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Abstract

Thanks to the several successful applications, sparse signal representation has become one of the
most actively studied research areas in mathematics. However, in the traditional sparse coding prob-
lem the dictionary used for representation is assumed to be known. In spite of the popularity of
sparsity and its recently emerged structured sparse extension, interestingly, very few works focused
on the learning problem of dictionaries to these codes.

In the first part of the paper, we develop a dictionary learning method which is (i) online, (ii)
enables overlapping group structures with (iii) non-convex sparsity-inducing regularization and (iv)
handles the partially observable case. To the best of our knowledge, current methods can exhibit
two of these four desirable properties at most. We also investigate several interesting special cases
of our framework and demonstrate its applicability in inpainting of natural signals, structured sparse
non-negative matrix factorization of faces and collaborative filtering. Complementing the sparse di-
rection we formulate a novel component-wise acting,ǫ-sparse coding scheme in reproducing kernel
Hilbert spaces and show its equivalence to a generalized class of support vector machines. More-
over, we embed support vector machines to multilayer perceptrons and show that for this novel
kernel based approximation approach the backpropagation procedure of multilayer perceptrons can
be generalized.

In the second part of the paper, we focus on dictionary learning making use ofindependent sub-
spaceassumption instead ofstructured sparsity. The corresponding problem is called independent
subspace analysis (ISA), or independent component analysis (ICA) if all the hidden, independent
sources are one-dimensional. One of the most fundamental results of this research field is the ISA
separation principle, which states that the ISA problem canbe solved by traditional ICA up to per-
mutation. This principle (i) forms the basis of the state-of-the-art ISA solvers and (ii) enables one
to estimate the unknown number and the dimensions of the sources efficiently. We (i) extend the
ISA problem to several new directions including the controlled, the partially observed, the complex
valued and the nonparametric case and (ii) derive separation principle based solution techniques for
the generalizations. This solution approach (i) makes it possible to apply state-of-the-art algorithms
for the obtained subproblems (in the ISA example ICA and clustering) and (ii) handles the case of
unknown dimensional sources. Our extensive numerical experiments demonstrate the robustness
and efficiency of our approach.



Chapter 1

Introduction

Sparse signal representation is among the most actively studied research areas in mathematics. In
the sparse codingframework one approximates the observations with the linear combination of a
few vectors (basis elements) from afixed dictionary[21, 22]. The general sparse coding problem,
i.e., theℓ0-norm solution that searches for the least number of basis elements, is NP-hard [23]. To
overcome this difficulty, a popular approach is to applyℓp (0 < p ≤ 1) relaxations. Thep = 1
special case, the so-called Lasso problem [20], has become particularly popular since in this case the
relaxation leads to a convex problem.

The traditional form of sparse coding does not take into account any prior information about
the structure of hidden representation (also called covariates, or code). However, usingstruc-
tured sparsity[32–48, 50–55, 57–83, 85–134, 151], that is, forcing different kind of structures
(e.g., disjunct groups, trees, or more general overlappinggroup structures) on the sparse codes
can lead to increased performances in several applications. Indeed, as it has been theoretically
proved recently structured sparsity can ease feature selection, and makes possible robust com-
pressed sensing with substantially decreased observationnumber [33, 41, 58, 99, 104, 119–121].
Many other real life applications also confirm the benefits ofstructured sparsity, for example (i)
automatic image annotation [48], learning of visual appearance-to-semantic concept representa-
tions [123], concurrent image classification and annotation [124], tag localization (assigning tags
to image regions) [125], (ii) group-structured feature selection for micro array data processing
[32, 34, 37, 38, 40, 50, 51, 53, 54, 59, 72, 86, 110, 129–131], (iii) multi-task learning problems (a.k.a.
transfer learning, joint covariate/subspace selection, multiple measurements vector model, simulta-
neous sparse approximation) [34, 36, 37, 53, 62, 70, 73, 75, 83, 92, 108, 117, 119–122, 132, 151], (iv)
fMRI (functional magnetic resonance imaging) analysis [68, 117, 126], (v) multiple kernel learning
[36,49,88–91,93], (vi) analysis of assocations between soil characteristics and forest diversity [45],
(vii) handwriting, satellite-, natural image and sentiment classification [34,44,74,75,79,95,114,127],
(viii) facial expression discrimination [39] and face recognition [76], (ix) graph labelling [69],
(x) compressive imaging [61, 71, 80, 81, 97, 99, 103], (xi) structure learning in graphical mod-
els [43,57], (xii) multi-view learning (human pose estimation) [46], (xiii) natural language process-
ing [79, 94, 116, 117], (xiv) direction-of-arrival problem[100], (xv) high-dimensional covariance
matrix estimation of stochastic processes [101], (xvi) structured sparse canonical correlation anal-
ysis [102], (xvii) Bayesian group factor analysis [105], (xviii) prostate cancer recognition [52, 54],
(xix) feature selection for birth weight- [41], house price- [67, 104, 134], wine quality- [75], and
credit risk prediction [72, 128], (xx) trend filtering of financial time series [85], (xxi) background
subtraction [99, 110, 112], (xxii) change-point detection[115]. For a recent review on structured
sparse coding methods, see [96].

All the above mentioned examples only consider the structured sparse coding problem, where
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we assume that the dictionary is already given and availableto us. A more interesting (and chal-
lenging) problem is the combination of these two tasks, i.e., learning the best structured dictionary
and structured representation. This is thestructured dictionary learning(SDL) problem, for which
one can find only a few solutions in the literature [145–150, 152]. The efficiency ofnon-convex
sparsity-inducingnorms on the dictionary has recently been demonstrated in structured sparse PCA
(principal component analysis) [146] in case ofgeneral group structures. In [148], the authors take
partition (special group structure) on the hidden covariates and explicitly limit the number of non-
zero elements in each group in the dictionary learning problem. [152] considers the optimization of
dictionaries for representations having pairwise structure on the coordinates. Dictionary learning is
carried out under the assumption of one-block sparsity for the representation (special partition group
structure with one active partition element) in [150], however in contrast to the previous works the
approach is blind, that is it can handlemissing observations. The cost function based on structure-
inducing regularization in [149] is a special case of [146].Tree based group structure is assumed
in [145], and dictionary learning is accomplished by means of the so-called proximal methods [157].
General group-structured, but convex sparsity-inducing regularizer is applied in [147] for the learn-
ing of the dictionary by taking advantage of network flow algorithms. However, as opposed to the
previous works, in [145, 147, 149] the presented dictionarylearning approach isonline, allowing a
continuous flow of observations.

This novel SDL field is appealing for (i) transformation invariant feature extraction [149], (ii)
image denoising/inpainting [145, 147, 150], (iii) multi-task learning [147], (iv) analysis of text cor-
pora [145], and (v) face recognition [146].

We are interested in structured dictionary learning algorithms that possess the following four
properties:

• They can handle general, overlapping group structures.

• The applied regularization can be non-convex and hence allow less restrictive assumptions on
the problem. Indeed, as it has been recently shown in the sparse coding literature:

– by replacing theℓ1 norm with theℓp (0 < p < 1) non-convex quasi-norm, exact recon-
struction of the sparse codes is possible with substantially fewer measurements [24,25].

– The ℓp based approach (i) provides recovery under weaker RIP (restrictive isometry
property) conditions on the dictionary than theℓ1 technique, (ii) moreover it inherits
the robust recovery property of theℓ1 method with respect to the noise and the com-
pressibility of the code [26,27].

– Similar properties also hold for certain more general non-convex penalties [28–31].

• We want online algorithms [135,144,145,147,149]:

– Online methods have the advantage over offline ones that theycan process more in-
stances in the same amount of time [162], and in many cases this can lead to increased
performance.

– In large systems where the whole dataset does not fit into the memory, online systems
can be the only solutions.

