaged. Our parameters’Bre¢he sample number of
observations;, L., the parameter of the length of the convolution (the lendtihe convolution is
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Table 5.4: Complete BSSD problem, Amari-index in perceesagn thesmiley 3D-geom(\ =
0.85,7 = 20,000) and the Beatles dataseX (= 0.9,7 = 100,000) for different convolution
lengths: meath standard deviation. For other sample numbers, se&Fig.

| | Le=1 [ L.=2 | L.=5 | L.=10 ]
smiley [0.99% (£0.11%)[1.04% (£0.09%)[1.22% (£0.15%)[1.69% (+0.26%)
3D-geom0.42% (£0.06%)|0.54% (40.05%)[0.88% (£0.14%){1.15% (40.24%)
Beatles|0.72% (£0.12%)|0.75% (£0.11%){0.90% (£0.23%)|6.64% (£7.49%)

L. + 1), and), parameter of the stabH|z]. It is expected that if the roots &[z] are close to the
unit circle then our estimation will deteriorate, becausegtability ofH[z] comes to question. We
investigated this by generating the polynomial maHik| as follows:

L.

H[z| = [H(I —~ /\Oiz)] Hy (A <1,AeR), (5.10)
=0

where matriced, andO; € RP*P were random orthogonal); € OP) and thex — 1 limit

was studied. ‘Random run’ means random choice of quaniie$ ande. The AR fit to obser-
vation x; was performed by the method detailed in [183]. To study hosvelti''/3) AR order
(see Sectiord.5.2 is exploited, the order of the estimated AR process wagditinirom above by
Pmaz(T) = 2|T3 1w |, and we used the Schwarz's Bayesian criterion to deterrhi@@ptimal
Popt Order from the intervall, p,,q.(T")]. The ISA subtask on the estimated innovation was carried
out by the JFD method [17].

First we studied the Amari-index as a function of the samjale. s~or thesmileyand3D-geom
databases the sample numferaried between, 000 and20, 000. The length of convolution varied
asL. = 1,2,5,10. The\ parameter oH|[z] was chosen a8.4,0.6,0.7,0.8,0.85,0.9. Results are
shown in Fig.5.11(a)-(b). The estimation errors indicate that far = 10 and about\ = 0.85 the
estimation is still efficient, see Fi§.12for an illustration of the estimated source components. The
Amari-indices follow the power law(7T) o< T~¢ (¢ > 0). The power law decline is manifested
by straight line on log-log scale. The slopes of these ditdiges are very close to each other.
Numerical values for the estimation errors are given in @abl. The estimated optimal AR orders
are provided in Fig5.11(c). The figure demonstrates that &s— 1 the maximal possible order
Pmaz(T) IS more and more exploited.

On theBeatlesdatabase th& parameter was increased®, and the sample numbé&rvaried
betweenl, 000 and 100, 000. Results are presented in Fig.11(d). According to the figure, for
L. = 1,2,5 the error of estimation drops for sample numbér= 10,000 — 20,000, and for
L. = 10 the ‘power law’ decline of the Amari-index, which was apparen thesmileyand the
3D-geondatabases, also appears. Numerical values for the esiimetiors are given in Tabk4.
On theBeatlestest, the maximal possible AR ordgf,...(T) was fully exploited on the examined
parameter domain.

5.3.6 ISA via Random Projections

Now we demonstrate the efficiency of the random projectiosedaentropy estimation presented
in Section3.6 [8] on indepedent subspace analysis. Results on datablesg@serica) d-geomand
all-k-independenare provided here. The experimental studies focused omtloaving issues:

1. What dimensional reduction can be achieved in the entespignation of the ISA problem by
means of random projections?
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Figure 5.11: Complete BSSD problem, precision of the edtoma and the estimated optimal AR
orders. The plots are on log-log scale. (a), (b): ondméley(3D-geom database the Amari-index
as a function of the sample number for different- 1 parameter values dfi[z] and convolution
lengths, respectively. In (a).. = 10, in (b): A = 0.85. (c): on thesmiley(3D-geom database the
estimated AR order as a function of the sample number fjtk- 10 for different values. (d): the
same as (b), but for thBeatlesdataset withA = 0.9. For graphical illustration, see Fi§.12 For

numerical values, see Talbed.
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Figure 5.12: Complete BSSD problem, illustration of théneations on th&D-geoni(a),(b),(e)-(i)]
andsmiley[(c),(d),(j)-(n)] datasets. Number of samplés:= 20, 000. Length of the convolution:
L. = 10. In the first row: A\ = 0.4. (a), (c): observed convolved signel. (b), (d): Hinton-
diagram ofG, ideally a block-permutation matrix with x 2 and3 x 3 sized blocks, respectively.
(e)-(i), (j)-(n): estimated componend8’, recovered up to the ISA ambiguities from left to right for
A=04,0.6,0.7,0.8,0.85. All the plotted estimations have average Amari-indices,Big.5.11(a).
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2. What speed-up can be gained with the RP dimension red@ctio
3. What are the advantages of our RP based approach in glotraization?