– Online techniques are adaptive: for example in recommendersystems [158] when new
users appear, we might not want to relearn the dictionary from scratch; we simply want
to modify it by the contributions of the new users.

• We want an algorithm that can handle missing observations [136, 150]. Using a collaborative
filtering [158] example, users usually do not rate every item, and thus some of the possible
observations are missing.
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Unfortunately, existing approaches in the literature can possess only two of our four requirements at
most. Ourfirst goal (Section2.1) is to formulate a general structured dictionary learning approach,
which is (i) online, (ii) enables overlapping group structures with (iii) non-convex group-structure
inducing regularization, and (iv) handles the partially observable case. We call this problemonline
group-structured dictionary learning(OSDL).

Traditional sparse coding schemes work in the finite dimensional Euclidean space. Interestingly,
however the sparse coding approach can also be extended to a more general domain, to reproducing
kernel Hilbert spaces (RKHS) [163]. Moreover, as it has beenproved recently [164, 165] certain
variants of the sparse coding problems in RKHSs are equivalent to one of the most successful, kernel
based approximation technique, the support vector machine(SVM) approach [166,167]. Application
of kernels:

• makes it possible to generalize a wide variety of linear problems to the nonlinear domain
thanks to the scalar product evaluation property of kernels, the so-called ‘kernel trick’.

• provides a uniform framework for numerous well-known approximation schemes, e.g.,
Fourier, polinomial, wavelet approximations.

• allows to define similarity measures for structured objectslike strings, genes, graphs or dy-
namical systems.

For a recent review on kernels and SVMs, see [168]. In that cited works [164, 165], however the
ǫ-insensitivity parameter of the SVMs—which only penalizesthe deviations from the target value
larger thanǫ, linearly—was transformed into ‘uniform’ sparsification,in the sense thatǫ was tran-
formed to the weight of the sparsity-inducing regularization term. Our question was, whether it is
possible to transform the insensitivityǫ into a component-wise acting,ǫ-sparse scheme. Oursecond
goalwas to answer this kernel based sparse coding problem. We focus on this topic and give positive
answer to this novel sparse coding – kernel based function approximation equivalence in Section2.2.

Beyond SVMs, multilayer perceptron (MLP) are among the mostwell-known and successful
approximation techniques. The basic idea of the MLP neural network is to approximate the target
function, which is given to us in the form of input-output pairs, as a composition of ‘simple’ func-
tions. In the traditional form of MLPs one assumes at each layer of the network (that is for the func-
tions constituting the composition) a linear function followed by a component-wise acting sigmoid
function. The parameter tuning of MLP can be carried out by the backpropagation technique. For an
excellent review on neural networks and MLPs, see [169]. However, MLPs consider transformations
only in the finite dimensional Euclidean space at each hiddenlayer. Ourthird goal was to extend
the scope of MLPs to the more general RKHS construction. Thisnovel kernel based approximation
scheme, the multilayer kerceptron network and the derivation of generalized backpropagation rules
will be in the focus of Section2.3.

Till now (Chapter2) we focused on different structured sparse dictionary learning problems, and
the closely related sparse coding, kernel approximation schemes. However, the dictionary learning
task, (a.k.a. matrix factorization [137]) is a general problem class that contains, e.g., (sparse) PCA
[142], independent component analysis (ICA) [143], independent subspace analysis (ISA) [235]1,
and (sparse) non-negative matrix factorization (NMF) [139–141], among many others. In the second
part the paper (Chapter3) we are dealing withindependent subspacebased dictionary learning, i.e.,
extensions of independent subspace analysis.

One predecessor of ISA is the ICA task. Independent component analysis [179,186] has received
considerable attention in signal processing and pattern recognition, e.g., in face representation and

1A preliminary work (without model definition) of ISA appeared in [247], where the authors searched for fetal ECG
(electro-cardiography) subspaces via ICA followed by assigning the estimated ICA elements to different ‘subspaces’ based
on domain expert knowledge.
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recognition [213, 214], information theoretical image matching [216], feature extraction of natural
images [215], texture segmentation [218], artifact separation in MEG (magneto-encephalography)
recordings and the exploration of hidden factors in financial data [217]. One may consider ICA as
a cocktail party problem: we have some speakers (sources) and some microphones (sensors), which
measure the mixed signals emitted by the sources. The task isto estimate the original sources from
the mixed observations only. For a recent review about ICA, see [143,184,185].

Traditional ICA algorithms areone-dimensionalin the sense that all sources are assumed to be
independentreal valued random variables. Nonetheless, applications in which only certain groups
of the hidden sources are independent may be highly relevantin practice, because one cannot ex-
pect that all source components are statistically independent. In this case, the independent sources
can be multidimensional. For instance, consider the generalization of the cocktail-party problem,
whereindependent groupsof people are talking about independent topics or more than one group
of musicians are playing at the party. The separation task requires an extension of ICA, which is
called multidimensional ICA [235], independent subspace analysis (ISA) [241], independent fea-
ture subspace analysis [196], subspace ICA [244] or group ICA [240] in the literature. We will
use the ISA abbreviation throughout this paper. The severalsuccessful applications and the large
number of different ISA algorithms show the importance of this field. Successful applications of
ISA in signal processing and pattern recognition include: (i) the processing of EEG-fMRI (EEG,
electro-encephalography) data [202, 236, 250] and naturalimages [210, 241], (ii) gene expression
analysis [197], (iii) learning of face view-subspaces [198], (iv) ECG (electro-cardiography) analy-
sis [201, 235, 240, 243,244,246], (v) motion segmentation [200], (vi) single-channel source separa-
tion [245], (vii) texture classification [249], (ix) actionrecognition in movies [232].

We are motivated by:

• a central result of the ICA research, the ISA separation principle.

• the continuously emerging applications using the relaxations of the traditional ICA assump-
tions.

The ISA Separation Principle. One of the most exciting and fundamental hypotheses of the
ICA research is due to Jean-François Cardoso [235], who conjectured that the ISA task can be solved
by ICA up to permutation. In other words, it is enough to cluster the ICA elements into statistically
dependent groups/subspaces to solve the ISA problem. This principle

• forms the basis of the state-of-the-art ISA solvers. While the extent of this conjecture, theISA
separation principleis still an open issue, we have recently shown sufficient conditions for
this 10-year-old open question [14].

• enables one to estimate the unknown number and the dimensions of the sources efficiently.
Indeed, let us suppose that the dimension of the individual subspaces in ISA is not known.
The lack of such knowledge may cause serious computational burden as one should try all
possible

D = d1 + . . . + dM (dm > 0, M ≤ D) (1.1)

dimension allocations (dm stands for estimation of themth subspace dimension) for the in-
dividual subspaces, whereD denotes the total source dimension. The number of these possi-
bilities is given by the so-called partition functionf(D), i.e., the number of sets of positive
integers that sum up toD. The value off(D) grows quickly with the argument, its asymptotic
behavior is described by the

f(D) ∼ eπ
√

2D/3

4D
√

3
, D →∞ (1.2)
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formula [193, 194]. Making use of the ISA separation principle, however, one can construct
large scale ISA algorithms without the prior knowledge of the subspace dimensions by clus-
tering of the ICA elements on the basis of their pairwise mutual information, see, e.g. [13].

• makes it possible to use mature algorithms for the solution of the obtained subproblems, in the
example, ICA and clustering methods.

ICA Extensions. Beyond the ISA direction, there exist numerous exciting directions relaxing
the traditional assumptions of ICA (one-dimensional sources, i.i.d. sources in time, instantaneous
mixture, complete observation), for example:

• Post nonlinear mixture: In this case the linear mixing assumption of ICA is weakened to the
composition of a linear and a coordinate-wise acting, so-called post nonlinear (PNL) model.
This is the PNL ICA problem [234]. The direction has recentlygained widespread attention,
for a review see [233].

• Complex valued sources/mixing: In the complex ICA problem,the sources and the mixing
process are both realized in the complex domain. The complex-valued computations (i) have
been present from the ‘birth’ of ICA [178, 179], (ii) show nice potentials in the analysis of
biomedical signals (EEG, fMRI), see e.g., [175–177].

• Incomplete observations: In this case certain parts (coordinates/time instants) of the mixture
are not available for observation [219,220].

• Temporal mixing (convolution): Another extension of the original ICA task is the blind source
deconvolution (BSD) problem. Such a problem emerges, for example, at a cocktail party
being held in anechoicroom, and can be modelled by a convolutive mixture relaxing the
instantaneous mixing assumption of ICA. For an excellent review on this direction and its
applications, see [192].

• Nonparametric dynamics: The general case of sources with unknown, nonparametric dynam-
ics is quite challenging, and very few works focused on this direction [174,240].

These promising ICA extensions may however often be quite restrictive:

• they usually handle only one type of extensions, e.g.,

– they allow temporal mixing (BSD), but only for one-dimensional independent sources.
Similarly, the available methods for complex and incompletely observable models are
only capable of dealing with the simplest ICA model.

– the current nonparametric techniques focus on

∗ the stationary case / constrained mixing case, and
∗ assume equal and known dimensional hidden independent sources.

• current approaches in the ICA problem family do not allow theapplication of con-
trol/exogenous variables, or active learning of the dynamical systems. The motivation for con-
sidering this combination is many-folded. ICA/ISA based models search for hidden variables,
but they do not include interaction with environment, i.e.,the possibility to apply exogenous
variables. Control assisted data miningis of particular interest for real world applications.
ICA and its extensions have already been successfully applied to certain biomedical data anal-
ysis (EEG, ECG, fMRI) problems. The application of control variables in these problems
may lead to a new generation of interaction paradigms. By taking another example, in finan-
cial applications, exogenous indicator variables can playthe role of control leading to new
econometric and financial prediction techniques.
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These are the reasons that motivate us to (i) develop novel ISA extensions, ISA based dictionary
learning approaches (controlled, incompletely observable, complex, convolutive, nonparametric),
where (ii) the dimension of the hidden sources may not be equal/known, and (iii) derive separation
principle based solution techniques for the problems. Thisis thegoalof Chapter3.

The paper is structured as follows: In Chapter2 we focus on (structured) sparse coding schemes,
and related kernel based approximation methods. Our novel ISA based dictionary learning ap-
proaches are presented in Chapter3. The efficiency of the structured sparse and ISA based methods
are numerically illustrated in Chapter4 and Chapter5, respectively. Conclusions are drawn in Chap-
ter 6. Longer technical details are collected in AppendixA. Abbreviations of the paper are listed in
AppendixB, see TableB.1.

Notations. Vectors have bold faces (a), matrices are written by capital letters (A). Polynomials
andD1×D2 sized polynomial matrices are denoted byR[z] andR[z]D1×D2 , respectively.ℜ stands
for the real part,ℑ for the imaginary part of a complex number. Theith coordinate of vectora is ai,
diag(a) denotes the diagonal matrix formed from vectora. Pointwise product of vectorsa,b ∈ Rd

is denoted bya ◦ b = [a1b1; . . . ; adbd]. b = [a1; . . . ;aK ] ∈ Rd1+...+dK denotes the concatenation
of vectorsak ∈ Rdk . A ⊗ B is the Kronecker product of matrices, that is[aijB]. The uniquely
existing Moore-Penrose generalized inverse of matrixA ∈ RD1×D2 is A− ∈ RD2×D1 . For a set
(number),| · | denotes the number of elements in the set, (the absolute value of the number). For
a ∈ R

d,A ∈ R
d×D and for setO ⊆ {1, . . . , d}, aO ∈ R

|O| denotes the coordinates of vector
a in O, whereasAO ∈ R|O|×D contains the rows of matrixA in O. AT is the transposed of
matrix A. A∗ is the adjoint of matrixA. I and0 stand for the identity and the null matrices,
respectively.1 denotes the vector of only1s. OD = {A ∈ RD×D : AAT = I} is the orthogonal
group. UD = {A ∈ CD×D : AA∗ = I} stands for the unitary group. Operationmax and
relations≥,≤ act component-wise on vectors. The abbrevationl ≤ x1, . . . ,xN ≤ u stands for
l ≤ x1 ≤ u, . . . , l ≤ xN ≤ u. For positive numbersp, q, (i) (quasi-)normℓq of vectora ∈
R

d is ‖a‖q = (
∑d

i=1 |ai|q)
1
q , (ii) ℓp,q-norm (a.k.a. group norm, mixedℓq/ℓp norm) of the same

vector is‖a‖p,q = ‖[‖aP1
‖q, . . . , ‖aPK

‖q]‖p, where{Pi}Ki=1 is a partition of the set{1, . . . , d}.
Sd

p = {a ∈ Rd : ‖a‖p ≤ 1} is the unit sphere associated withℓp in Rd. For any given set
systemG, elements of vectora ∈ R|G| are denoted byaG, whereG ∈ G, that isa = (aG)G∈G.
ΠC(x) = argminc∈C‖x − c‖2 denotes the orthogonal projection to the closed and convex set
C ⊆ Rd, wherex ∈ Rd. Partial derivative of functiong with respect to variablex at pointx0 is
∂g
∂x

(x0) andg′(x0) is the derivative ofg atx0. Rd
+ = {x ∈ Rd : xi ≥ 0 (∀i)} stands for the non-

negative ortant inRd. Rd
++ = {x ∈ Rd : xi ≥ 0 (∀i)} denotes the positive ortant.N = {0, 1, . . .}

is the set of natural numbers.R++ andN++ denote the set of positive real and the positive natural
numbers, respectively.χ is the characteristic function. The entropy of a random variable is denoted
by H , E is the expectation andI(·, . . . , ·) denotes the mutual information of its arguments. For sets,
× and\ stand for direct product and difference, respectively. Fori ≤ j integers,[i, j] is a shorthand
for the interval{i, i + 1, . . . , j}.
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Chapter 2

Theory – Group-Structured
Dictionary Learning

In this chapter we are dealing with the dictionary learning problem of group-structured sparse codes
(Section2.1) and sparse coding – kernel based approximation equivalences (Section2.2). We also
present a novel, kernel based approximation scheme in Section 2.3, we embed support vector ma-
chines to multilayer perceptrons.

2.1 Online Group-Structured Dictionary Learning

In this section, we focus on the problem of online learning ofgroup-structured dictionaries. We
define the online group-structured dictionary learning (OSDL) task in Section2.1.1. Section2.1.2is
dedicated to our optimization scheme solving the OSDL problem. Numerical examples illustrating
the efficiency of our approach are given in Chapter4.