In our experiments the number of components was minifak 2). For each individual parameter,
the performance di0 random runs were averaged. Our parameters incligede sample number
of observations, andd, the dimension of the components£ d; = d,). We also studied different
estimations of the ISA cost function: we used the RADICALbfust, accurate, direct ICA algorithm)
proceduré [199] and the NN method [239] for entropy estimation and KC{287] for mutual
information estimation. The reduced dimensiénin RP and the optimization method (greedy,
global (CE), NCut [13]) of the ISA cost were also varied infeiient tests. Random run means
random choice of quantitieA ande. The size of the randomly projected groups was séf,tp=
2,000, except for the casé = 50, when it was5, 000. RP was realized by théatabase-friendly
projectiontechnique, i.e., the, ;; coordinates oR,, were drawn independently from distribution
P(r,; = £1) = 1/2, but more general constructions could also be used [224,225

In the first study we were interested in the limits of the RP alision reduction. We increased
dimensiond of the subspaces for thiesphericaland thed-geomdatabasesd(= 2, 10, 20, 50) and
studied the extreme case, the RP dimendiomas set tol. Results are summarized in Fig13a)-
(b) with quartiles Q1, @2, @3). We found that the estimation error decreases with sampigber
according to a power lawr[T) o« T~¢ (¢ > 0)] and the estimation works up to abaiit= 50.
For thed = 50 case we present notched boxed plots (Big.3c)). According to the figure, the
error of estimation drops for sample numfée 100, 000 for both types of datasets: for databases
50-geomand 50-spherical respectively, we havé and9 outliers from50 random runs and thus
with probability 90% and82%, the estimation is accurate. As for question two, we conmpére
efficiency @1, Q2, Q3) of our method ford = 20 with the NN methods by RP-ing intd = 1
andd’ = 5 dimensions. Results are shown in Figl3e)-()2 The figure demonstrates that for
databas®0-geonperformances are similar, but for datab@8esphericalour method has smaller
standard deviation fof' = 20,000. At the same time our method offers 8 to 30 times speed-up
atT" = 100,000 for serial implementations Figure5.14 presents the components estimated by
our method for dimensiong = 2 andd = 50, respectively. With regard to our third question,
the ISA problem can often be solved by grouping the estimf@&d coordinates based on their
mutual information. However, this method, as illustratgd ®, Q-, @3) in Fig. 5.13d), does not
work for ourall-4-independendatabase. Inserting the RP based technique into globahizatiion
procedure, we get accurate estimation for this case, toampiEization was used here. Results are
presented in Figs.13d).

"We chose RADICAL, because it is consistent, asymptoticafficient, converges rapidly, and it is computationally
efficient. By RADICAL, we mean the spacing based entropynestion part of the algorithm.
8We note that forl = 20 and without dimension reduction the NN methods are very $tmthe ISA tasks.
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Figure 5.13: Performance of the RP method in ISA. NotatioR®,; - method of cost estimation
(method of optimization if not greedy)’. (a), (b): accuramfythe estimation versus the number of
samples for thel-sphericaland thed-geomdatabases on log-log scale. (c¢): notched boxed plots for
d = 50, (d): Performance comparison on thk-4-independentlatabase between the RP method
using global optimization and the NCut based grouping ofdkmated ICA coordinates using
the pairwise mutual information graph (on log-log scal&)-(f): Accuracy and computation time
comparisons with the NN based method for Bfesphericabnd the20-geondatabases (on log-log

scale).
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Figure 5.14: RP based ISA, estimated components and Halitmrams. Number of samples: =
100,000. Database®-geom (a)-(c), 50-spherical (d), 50-geom (e). (a): observed signats,
(b): Hinton-diagram ofG: the product of the mixing matrix of the ISA task and the estigd
demixing matrix is approximately a block-permutation mavith 2 x 2 sized blocks, (c): estimated
componentg™, recovered up to the ISA ambiguities, (d)-(e): Hinton-d&ags of the50-spherical
and the50-geontests, respectively. Hinton-diagrams have average Amdites: for (b) 0.2%, for
(d) 1%, for (e) 12%.
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Chapter 6

Conclusions

In this thesis we addressed the dictionary learning proliecase of two different assumptions on
the hidden sources: (i) group sparsity and (ii) independahspaces (ISA, independent subspace
analysis).