2.1.1 Problem Definition

We define the online group-structured dictionary learning (OSDL) task [2, 3] as follows. Let the
dimension of our observations be denoted bydx. Assume that in each time instant (i = 1, 2, . . .)
a setOi ⊆ {1, . . . , dx} is given, that is, we know which coordinates are observable at time i, and
our observation isxOi

∈ R|Oi|. We aim to find a dictionaryD ∈ Rdx×dα that can approximate the
observationsxOi

well from the linear combination of its columns. We assume that the columns of
D belong to a closed, convex, and bounded setD = ×dα

i=1Di. To formulate the cost of dictionary
D, we first consider afixed time instanti, observationxOi

, dictionaryD, and define the hidden
representationαi associated to this triple (xOi

,D, Oi). Representationαi is allowed to belong
to a closed, convex setA ⊆ Rdα (αi ∈ A) with certain structural constraints. We express the
structural constraint onαi by making use of a givenG group structure, which is a set system (also
called hypergraph) on{1, . . . , dα}. We also assume that a set of linear transformations{AG ∈
RdG×dα}G∈G is given for us. We will use them as parameters to define the structured regularization
on the codes. Representationα belonging to a triple(xO ,D, O) is defined as the solution of the
structured sparse coding task

l(xO,DO) = lA,κ,G,{AG}G∈G
,η(xO,DO) (2.1)

= min
α∈A

[

1

2
‖xO −DOα‖22 + κΩ(α)

]

, (2.2)
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wherel(xO,DO) denotes the loss,κ > 0, and

Ω(y) = ΩG,{AG}G∈G
,η(y) = ‖(‖AGy‖2)G∈G‖η (2.3)

is the group structure inducing regularizer associated toG and{AG}G∈G, andη ∈ (0, 2). Here, the
first term of (2.2) is responsible for the quality of the approximation on the observed coordinates,
and (2.3) performs regularization defined by the group structure/hypergraphG and the{AG}G∈G

linear transformations. The OSDL problem is defined as the minimization of the cost function:

min
D∈D

ft(D) :=
1

∑t
j=1(j/t)ρ

t
∑

i=1

(

i

t

)ρ

l(xOi
,DOi

), (2.4)

that is, we aim to minimize the average loss of the dictionary, whereρ is a non-negative forgetting
rate. Ifρ = 0, the classical average

ft(D) =
1

t

t
∑

i=1

l(xOi
,DOi

) (2.5)

is obtained. Whenη ≤ 1, then for a code vectorα, the regularizerΩ aims at eliminating the
AGα terms (G ∈ G) by making use of the sparsity-inducing property of the‖·‖η norm [146]. For
Oi = {1, . . . , dx} (∀i), we get the fully observed OSDL task.

Below we list a few special cases of the OSDL problem:

• Special cases forG:

– If |G| = dα andG = {{1}, {2}, . . . , {dα}}, then no dependence is assumed between
coordinatesαi, and the problem reduces to the classical task of learning ‘dictionaries
with sparse codes’ [138].

– If for all g, h ∈ G, g ∩ h 6= ∅ impliesg ⊆ h or h ⊆ g, we have a hierarchical group
structure [145]. Specially, if|G| = dα andG = {desc1, . . . , descdα

}, wheredesci stands
for theith node (αi) of a tree and its descendants, then we get a traditional tree-structured
representation.

– If |G| = dα, andG = {NN1, . . . , NNdα
}, whereNNi denotes the neighbors of theith

point (αi) in radiusr on a grid, then we obtain a grid representation [149].

– If G = {{1}, . . . , {dα}, {1, . . . , dα}}, then we have an elastic net representation [52].

– G = {{[1, k]}k∈{1,...,dα−1}, {[k, dα]}k∈{2,...,dα}} intervals lead to a 1D contiguous,
nonzero representation. One can also generalize the construction to higher dimen-
sions [55].

– If G is a partition of{1, . . . , dα}, then non-overlapping group structure is obtained. In
this case, we are working with block-sparse (a.k.a. group Lasso) representation [41].

• Special cases for{AG}G∈G:

– Let (V, E) be a given graph, whereV andE denote the set of nodes and edges, respec-
tively. For eache = (i, j) ∈ E, we also introduce (wij , vij ) weight pairs. Now, if we
set

Ω(y) =
∑

e=(i,j)∈E:i<j

wij |yi − vijyj |, (2.6)
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then we obtain the graph-guided fusion penalty [53]. The groupsG ∈ G correspond to
the(i, j) pairs, and in this case

AG = [wij ,−wijvij ] ∈ R
1×2. (2.7)

As a special case, for a chain graph we get the standard fused Lasso penalty by setting
the weights to one [54]:

Ω(y) = FL(y) =

dα−1
∑

j=1

|yj+1 − yj |. (2.8)

– The fused Lasso penalty can be seen as a zero-order difference approach. One can also
take first order

Ω(y) =

dα−1
∑

j=2

| − yj−1 + 2yj − yj+1| (2.9)

differences arriving at linear trend filtering (also calledℓ1 trend filtering) [84], or its
higher order variants lead to polynomial filtering techniques.

– By restricting theG group structure to have a single element (|G| = 1) andη to 1, we
obtain the

Ω(y) = ‖Ay‖1 (2.10)

generalized Lasso penalty [85,86].

– Let∇y ∈ Rd1×d2 denote the discrete differential of an imagey ∈ Rd1×d2 at position
(i, j) ∈ {1, . . . , d1} × {1, . . . , d2}:

(∇y)ij =
[

(∇y)1ij ; (∇y)2ij
]

, (2.11)

where

(∇y)1ij = (yi+1,j − yi,j)χ{i<d1}, (2.12)

(∇y)2ij = (yi,j+1 − yi,j)χ{j<d2}. (2.13)

Using these notations, the total variation ofy is defined as follows [56]:

Ω(y) = ‖y‖TV =

d1
∑

i=1

d2
∑

j=1

‖(∇y)ij‖2 . (2.14)

• Special cases forD, A:

– Di = Sdx

2 (∀i), A = Rdα : columns of dictionaryD are constrained to be in the Eu-
clidean unit sphere.

– Di = Sdx

2 ∩R
dx

+ (∀i), A = R
dα

+ : This is the structured non-negative matrix factorization
(NMF) problem.

– Di = Sdx

1 ∩R
dx

+ (∀i), A = R
dα

+ : This is the structured mixture-of-topics problem.

– BeyondRd, Sd
1 , Sd

2 , Sd
1 ∩ Rd

+, andSd
2 ∩ Rd

+, several other constraints can also be moti-
vated forDi andA. In the above mentioned examples, the group-norm, elastic net, and
fused Lasso constraints have been applied in a ‘soft’ manner, with the help of theΩ reg-
ularization. However, we can enforce these constraints in a‘hard’ way as well: During
optimization (Section2.1.2), we can exploit the fact that the projection to theDi andA

constraint sets can be computed efficiently. Such constraint sets include [135,155,156],
e.g., the
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∗ {c : ‖c‖p,q ≤ 1} group norms,

∗ {c : γ1 ‖c‖1 + γ2 ‖c‖22 ≤ 1} elastic net, and

∗ {c : γ1 ‖c‖1 + γ2 ‖c‖22 + γ3FL(c) ≤ 1} fused Lasso (γ1, γ2, γ3 > 0).

– When applying group norms for both the codesα and the dictionaryD, we arrive at a
double structured dictionary learningscheme.

In sum, the OSDL model provides a unified dictionary learningframework for several actively
studied structured sparse coding problems, naturally extends them to incomplete observations, and
allows non-convex regularization as well.

2.1.2 Optimization

We consider the optimization of cost function (2.4), which is equivalent to the joined optimization
of dictionaryD and coefficients{αi}ti=1:

argmin
D∈D,{αi∈A}t

i=1

ft(D, {αi}ti=1), (2.15)

where

ft =
1

∑t
j=1(j/t)ρ

t
∑

i=1

(

i

t

)ρ [
1

2
‖xOi

−DOi
αi‖22 + κΩ(αi)

]

. (2.16)

Assume that our samplesxi are emitted from an i.i.d. sourcep(x), and we can observexOi
. We ex-

ecute the online optimization of dictionaryD (i.e., the minimization of (2.16)) through alternations:

1. For the actual samplexOt
we optimize hidden representationαt belonging toxOt

using our
estimated dictionaryDt−1 and solving the minimization task

αt = argmin
α∈A

[

1

2
‖xOt

− (Dt−1)Ot
α‖22 + κΩ(α)

]

. (2.17)

2. We use hidden representations{αi}ti=1 and updateDt−1 by means of quadratic optimization

f̂t(Dt) = min
D∈D

ft(D, {αi}ti=1). (2.18)

In the next subsections, we elaborate on the optimization ofrepresentationα in (2.17) and the
dictionaryD in (2.18).

Representation update (α)

Objective function (2.17) is not convex inα. We use a variational method to find a solution: (i) we
rewrite the termΩ by introducing an auxiliary variable (z) that converts the expression to a quadratic
one inα, and then (ii) we use an explicit solution toz and continue by iteration. Namely, we use
Lemma 3.1 of [146]: for anyy ∈ Rd andη ∈ (0, 2)

‖y‖η = min
z∈R

d
++

[

1

2

d
∑

i=1

y2
j

zj
+

1

2
‖z‖β

]

, (2.19)

whereβ = η
2−η , and it takes its minimum value at

z∗i = |yi|2−η‖y‖η−1
η . (2.20)
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We apply this relation to the termΩ in (2.17) (see Eq. (2.3)), and have that

2Ω(α) = min
z=[(zG)G∈G]∈R

|G|
++

[

∑

G∈G

∥

∥AGα
∥

∥

2

2

zG
+ ‖z‖β

]

(2.21)

= min
z∈R

|G|
++

[

αT Hα + ‖z‖β
]

, (2.22)

where
H = H(z) =

∑

G∈G

(AG)T AG/zG. (2.23)

Inserting (2.22) into (2.17) we get the optimization task:

arg min
α∈A,z∈R

|G|
++

J(α, z) =
1

2
‖xOt

− (Dt−1)Ot
α‖22 + κ

1

2

(

αTHα + ‖z‖β
)

. (2.24)

One can solve the minimization ofJ(α, z) by alternations:

1. For givenz: we can use a least mean square solver forα whenA = Rdα in (2.24), or a non-
negative least square solver whenA = R

dα

+ . For the general case, the cost functionJ(α, z)
is quadratic inα and is subject to convex and closed constraints (α ∈ A). There are standard
solvers for this case [153,154], too.

2. For givenα: According to (2.19), the minimumz =
(

zG
)

G∈G
can be found as

zG = ‖AGα‖2−η
2 ‖(‖AGα‖2)G∈G‖η−1

η . (2.25)

Note that for numerical stability, smoothing

z = max(z, ε) (0 < ε≪ 1) (2.26)

is suggested in practice.

Dictionary update (D)

We use block-coordinate descent (BCD) [154] for the optimization of (2.18). This optimization is
not influenced by the regularizerΩ(α), since it is independent ofD. Thus the task (2.18) is similar
to the fully observable case [135], where forOi = {1, . . . , dx} (∀i) it has been shown that the BCD
method can work without storing all of the vectorsxi, αi (i ≤ t). Instead, it is sufficient to keep
certain statistics that characterizef̂t, which can be updated online. This way, optimization off̂t in
(2.18) becomes online, too. As it will be elaborated below, (i) certain statistics describinĝft can also
be derived for the partially observed case, which (ii) can beupdated online with a single exception,
and (iii) a good approximation exists for that exception (see Chapter4).

During the BCD optimization, columns ofD are minimized sequentially: other columns than
the actually updateddj (i.e.,di, i 6= j) are kept fixed. The function̂ft is quadratic indj . During
minimization we search for its minimum (denoted byuj) and project the result to the constraint set

Dj (dj ← ΠDj
(uj)). To find thisuj , we solve the equation∂f̂t

∂dj
(uj) = 0, which leads (as we show

it in AppendixA.1.1-A.1.2) to the following linear equation system

Cj,tuj = bj,t − ej,t + Cj,tdj , (2.27)
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whereCj,t ∈ Rdx×dx is a diagonal coefficient matrix, and

Cj,t =
t
∑

i=1

(

i

t

)ρ

∆iα
2
i,j , (2.28)

Bt =

t
∑

i=1

(

i

t

)ρ

∆ixiα
T
i = [b1,t, . . . ,bdα,t], (2.29)

ej,t =

t
∑

i=1

(

i

t

)ρ

∆iDαiαi,j . (2.30)

Here∆i represents a diagonal matrix corresponding toOi (elementj in the diagonal is1 if j ∈ Oi,
and0 otherwise).Cj,ts∈ Rdx×dx andBt ∈ Rdx×dα take the form of

Mt =
t
∑

i=1

(

i

t

)ρ

Ni (2.31)

matrix series/statistics, and thus (as we detail it in Appendix A.1.1-A.1.2) they can be updated as

Cj,t = γtCj,t−1 + ∆tα
2
tj , Bt = γtBt−1 + ∆txtα

T
t , (2.32)

with initialization Cj,0 = 0, B0 = 0 for the case ofρ = 0, and with arbitrary initialization for
ρ > 0, whereγt =

(

1− 1
t

)ρ
. For the fully observed case (∆i = I, ∀i), one can pull outD from

ej,t ∈ Rdx , the remaining part is of the formMt, and thus it can be updated online giving rise to
the update rules in [135], see AppendixA.1.1-A.1.2. In the general case this procedure cannot be
applied (matrixD changes during the BCD updates). According to our numericalexperiences (see
Chapter4) an efficient online approximation forej,t is

ej,t = γtej,t−1 + ∆tDtαtαt,j , (2.33)

with the actual estimation forDt and with initializationej,0 = 0 (∀j). We note that

1. convergence is often speeded up if the updates of statistics

{{Cj,t}dα

j=1,Bt, {ej,t}dα

j=1} (2.34)

are made in batches ofR samplesxOt,1
, . . . ,xOt,R

(in R-tuple mini-batches). The pseudocode
of the OSDL method with mini-batches is presented in Table2.1-2.3. Table2.2calculates the
representation for a fixed dictionary, and Table2.3 learns the dictionary using fixed represen-
tations. Table2.1invokes both of these subroutines.

2. The trick in the representation update was that the auxiliary variablez ‘replaced’ theΩ term
with a quadratic one inα. One could use furtherg(α) regularizers augmentingΩ in (2.16)
provided that the correspondingJ(α, z)+g(α) cost function (see Eq. (2.24)) can be efficiently
optimized inα ∈ A.

2.2 Generalized Support Vector Machines andǫ-Sparse Repre-
sentations

In this section we present an extension of sparse coding in RKHSs, and show its equivalence to a
generalized family of SVMs. The structure of the section is as follows: we briefly summarize the
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Table 2.1: Pseudocode: Online Group-Structured Dictionary Learning.
Algorithm (Online Group-Structured Dictionary Learning)

Input of the algorithm
xt,r ∼ p(x), (observation:xOt,r

, observed positions:Ot,r),
T (number of mini-batches),R (size of the mini-batches),
G (group structure),ρ (≥ 0 forgetting factor),
κ (> 0 tradeoff-),η (∈ (0, 2) regularization constant),
{AG}G∈G (linear transformations),A (constraint set forα),
D0 (initial dictionary),D = ×dα

i=1Di (constraint set forD)
inner loop constants:ǫ (smoothing),Tα, TD (number of iterations).

Initialization
Cj,0 = 0 ∈ Rdx , ej,0 = 0 ∈ Rdx (j = 1, . . . , dα), B0 = 0 ∈ Rdx×dα .

Optimization
for t = 1 : T

Draw samples for mini-batch fromp(x): {xOt,1
, . . . ,xOt,R

}.
Compute the{αt,1 . . . , αt,R} representations:

αt,r=Representation(xOt,r
, (Dt−1)Ot,r

, G, {AG}G∈G, κ, η, A, ǫ, Tα),
(r = 1, . . . , R).