In the former case, we proposed a new dictionary learnindnatkgtwhich (i) is online, (ii) en-
ables overlapping group structures on the hidden reprasemtdictionary, (iii) applies non-convex,
sparsity inducing regularization, and (iv) can handle tagiplly observable case, too. We reduced
the formulated online group-structured dictionary leag((OSDL) problem to convex subtasks, and
using a block-coordinate descent approach and a variatioethod we derived online update rules
for the statistics of the cost of the dictionary. The efficgof our algorithm was demonstrated by
several numerical experiments. We have shown that in thanitipg problem of natural images the
proposed OSDL method can perform better than the traditapaase methods. We have shown that
our approach can be used for the online structured NMF pnofiteo, and it is able to hierarchically
organize the elements of the dictionary. We have also daditapllaborative filtering (CF) based
recommender systems. Our extensive numerical experinsdoised that structured dictionaries
have several advantages over the state-of-the-art CF deetinoore precise estimation can be ob-
tained, and smaller dimensional feature representatiobesufficient by applying group-structured
dictionaries. Moreover, the estimation behaves robustlg function of the OSDL parameters and
the applied group structure.

We derived novel kernel based function approximation tephes and kernel — sparsity equiva-
lences. In particular, we generalized a variant of spardengsscheme to reproducing kernel Hilbert
spaces (RKHS) with component-wisesparse properties and proved that the obtained problem can
be transformed to a generalized family of support vectorhimec(SVM) problem. We also showed
that SVMs can be embedded into multilayer perceptrons (M) for the obtained multilayer
kerceptron architecture the backpropagation proceduxL&fs can be generalized.

We extended the ISA problem to several domains. Our work wa#vated by a central result, a
10-year-old unresolved hypothesis of the ICA (independentponent analysis) research, the ISA
separation principle. This principle (i) enables one tosedhe ISA problem via traditional ICA
up to permutation, (ii) has been rigorously proven for darthstribution types recently (sufficient
conditions are now known for the principle), (iii) forms thasis of the state-of-the-art ISA solvers,
(iv) makes it possible to estimate the unknown number andithensions of the sources efficiently.

We generalized the ISA problem to numerous new directiodlsiiting the controlled, the par-
tially observed, the complex valued and the nonparamease.c We derived separation principle
based solution techniques for the formulated problemss &pproach makes it possible to (i) ap-
ply state-of-the-art algorithms for the obtained subpeaid (ICA, spectral clustering, D-optimal
identification, kernel regression, etc.) and (i) tackle tase of unknown source component dimen-
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sions efficiently. We extended the Amari-index performameasure to different dimensional com-
ponents. Our extensive numerical illustrations demotesiréhe robustness and attractive scaling
properties of the approach. The novel models may also leadch&w generation of control assisted

data mining applications, interaction paradigms, bioroadieconometric and financial prediction
approaches.
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Appendix A

Proofs

A.1 Online Group-Structured Dictionary Learning

In this section we focus on the OSDL problem. We will derive tipdate equations for the statis-
tics describing the minimum point of, (SectionA.1.2). During the derivation we will need an
auxiliary lemma concerning the behavior of certain materes. We will introduce this lemma in
SectionA.1.1

A.1.1 The Forgetting Factor in Matrix Recursions

LetN, € REv*Lz (¢t = 1,2,...) be a given matrix series, and fgt= (1 — 1)”, p > 0. Define the
following matrix series with the help of these quantities:

M; = M, +N,eR>l2 (1=12 ), (A1)
t .\ P
=1

Lemma 1. If p = 0, thenM; = M, + M, (Vt > 1). Wherp > 0, thenM,; = M (V¢ > 1).

Proof.

1. Casey = 0: Sincey; = 1 (¥t > 1), thusM, = My + ', N;. We also have thaft)” = 1
(Vi > 1), and thereford1;, = Z‘;:l N;, which completes the proof.

2. Casep > 0: The proof proceeds by induction.

e t = 1: Inthis casey; = 0, M; = 0 x My + N; = N; andM/ = Ny, which proves
thatM1 = M/1

e t > 1: Using the definitions oM, andM;, and exploiting the fact thatl,_, = M,_,
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by induction, after some calculation we have that:

t—1
M, =M, + N, = (1 - —> lz; (t_ 1) + N, (A.3)
t—1\" [/ i\ £\*
= <T) lZl <t_1) N; +<g> N, (A.4)
t i P
:Z<%> N, = M, (A5)
=1
O
A.1.2 Online Update Equations for the Minimum Point of ,
Our goals are (i) to find the minimum of
t .
. 1 2
D — Do, Qe A.6
D)= NW;() 5 10, = Dol + nf(ex) (A6)

in d; while the other column vectors @ (d; (¢ # j)) are being fixed, and (ii) to derive online

update rules for the statistics ¢f describing this minimum pointf; is quadratic ind;, hence in
order to find its minimum, we simply have to solve the follogrequation:

ofy
8Tj(uj) =0, (A-7)

whereu; denotes the optimal solution. We can treat theand thezt ~GTo7 terms in @A.6) as
.

constants, since they do not dependdn Let D_; denote the slightly modified version of matrix
D; its j'" column is deleted. Similarly, let; _; denote the vectot; where its;*" coordinate is
discarded. Now, we have that

fe 9 =i\’
0= aTt- =3d l (Z) A (x; — Dm)lli] (A.8)
J 7 Li=1
0 [ i) )
=53 |22 (7) lailxi =D jai ) — djai il (A.9)
7 Li=1
t N\ P
0 1 2
= ad l (;) (Ao j)d; — Ai(x; — D—jai,—j)||2] (A.10)
7 Li=1
LN
=2 <g> Ao (A j)d; — Aj(xi —D_joy )] (A.11)
i=1
t i\ AN
= 22 <g> AiOéijdj — 22 <g> Aiai7j(xi — D,ja@,j), (A12)
i=1 ;
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where we used the facts that

X0; — DOiai = Al(X’L - Dal)a (A13)
Ay —b|>
OlAY —bly _gprpy b, (A.14)
dy
A; = AT = (A)% (A.15)

After rearranging the terms if\(12), we have that

<Z (%)p Ai@%) u; = (A.16)
=1

t S\ P
= Z <%> Aiai,j (Xi — D,jai7,j) (Al?)
.\ P t Z P
) AiXiOéiJ‘ — Z (%) AiD_jai,_Jai,j (A18)
P t i\?
> Axio 5 — Z (—) A(D_joy—j+djo; —dja; ) ; (A.19)

t .\ P t -\ P t -\ P
= Z <%> Aixiai,j — Z (%) AiDaiam + (Z (%) Aiazj) dj. (A.ZO)

i=1 i=1

We note thatA.18) is a system of linear equations, and its solutisrdoes not depend od;. We
have introduced thed;a;; — d;«;;’ term only for one purpose; it can help us with deriving the
recursive updates fat; in a simple form. Define the following quantities

t N\ P
Civ =2 (%) Al € R (j=1,... da), (A.21)
=1
t NG
B =) (Z) Aixial = [biy,..., by, ] € RI=*da (A.22)
i=1
t NG
€= (g) ADajai; €R"  (j=1,...,da). (A.23)
i=1

Here (i) C; ;s are diagonal matrices and (ii) the update rulBptontains the quantitA ;x;, which
is xp, extended by zeros at the non-observaljlg (..,d.} \ O;) coordinates. By using these
notations andA.20), we obtain that; satisfies the following equation:

Cj7tUj = bj7t — €5t + Cj7tdj. (A24)
Now, according to Lemma, we can see that (i) whem= 0 andC;, = 0, By = 0, or (i) p > 0

andC; o, By are arbitrary, then th€; , andB, quantities can be updated online with the following
recursions:

Cjit =1Cji1+ Asay (A.25)
B, = vBi1 + Axiaf (A.26)
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wherevy; = (1 — %)”. We use the following online approximation fey:
et = 7€)1 + ADayay j, (A.27)

with initialization e; o = 0 (Vj), andD is theactual estimation for the dictionary. This choice
seems to be efficient according to our numerical experiences

Note. In the fully observable special cases(, whenA; = 1, Vi) the (A.21)-(A.23) equations have
the following simpler form:

t -\ P
Cj,t=IZ(%) i, (A.28)

x;al (A.29)

t N
Daja;; =D (%) ;. (A.30)
i=1

Define the following term:
t

o\ P
A=Y (%) a;al € Rbexdo, (A.31)

i=1

and leta; ; denote thg'” column ofA,. Now,(A.30) can be rewritten as
e;+ = Da,, (A.32)
and thug(A.24) has the following simpler form:
(Ar)jju; = by —Daji + (Ag);,;d;. (A.33)

Here(-); ; stands for the(j, j)*" entry of its argument. By applying again Lemthtor (A.31), we
have that when (ip = 0 and Ay = 0, or (ii) p > 0 and Ay is arbitrary, thenA, can be updated
online with the following recursion:

A; =vAr 1 +aal. (A.34)
We also note that in the fully observable c§8e26) reduces to
B; = 1B 1 +xal, (A.35)
and thus [135] is indeed a special case of our model:
o We calculateu; by (A.33).
e To optimizef,, it is enough to keep track @, and B, instead of{Cj1}0e), By, {ej e} 0o

e The quantitiesA; andB; can be updated online A.34) and (A.35).
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A.2 Correspondence of the(c, e)-SVM and (p, s)-Sparse Prob-
lems
In this section we give the proof of Proposititin

We will use the fact that the Moore-Penrose generalized ssvef a matrixG € R"*™, G~ €
R™>™ uniquely exists and it has the properties:

GG, G~ G : symmetric matrices (A.36)
GG G=G (A.37)
G GG =G (A.38)