Update the statistics of the cost function:
γt =

(

1− 1
t

)ρ
,

Cj,t = γtCj,t−1 + 1
R

∑R
r=1 ∆t,rα

2
t,r,j , j = 1, . . . , dα,

Bt = γtBt−1 + 1
R

∑R
r=1 ∆t,rxt,rα

T
t,r,

ej,t = γtej,t−1, j = 1, . . . , dα. %(part-1)
ComputeDt using BCD:

Dt=Dictionary({Cj,t}dα

j=1,Bt, {ej,t}dα

j=1, D, TD, {Ot,r}Rr=1, {αt,r}Rr=1).
Finish the update of{ej,t}dα

j=1-s: %(part-2)

ej,t = ej,t + 1
R

∑R
r=1 ∆t,rDtαt,rαt,r,j , j = 1, . . . , dα.

end
Output of the algorithm

DT (learned dictionary).
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Table 2.2: Pseudocode forrepresentationestimation using fixed dictionary.
Algorithm (Representation)

Input of the algorithm
x (observation),D = [d1, . . . ,ddα

] (dictionary),G (group structure),
{AG}G∈G (linear transformations),κ (tradeoff-),η (regularization constant),
A (constraint set forα), ǫ (smoothing),Tα (number of iterations).

Initialization
α ∈ Rdα .

Optimization
for t = 1 : Tα

Computez: zG = max

(

∥

∥AGα
∥

∥

2−η

2

∥

∥

∥

(∥

∥AGα
∥

∥

2

)

G∈G

∥

∥

∥

η−1

η
, ǫ

)

, G ∈ G.

Computeα:
computeH: H =

∑

G∈G
(AG)TAG/zG,

α = argmin
α∈A

[

‖x−Dα‖22 + καTHα
]

.

end
Output of the algorithm

α (estimated representation).

basic properties that will be used throughout the section ofkernels with the associated notion of
RKHSs and SVMs in Section2.2.1and Section2.2.2, respectively. In Section2.2.3we present our
equivalence result.

Let us assume that we are given{(xi, yi)}li=1 input-output sample pairs, wherexi ∈ X (input
space) andyi ∈ R. Our goal is to approximate thex 7→ y relation. One can chose the approximating
function from different function classes. In the sequel, wewill focus on approximations, where this
function class is a so-called reproducing kernel Hilbert space.

2.2.1 Reproducing Kernel Hilbert Space

Below, we briefly summarize the concepts of kernel, feature map, feature space, reproducing kernel,
reproducing kernel Hilbert space and Gram matrix.

Let X be non-empty set. Then a functionk : X×X 7→ R is called akernelonX if there exists a
Hilbert spaceH and a mapϕ : X 7→ H such that for allx,x′ ∈ X we have

k(x,x′) = 〈ϕ(x), ϕ(x′)〉
H

. (2.35)

We callϕ a feature mapandH a feature space ofk. Given a kernel neither the feature map, nor the
feature space are uniquely determined. However, one can always construct a canonical feature space,
namely the reproducing kernel Hilbert space (RKHS) [163]. Let us now recall the basic theory of
these spaces.

Let X be non-empty set, andH be a Hilbert space overX, i.e., a Hilbert space which consists of
functions mapping fromX.

• The spaceH is called aRKHSover X if for all x ∈ X the Dirac functionalδx : H 7→ R

defined byδx(f) = f(x), f ∈ H, is continuous.

• A functionk : X × X 7→ R is called a reproducing kernel ofH if we havek(·,x) ∈ H for all
x ∈ X and thereproducing property

f(x) = 〈f(·), k(·,x)〉
H

, (2.36)
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Table 2.3: Pseudocode fordictionaryestimation using fixed representations.
Algorithm (Dictionary)

Input of the algorithm
{Cj}dα

j=1,B = [b1, . . . ,bdα
], {ej}dα

j=1 (statistics of the cost function),
D = ×dα

i=1Di (constraint set forD), TD (number ofD iterations),
{Or}Rr=1(equivalent to{∆r}Rr=1),
{αr}Rr=1 (observed positions, estimated representations).

Initialization
D = [d1, . . . ,ddα

].
Optimization

for t = 1 : TD

for j = 1 : dα %update thejth column ofD
Compute ‘{ej}dα

j=1’-s:

e
temp
j = ej + 1

R

∑R
r=1 ∆rDαrαr,j .

Computeuj solving the linear equation system:
Cjuj = bj − e

temp
j + Cjdj .

Projectuj to the constraint set:
dj = ΠDj

(uj).
end

end
Output of the algorithm

D (estimated dictionary).

holds for allx ∈ X andf ∈ H.

The reproducing kernels are kernels in the sense of (2.35) sinceϕ : X 7→ H defined byϕ(x) =
k(·,x) is a feature map ofk. A RKHS space can be uniquely identified by itsk reproducing kernel,
hence in the sequel we will use the notationH = H(k). TheGram matrixof k on the point set
{x1, . . . ,xl} (xi ∈ X, ∀i) is defined as

G = [Gij ]
l
i,j=1 = [k(xi,xj)]

l
i,j=1. (2.37)

An important property of RKHSs, is that the scalar products in the feature space can be computed
implicitly by means of the kernel. Indeed, let us suppose that w ∈ H = H(k) has anexpansionof
the form

w =

N
∑

j=1

αjϕ(zj), (2.38)

whereαj ∈ R andzj ∈ X. Then

fw(x) = 〈w, ϕ(x)〉
H

=

〈

N
∑

j=1

αjϕ(zj), ϕ(x)

〉

H

(2.39)

=

N
∑

j=1

αj 〈ϕ(zj), ϕ(x)〉
H

=

N
∑

j=1

αjk(zj ,x), (2.40)

i.e., functionfw can be evaluated by means of coefficientsαj , sampleszj and the kernelk without
explicit reference to representationϕ(x). This technique is called thekernel trick. In Table2.4we
list some well-known kernels.
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Table 2.4: Kernel examples.
Name Kernel (k) Assumption
linear kernel k(x,y) = 〈x,y〉
RBFa kernel k(x,y) = e−

‖x−y‖‖2

2σ2 σ ∈ R++

Mahanalobis kernel k(x,y) = e−(x−y)T Σ−1(x−y) Σ = diag
(

σ2
1 , . . . , σ2

d

)

polynomial kernel k(x,y) = 〈x,y〉p p ∈ N++

complete polynomial kernelk(x,y) = (〈x,y〉 + c)
p

p ∈ N++, c ∈ R++

Dirichlet kernel k(x, y) =
sin((N+ 1

2 )(x−y))
sin(x−y

2 )
N ∈ N

aRBF stands for radial basis function.

2.2.2 Support Vector Machine

Now, we present the concept of support vector machines (SVM). In the SVM framework the ap-
proximating function for the{(xi, yi)}li=1 samples are based on aH = H(k) RKHS, and takes the
form

fw,b(x) = 〈w, ϕ(x)〉
H

+ b, (2.41)

Although this functionfw,b is nonlinear as anX 7→ R mapping, it is a linear (affine) function of the
feature representationϕ(x). For different choices of RKHSH, fw,b may realize, e.g., polinomial,
Fourier, or even infinite dimensional feature representations.

The cost function of the SVM regression is

H(w, b) = C

l
∑

i=1

|yi − fw,b(xi)|ǫ +
1

2
‖w‖2

H
→ min

w∈H,b∈R

, (2.42)

whereC > 0 and
|r|ǫ = {0, if |r| ≤ ǫ; |r| − ǫ otherwise} (2.43)

is theǫ-insensitive cost. In (2.42), the first term is responsible for the quality of approximation on the
sample points{(xi, yi)}li=1 in ǫ-insensitive sense; the second term corresponds to a regularization
by the‖w‖2

H
= 〈w,w〉

H
squared norm, andC balances between the two terms.

Exploiting the special form of the SVM cost (2.42) and the representation theorem in RKHSs
[170], the optimization can be executed and functionfw,b can be computed (even for infinite dimen-
sional feature representations) by solving the dual of (2.42), a quadratic programming (QP) problem,
which takes the form [168]

1

2
(d∗ − d)

T
G (d∗ − d)− (d∗ − d)

T
y + (d∗ + d)

T
ǫ1→ min

d∗∈Rl,d∈Rl
, (2.44)

subject to

{

C1 ≥ d∗,d ≥ 0

(d∗ − d)
T

1 = 0

}

,

whereG = [Gij ]
l
i,j=1 = [k(xi,xj)]

l
i,j=1 is the Gram matrix of the{xi}li=1 samples.