We modify Eq. .57 using the assumption thiitx;) = y; (i =1,...,1). Exploiting that for
the norm|\-||§{ = (-, )4, holds, and that scalar products are bilinear we obtain

l
F(a) = ¢ 1713~ 3 ac {70 b x0))og (A.39)
i=1

l l
1
5 D aiag k(%) k(%)) g + D pilail,, -
i=1

i,j=1

According to the reproducing property of the kernel, and pat;) = y; (i = 1,...,1) assump-
tion, one can see that

(FC) k(o xi))ge = F(xi) = i, (A.40)
<k('7xi)7k('7xj)>g{ = k(Xi,Xj) = Gij. (A41)

By dropping the first term of'(a), which is independent af, we get that the minimization df (a)
is equivalent to

l

1 T .

;& Ga—yla+ ;pi lail,, — min, (A.42)
whereG = [G;;] = [k(x;,x;)] is the Gram matrix of thgx;} samples. By rewriting the;-
insensitive terms introducing slack variables, and intidg the notatiors = [s1;...; s, the
optimization problemA.42) is equivalent to

1
m+in7 [iaTGa —yla+p? (SJr + s)] , (A.43)
a < s+st
subjectto —a < s+s7 .
0 < sT,s™

Now we take the dual of this problem using the Lagrangian @ggir

max L(d",d",q",q7) = (A.44)

d+t,d—,qt,q=>0
1 _ _ _
= gaTGa —yTa+p”? (sJr +s ) — (qu)TsJr —(q )Ts
—(@NH(s+sT—a)—(d" ) (s+s +a).
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At the optimum, the derivatives of Langrangiartaken by the primal variables disappear, that is

0= Z—L =a’'G -yl +(d"—d")7, (A.45)
a
_ a_L _ AT T _ +\T
=557 =P d")" —(a")", (A.46)
0= 22 —pT (@) ()" (A.47)

Reordering and transposing.@5), we have

a’G = (y—(@*—d))’, (A.48)

Ga = (y—(d"—-d"), (A.49)

where the symmetry of Gram matr was also exploited. Using\(48), we can substitute expres-
sion
(y—(dt —d"))" a=a’Ga (A.50)

to L. One can also replace mati@ of the Lagrangian byaG~ G according to A.37), and then
insert the expressions faf’ G andGa using (A.48) and (A.49) to obtain

a’Ga=a’ (GG G)a= (a’G)G (Ga) (A.51)
—(y—(@dt-d))' G (y—(d*—d")). (A.52)

Using expressionsy46) and @.47) in the Lagrangiari, the variableg™, q— disappear, but their
non-negativity conditions, withA.46) and (A.47) give rise to constraintp > d* andp > d~ for
variablesd™ andd~. We can also change the minimization of Lagrangiato maximization by
changing the sign. Taken together, we have that our opttioizgask is that of

. 1 + -\ — + - + —\T
ognin [2(y d™"—d7)'G (y—(d"—d7))+(d"+d7)"s|. (A.53)
The terms of the quadratic expression can be expanded argered. Upon dropping terms not
containing variablesl™ or d—, and making use of the symmetry 6f~ inherited fromG, one
obtains that the optimization problem is

. Loy -4+ - + ek + -\T
nin [2((1 d)'G (At —d)—d"—d) G y+d"+d)'s|. (A54)
Now, comparing the obtained result witR.48, we can see that one can transform the dual of
the (p, s)-sparse task to that of tHe, e)-SVM task according to the relation tid*,d, G,y) <
(dt,d~,G7,G7y) = (d",d",G"GG~,Gy). At the last equality, theA.38) property of the
generalized inverse was used. This is what we wanted to prove O

A.3 Backpropagation for Multilayer Kerceptrons

In the sequel, we derive propagation rule for the multilag@nceptron network. We carry out the
derivation for stochastic gradient descent optimizatibne cost function is has two terma(t) =
e2(t) + r(t). In SectionA.3.1 we focus on the derivative of the?(t) approximation term. In
SectionA.3.2, we are dealing with the regularization part. The obtairestits are embedded into
stochastic gradient descent optimization in Secfidh3.
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A.3.1 Derivative of the Approximation Term

In this section we derive the derivative of th&¢) approximation term. First, we list basic relations,
involved by the MLK structure For the case of better realitgpbelow, indext is dropped [precise
form: x! = x!(¢), y' = y'(¢), s' = s!(t),w! = wl(¢)].

x'=y"leRM (1=1,...,L+1), (A.55)
xt=gl(s") (1=1,...,0), (A.56)
[ (wh, @' (%))

s = (w! goz'(xl>> : (I=1,...,L;i=1,...,N{) (A.57)
%) H
[ (wh, o (8" 1)) g

— : =92 ... Li=1,.. . N A58
(Wl (g s )y | T B BT ) (#:58)

[ (Wit o (gl (8)) s

I+1 : _ i 141
s+l — I=1,...,L—1:i=1,... N+, A.59
<Wé+17 Sol+1(gl(sl))>5w+1 ( S ) ( )

Our goal is to compute the quanti wi((?)]} , which according to the chain rule and the definition
of s'(t) takes the form

O] _ O] D] i,
OWI®)] ~ DLsH(0)] Awl(t)]

e () (=1,...,Li=1,...,N}), (A.60)
whered!(t) is thei” coordinate of the backpropagated error of layeefined as

ol(t) = (l1=1,...,L). (A.61)

Let us notice that the derivativé(60) can be expressed by using quanéfyt) and by the feature
representation of the input (¢) arriving to thel*” layer, i.e., byp! (x'(t)).

Making use of the chain rule again and the definitiodaf' (¢), the backpropagated error satis-
fies the relation

Lo A2] O] OS] ey, OlSHA(D)
"= FEm) T aEe] oF ] D oR)

(l=1,...,L-1). (A62)

One can compute this recursion for the backpropagated, emdrthus the required derivative
(A.60), provided that (iYy*(¢) and (i3 8[5 (t ] are available. In the sequel, we focus on the compu-
tation of these two quantities.
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Thed”(t) quantity can be computed as follows:

3= (t)

Here we used the chain rule,

dle%(t

B y o [law —etstm)]]
BRCEON I (0]
[ (") — )" (8") (s"(0)

2
= 2[y(t) —d®)]" (g") (s"(1)).

the equation

2
aHda_yyHQ] _ 2(}’ _ d)T

and inserted the relation

imposed by the MLK architecture.
To compute
s (t)]
fs'(t)]
(A.59) is made use of. It is sufficient to consider terms of the form

Ol(w, ¢(g(s))) (]
9[s]

(=1,...,L—1)

(A.63)

(A.64)
(A.65)

(A.66)

(A.67)

(A.68)

(A.69)

and then to ‘compile’ the full derivative from them. The valof (A.69) can computed by means of

the following lemma.

Lemma 2. Letw € H = H(k) be a point in the RKHS3{. Let us assume the followings:

1. Explicit case: thex — (w, ¢(x))4, and the functiorg are differentiable.

2. Implicit case:

e Let kernelk be differentiable w.r.t. both arguments and kgt denote the derivative of

the kernel according to its second argument.

e We also assume that is within the image space of the feature space represemtatio

a finite number of points;. That is

welm (@(Zl), SO(ZQ)a R SD(ZN)) C .
N
Let this expansion ber = > a;¢(z;), wherea; € R.
j=1
Then we have two cases:

1. Explicit case:

Ol(w, p(8(s) g _ OLw, p(u))y] s
T R N A
2. Implicit case:
8w~¢< E:qi (2;,8(5))/(5)
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Proof.
1. Explicit case: the statement follows from the chain rule.

2. Implicit case:

ol plels))ad _ 2 [(5 @) (e6)), | (A73)
o] _ Js] '
0[5 0 (92, 2 (8(5)))
_ 9 (A.74)
_ als]
O[3 0k (2.806))] p7e
_ 7 (A.75)
="k (z;,8(s))g/(s). (A.76)

J

In the first equation the expansion af and the linear property of the scalar product was
exploited. Then, the relatior2 (35 between the feature mapping and the kernel was applied.
The last step follows from the chain rule.

O
Let us turn back to the computation of E&..¢8):
1. Explicit case: According to Lemniawe have
O (H)] _ | ol @0 )] N (g
8[sl(t)] Olu] u=g!(s!(t)) ( ) ( )
Of(wi (. (W) 4] N
= FC R ) (g) (s'(1) (A.78)

(I=1,...,L—1;i=1,...,N5").

In the second equation (i) we used identify%6) and (ii) pulled out the ternﬁgl)/ (s'(t)).

2. Implicit case: For termﬁzfrl (t) we have the expansion property expressed by Eg9(. This
was our starting assumption. In subsec#o8.3, we shall see that this property is ‘inherited’
from time ¢) to time ¢ + 1). Thus,

N
witlt) = Y ol (1) (=1,...,L-1i=1,...,N") (AT79)
j=1
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and the derivativeA.68), we need, takes the form

J[stt! NI ' /
%@gw: X ol ORI @] 0,8 (1) () (') (A.80)
Nt /
- Sl R (2 (), X (1)) (g") (') (A.81)
j=1

(l=1,...,L—1;i=1,...,N5™).

Here, the second equation is based on idenfit§). Matrix term (gl)l (s'(t)) was pulled
out.

A.3.2 Derivative of the Regularization Term
The derivative of the regularization tenn) is simple:
L N U || .
2N ||W¢(t)Hg{z

olr(t)] 0 L—li—l
ofwi(t)] Ofwi(t)]

3

]:mgwﬁ(t) (l=1,...,L;i=1,...,N}). (A.82)

Note that the respective terms of the derivative are scadeslon of the actual weightsy!(¢). This
form makes possible implicit tuning in the dual space.