2.2.3 Equivalence of Generalized Support Vector Machines and ǫ-Sparse
Coding

Having the notions of SVM and RKHS at hand, we are now able to focus on sparse coding problems
in RKHSs. Again, it is assumed that we are givenl samples ({(xi, yi)}li=1). First, we focus on
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the noiseless case, i.e., it is assumed thatf(xi) = yi (∀i) for a suitablef ∈ H. In the noiseless
case, [164] has recently formulated a sparse coding problemin RKHSs as the optimization problem

1

2

∥

∥

∥

∥

∥

f(·)−
l
∑

i=1

aik(·,xi)

∥

∥

∥

∥

∥

2

H

+ ǫ ‖a‖1 → min
a∈Rl

, (2.45)

whereǫ > 0. (2.45) is an extension of the Lasso problem [20]: the second‖a‖1 induces sparsity.
However, as opposed to the standard Lasso cost the first term measures the approximation error on
training sample making use of the‖·‖2H RKHS norm and not the standard Euclidean one. Let us
further assume that〈f, 1〉

H
= 01 and for the tradeoff parameter of SVM,C →∞. Let us decompose

the searched coefficienta into its positive and negativ part, i.e.,

a = a+ − a−, (2.46)

wherea+,a− ≥ 0 anda+◦a− = 0. [164] proved that in this case, the (2.45) and (2.44) problems are
equivalent, in the sense, that the solution of (2.45), the (a+,a−) pair is identitical to that of (d∗,d),
the optimal solution of the dual SVM problem. The equivalence of sparse coding and SVMs can
also be extended to the noisy case by considering a larger RKHS space encapsulating the noise
process [165].

Both works [164,165] however transform the insensitivity parameter (ε) into a ‘uniform’ sparsi-
fication, that is into the weight of the sparsity-inducing regularization term (compare, e.g., (2.45) and
(2.44)). Our question was, whether it is possible to transform theinsensitivityǫ into component-wise
sparsity-inducing regularization. To address this problem, we first define the extended(c, e)-SVM
and(p, s)-sparse tasks, then the correspondence of these two problems enabling component-wise
ǫ-sparsity inducing is derived.

The (c, e)-SVM Task

Below, we introduce an extended SVM problem family. For notational simplicity, instead of ap-
proximating in semi-parametric form (e.g.,g + b, whereg ∈ H), we shall deal with the so-called
non-parametric scheme (g ∈ H). This approach is also well grounded by the representer theorem of
kernel based approximations [170].

The usual SVM task, (2.42) is modified as follows:

1. We approximate in the formfw(x) = 〈w, ϕ(x)〉
H

.

2. We shall use approximation errors and weights that may differ for each sample point.

Introducing vectore for the ǫ-insensitive costs andc for the weights, respectively, the generalized
problem is defined as:

l
∑

i=1

ci |yi − fw(xi)|ei
+

1

2
‖w‖2

H
→ min

w∈H
, (c > 0, e ≥ 0). (2.47)

This problem is referred to as the(c, e)-SVM task. The original task of Eq. (2.42) corresponds to the
particular choice of(C1, ǫ1) andb = 0. Alike to the original SVM problem, the(c, e)-SVM task
also has its quadratic equivalent in the dual space, which isas follows

1

2
(d∗ − d)T

G (d∗ − d)− (d∗ − d)T
y + (d∗ + d)T

e→ min
d∗∈Rl,d∈Rl

, (2.48)

subject to{ c ≥ d∗,d ≥ 0 },
1 This restriction gives rise to constraint

Pl
i=1

ai = 0.
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whereG denotes the Gram matrix of kernelk on the{xi}li=1 sample points. Moreover, the optimal
w and thefw(x) regression function can be expressed making use of the obtained (d,d∗) dual
solution as

w =

l
∑

i=1

(di − d∗i )ϕ(xi), (2.49)

fw(x) =

〈

l
∑

i=1

(di − d∗i )ϕ(xi), ϕ(x)

〉

H

=

l
∑

i=1

(di − d∗i )k(x,xi). (2.50)

Let us notice that the optimal solutionfw(·) can be expressed as the linear combination ofk(·,xi)s.
This is the form that is guaranteed by the representer theorem [170] under mild conditions on the
cost function–the coefficient are of course always problem specific.

The (p, s)-Sparse Task

Below, we introduce an extended sparse coding scheme in RKHSs. Indeed, let us consider the
optimization problem

F (a) =
1

2

∥

∥

∥

∥

∥

f(·)−
l
∑

i=1

aik(·,xi)

∥

∥

∥

∥

∥

2

H

+
l
∑

i=1

pi |ai|si
→ min

a∈Rl
, (p > 0, s ≥ 0) (2.51)

whose goal is to approximate objective functionf ∈ H = H(k) on the sample points{xi, yi}li=1.
This problem is referred to as thep-weighted ands-sparse task, or the(p, s)-sparse task, for short.
For the particular choice of(ǫ1,0) we get back the sparse representation form of Eq. (2.45).

Correspondence of the(c, e)-SVM and (p, s)-Sparse Problems

One can derive a correspondence between the(c, e)-SVM and (p, s)-sparse problems. Our re-
sult [19], which achieves component-wiseǫ-sparsity inducing, is summarized in the following propo-
sition:

Proposition 1. Let X denote a non-empty set, letk be a reproducing kernel onX, and let us given
samples{xi, yi}li=1, wherexi ∈ X, yi ∈ R. Assume further that the values of the RKHS target
functionf ∈ H = H(k) can be observed in pointsxi (f(xi) = yi) and letfw(x) = 〈w, ϕ(x)〉

H
.

Then the duals of the(c, e)-SVM task [(2.47)] and that of the(p, s)-sparse task [(2.51)] can be
transformed into each other by the generalized inverseG− of the Gram matrixG = [Gi,j ]

l
i,j=1 =

[k(xi,xj)]
l
i,j=1 via (d∗,d,G,y) ↔ (d+,d−,G−GG−,G−y) = (d+,d−,G−,G−y). [For

proof, see AppendixA.2.]

2.3 Multilayer Kerceptron

Now, we embed support vector machines to multilayer perceptrons. In Section2.3.1 we briefly
introduce multilayer perceptrons (MLP). We present our novel multilayer kerceptron architecture
in Section2.3.2. In Section2.3.3, we extend the backpropagation method of MLPs to multilayer
kerceptrons.
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2.3.1 Multilayer Perceptron

The multilayer perceptron (MLP) network [169] is a multilayer approximating scheme, where each
layer of the network performs the nonlinear mapping

x 7→ g(Wx). (2.52)

These ‘simple’ mappings are the composition of linear transformationW, followed by the differen-
tiable, nonlinear mappingg. Typical choice forg is a coordinate-wise acting sigmoid function. In
the MLP task, the goal is to tune matricesW of the network to approximate the sampled input-output
mapping given by input-output training pairs{x(t),d(t)}, wherex(t) ∈ X = Rd1 , d(t) ∈ Rd2 . In
an adaptive approach, the MLP task is to continuously minimize the instantaneous squared error
function

ε2(t) = ‖d(t)− y(t)‖22 → min
W1,...,WL

, (2.53)

wherey(t) ∈ R
d2 denotes the output of the network at timet, the estimation ford(t). The optimiza-

tion of (2.53) can be carried out by, e.g., making use of the stochastic gradient descent technique. In
the resulting optimization, the errors for a given layer (Wl) are propagated back from the subsequent
layer (Wl+1), this is the well-known backpropagation algorithm.