A.3.3 Derivative of the Cost
Using identity

oe@®] _ 0]  Olr(®)] _ o
W)~ Owl(0) + Afwl (1) (l=1,...,Lyi=1,...,N}) (A.83)

3 (2 3

as well as our results on the approximation and the regaldoiz terms [i.e., Eqs.A.60), and
(A.82)], for the

wi(t+1) = wi(t) — “ma?v[s%] (I=1,....,L;i=1,...,N&). (A.84)

stochastic gradient descent form we have
wit+1) = wi(t) = ui(t) (SH()e' (X' (1)) + 2Xiwi(1)) (A.85)
= (1 2ubON)wh(t) — k(D)0 (X (1) (A.86)

(I=1,....,L;i=1,...,N}).
The same in dual form is as follows

al(t+1) = [(1 -2l al(t); —pk(t)ol(t)] (=1,....,Lyi=1,...,N}). (A.87)
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In turn, according to A.86) the expansion property of the weight vectors of the netwogk,
Eq. 2.59] is inherited from time ) to time ¢ + 1). In particular, the expansion is valid for pa-
rameter setv! received at the end of the computation. To sum up, the baplgation procedure
holds for MLK. The derived explicit and implicit procedurage summarized in Tab5and Ta-

ble 2.6, respectively.
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Appendix B

Abbreviations

Abbreviations used in the paper are listed in Table

Table B.1: Acronyms.

| Abbreviation| Meaning

ANN approximate nearest neighbor
AR autoregressive
ARMA autoregressive moving average
ARMAX | ARMA with exogenous input
ARX AR with exogenous input

BCD block coordinate descent
BCDA approximate block coordinate descent
BSD blind source deconvolution
BSSD blind subspace deconvolution
CE cross-entropy
CF collaborative filtering

ECG electro-cardiography
EEG electro-encephalography

EM expectation maximization
fAR functional AR
fMRI functional magnetic resonance imaging
ICA/ISA/IPA | independent component/subspace/process anglysis
ii.d. independent identically distributed
JFD joint f-decorrelation

KCCA kernel canonical correlation analysis
Lasso |least absolute shrinkage and selection operato

=

LDS linear dynamical system
LPA linear prediction approximation
MA moving average

mAR AR with missing values
MEG magneto-encephalography

ML maximum likelihood
MLK multilayer kerceptron
MLP multilayer perceptron
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MSE

mean square error

NIW normal-inverted Wishart
NN nearest neighbor
NMF non-negative matrix factorization
OSDL online group-structured dictionary learning
PCA principal component analysis
PNL post nonlinear
PSNR | peak signal-to-noise ratio
QP guadratic programming
RADICAL |robust, accurate, direct ICA algorithm
RBF radial basis function
RIP restrictive isometry property
RMSE root mean square error
RKHS reproducing kernel Hilbert space
RP random projection
RS recommender system
SDL structured dictionary learning
SVM support vector machine
TSP traveling salesman problem
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Short Summary in English

In my thesis | focus on (i) sparse and group-sparse codingekdéased approximation, and (ii)
independent subspace analysis (ISA) based dictionanyifegar

1. I constructed a general dictionary optimization schesngfoup-sparse codes; | derived novel
kernel — sparsity equivalences and kernel based functiproapnation techniques:

(a) | developed a general dictionary learning techniquestvig (i) online, (ii) enables over-
lapping group structures with (iii) non-convex sparsitghiicing regularization and (iv)
handles the partially observable case—previous apprsdnttbe literature could han-
dle two of these four desirable properties at most. | dennatest the efficiency of the
approach in 3 different applications: (i) inpainting of mal images, (ii) non-negative
hierarchical matrix factorization of large-scale face gms, and (iii) collaborative filter-
ing.

(b) I defined an extended, component-wise actiaggparsity inducing approximation
scheme in reproducing kernel Hilbert spaces (RKHS), andgatthat the obtained prob-
lem is equivalent to a generalization of SVMs (support veatachine).

(c) I embedded SVMs to multilayer perceptrons (MLP). | prabtteat the well-known back-
propagation method of MLPs can be generalized to the forediaultilayer SVM net-
work.

2. | derived novel independent subspace assumption bastahdiry learning problems and so-
lution techniques:

(a) | coupled the active learning and the AR-IPA (autoregjiesindependent process anal-
ysis) tasks, and reduced the solution of the estimationlenobo D-optimal ARX (‘X'
exogenous input) identification and ISA.

(b) 1 generalized the results of (a) to (i) the compositiotiredar and coordinate-wise acting
nonlinear case, the so-called post nonlinear mixtures,(@ntemporal (convolutive)
mixing.

(c) I extended the problem of independent component arsilysiase of missing observa-
tions from the former one-dimensional, i.i.d. sources Yan(ultidimensional sources of
(ii) not equal/-known dimensions, and (iii) relaxed thedi.iassumption to AR. | reduced
the estimation to incompletely observed AR identificatiod ¢éSA.

(d) 1 generalized the ISA problem to complex variables, armv@d that under certain non-
Gaussian assumption the solution can be reduced to read/EBA.

(e) I extended the ISA task to the case of (i) nonparamesianatotically stationary source
dynamics, (ii) treating the case of unknown and not necéggmual source component
dimensions. | reduced the solution of the problem to keregidassion and ISA.

(f) 1 generalized the ISA problem to convolutive mixtureedaeduced the solution of the
problem to AR identification and ISA.

(g) Making use of the approximate distance preserving ptgpe random projections,
| presented a parallel estimation method for high dimeradiarformation theoretical
guantities. | demonstrated the efficiency of the approad¢8in
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Short Summary in Hungarian

Disszertaciom a (i) ritka és csoport-ritka kodolas, keedapu kozelités, illetve (ii) a fiiggetlen altér
(independent subspace analysis, ISA) feltevés és kiméigsi melletti generatorrendszer tanulasi
problémaval foglalkozik.

1. Altalanos csoport-ritka koddokhoz tartozé generatatszerek optimalizaciojara moédszert ad-
tam; Ujtipusu ritkasag — kernel alapu ekvivalenciat, vikekernel alapu fliggvényapproxima-
ciés modokat szarmaztattam:

(a) Aritka kédokhoz tartoz6 generatorrendszer tanul&aflgmat kiterjesztettem (i) atféd
csoport-struktarat, (i) nem-konvex regularizaciot) (ianyos megfigyeléseket, és (iv)
online érked megfigyeléseket megendedsetre—korabbi irodalombeli megkodzelitések
ezen kivanalmak kozll legfeljebb kétttudtak egyidejlileg kezelni. Maodszerem
hatékonysagat (i) természetes képek kitdltési problém4jd nagyfelbontasu arcok
online, hierarchikus nem-negativ matrix faktorizaci¢jé&s (iii) kollaborativ szirési
tertleteken demonstraltam.

(b) RKHS (reproducing kernel Hilbert space)-ekben defimitda reprezentaciés problémat
kiterjesztettem az egyes koordinatak mentén hatiikasagokat indukalé formara. Iga-
zoltam, hogy az igy definialt alak SVM-ek (support vector hiae, SVM) egy al-
talanositott csaladjaval ekvivalens.

(c) Tobbrétegli perceptronokba (multilayer perceptron,.PM tamasztovektor gépeket
agyazva tobbrétegli SVM halékat konstrualtam. Az ¢sszsaiptobbrétegii kercep-
tron hal6zatra belattam, hogy az MLP-k hibavisszatergssrt alapuld hangolasi eljarasa
kiterjesztheb.

2. Fuggetlen altér feltevés mellett Uj generatorrendsaauléisi feladatokat és megoldasi tech-
nikakat szarmaztattam:

(a) Az aktiv tanulas és az AR-IPA (autoregressive indepeingiecess analysis) feladatot
0sszekapcsoltam, és a megoldast D-optimalis ARX ('X': édijput) becslésre és ISA
feladatra redukéltam.

(b) Az (a) munka eredményeit (i) koordinatanként hat6 needritas, (n. poszt nemlinearis
irdnyban, illetve (i) idbeli keverést (konvollcié) megendeidanyban altalanositottam.

(c) A hianyosan megfigyelt fliggetlen komponens kereséstldigjiel-dimenzids, i.i.d. for-
rasok eset@l kiterjesztettem (i) tobbdimenzids, (ii) nem feltétléaidonos/adott dimen-
zids forrasokra, (iii) az i.i.d. kényszert is egyuttal ARnyban enyhitve. A megoldast
hidnyosan megfigyelt AR becslésre és ISA problémara verette

(d) Az ISA problémat altalanositottam komplex valtozosteseés a megoldast alkalmas
nem-Gauss-sagi feltevések esetén valos valtozés protdénsszavezettem.

(e) Az ISA feladatot kiterjesztettem (i) nemparametrikasszimptotikusan stacionarius
forrdsdinamikékra, (ii) az ismeretlen forrasdimenzidletés is kezelve. A feladat
megoldasat kernel regressziéra és ISA feladatra redukalta

(f) Az ISA problémét konvolutiv irdnyban altalanositottammmegoldast AR becslésre és
ISA feladatra redukaltam.

(g) A véletlen projekciok kozeldt paronkénti tavols&iyz6 tulajdonsagara épitve, nagy di-
menzids informacidelméleti mennyiségek gyors, parhuzdiatd becslésére mutattam
technikat és azt ISA probléma megoldasara adaptaltam.
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