2.3.2 The Multilayer Kerceptron Architecture

Now, we embed support vector machines to MLPs. To do so, first let us notice that the mapping of
a general MLP layer [(2.52)] can be written as

x 7→ g

















...
〈wi,x〉

...

















, (2.54)

wherewT
i denotes theith row of matrixW. Let us now replace the scalar product terms〈wi,x〉

with 〈wi, ϕ(x)〉
H

and define the general layer of the network as2

x 7→ g













〈w1, ϕ(x)〉
H

...
〈wN , ϕ(x)〉

H












. (2.55)

A network made of such layers will be called multilayer kerceptron (MLK). For an illustration of
the MLK network, see Fig.2.1. In MLK, the input (xl) of each layer is the output of the preceding
layer (yl−1). The external world is the0th layer providing input to the first layer of the MLK.
xl = yl−1 ∈ RN l

I , whereN l
I is the input dimension of thelth layer. Inputsxl to layerl are mapped

by featuresϕl and are multiplied by the weightswl
i. This two-step process can be accomplished

implicitly by making use of kernelkl and the expansion property forwl
is. The result is vector

sl ∈ RN l
S , which undergoes nonlinear processinggl, where functiongl is differentiable. The output

of this nonlinear function is the input to the next layer, i.e., layerxl+1. The output of the last layer
(layerL, the output of the network) will be referred to asy. Given thatyl = xl+1 ∈ RN l

o , the output
dimension of layerl is N l

o.

2 We assume that the sample spaceX is the finite dimensional Euclidean space.
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Figure 2.1: Thelth layer of the MLK,l = 1, 2, . . .L. The input (xl) of each layer is the output of
the preceding layer (yl−1). The external world is the0th layer providing input to the first layer of
the MLK. Inputsxl to layer l are mapped by features mappingϕl undergo scalar product by the
weights (wl

i) of the layer in RKHSHl = Hl(kl). The result is vectorsl, which undergoes nonlinear
processinggl, with a differentiable function. The output of this nonlinear function is the input to the
next layer, layerxl+1. The output of the network is the output of the last layer.

2.3.3 Backpropagation of Multilayer Kerceptrons

Below, we show that (i) the backpropagation method of MLPs can be extended to MLKs and it (ii)
be accomplished in the dual space requiring kernel computations only.

We consider a slightly more general task, which incorporates regularizing terms:

c(t) = ε2(t) + r(t) −→ min
{Hl∋wl

i: l=1,...,L; i=1,...,N l
S
}
, (2.56)

where

ε2(t) = ‖d(t)− y(t)‖22 , (2.57)

r(t) =

L
∑

l=1

N l
S

∑

i=1

λl
i

∥

∥wl
i(t)
∥

∥

2

Hl (λl
i ≥ 0) (2.58)

are the approximation and the regularization terms of the cost function, respectively, andy(t) de-
notes the output of the network for thetth input. Parametersλl

i control the trade-off between ap-
proximation and regularization. Forλl

i = 0 the best approximation is searched like in the MLP task
[(2.53)]. With these notations at hand, we can present our results [16] now.

Proposition 2 (explicit case). Let us suppose that thex 7→
〈

w, ϕl(x)
〉

Hl and thegl functions are
differentiable(l = 1, . . . , L). Then, backpropagation rule can be derived for MLK with costfunction
(2.56).

Proposition 3 (implicit case). Assume that the following holds

1. Constraint on differentiability: Kernelskl are differentiable with respect to both arguments
and functionsgl are also differentiable (l = 1, . . . , L).

2. Expansion property: The initial weightswl
i(1) of the network can be expressed in the dual

representation, i.e.,

Hl ∋ wl
i(1) =

N l
i (1)
∑

j=1

αl
i,j(1)ϕl(zl

i,j(1)) (l = 1, . . . , L; i = 1, . . . , N l
S). (2.59)

20



Then backpropagation can be derived for MLK with cost function (2.56). This procedure preserves
the expansion property(2.59), which then remains valid for the tuned network. The algorithm is
implicit in the sense that it can be realized in the dual space, using kernel computations only.

The pseudocodes of the MLK backpropagation algorithms are provided in Table2.5 and Ta-
ble2.6, respectively. The MLK backpropagation can be envisioned as follows (see Table2.5and2.6
simultaneously):

1. backpropagated errorδl(t) starts fromδL(t) and is computed by a backward recursion via the

differential expression∂[sl+1(t)]
∂[sl(t)]

.

2. expression∂[sl+1(t)]
∂[sl(t)]

can be determined by means of feature mappingϕl+1, or, in an implicit

fashion, through kernelskl+1.

3. two components play roles in the tuning ofw-s:

(a) forgettingis accomplished by scaling the weightswl
i with multiplier1−2µl

i(t)λ
l
i, where

λl
i is the regularization coefficient.

(b) adaptationoccurs through the backpropagated error. Weights at layerl are tuned by fea-
ture space representation ofxl(t), the actual input arriving at layerl. Tuning is weighted
by the backpropagated error.

Derivations of these algorithms are provided in AppendixA.3.
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Table 2.5: Pseudocode of the explicit MLK backpropagation algorithm.
Inputs

sample points:{x(t),d(t)}t=1,...,T ,T
cost function:λl

i ≥ 0 (l = 1, . . . , L; i = 1, . . . , N l
S)

learning rates:µl
i(t) > 0 (l = 1, . . . , L; i = 1, . . . , N l

S; t = 1, . . . , T )
Network initialization

size:L (number of layers),N l
I , N l

S, N l
o (l = 1, . . . , L)

parameters:wl
i(1) (l = 1, . . . , L; i = 1, . . . , N l

S)
Start computation

Choose samplex(t)
Feedforward computation

xl(t) (l = 2, . . . , L + 1), sl(t) (l = 2, . . . , L)a

Error backpropagation
l = L
while l ≥ 1

if (l = L)

δL(t) = 2 [y(t)− d(t)]T
(

gL
)
′

(sL(t))
else

∂[sl+1(t)]
∂[sl(t)]

=













...
∂[〈wl+1

i (t),ϕl+1(u)〉
Hl+1]

∂[u]

∣

∣

∣

∣

u=xl+1(t)
...













(

gl
)′

(sl(t))b

δl(t) = δl+1(t)∂[sl+1(t)]
∂[sl(t)]

end
Weight update

for all i: 1 ≤ i ≤ N l
S

wl
i(t + 1) = (1− 2µl

i(t)λ
l
i)w

l
i(t)− µl

i(t)δ
l
i(t)ϕ

l(xl(t))
l = l − 1

End computation

a The output of the network, i.e.,y(t) = xL+1(t) is also computed.
b Here:i = 1, . . . , N l+1

S
.
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Table 2.6: Pseudocode of the implicit MLK backpropagation algorithm.
Inputs

sample points:{x(t),d(t)}t=1,...,T ,T
cost function:λl

i ≥ 0 (l = 1, . . . , L; i = 1, . . . , N l
S)

learning rates:µl
i(t) > 0 (l = 1, . . . , L; i = 1, . . . , N l

S; t = 1, . . . , T )
Network initialization

size:L (number of layers),N l
I , N l

S, N l
o (l = 1, . . . , L)

parameters:wl
i(1)-expansions(l = 1, . . . , L; i = 1, . . . , N l

S)

coefficients:αl
i(1) ∈ RN l

i (1)

ancestors:zl
i,j(1), wherej = 1, . . . , N l

i (1)
Start computation

Choose samplex(t)
Feedforward computation

xl(t) (l = 2, . . . , L + 1), sl(t) (l = 2, . . . , L)a

Error backpropagation
l = L
while l ≥ 1

if (l = L)

δL(t) = 2 [y(t) − d(t)]T
(

gL
)
′

(sL(t))
else

∂[sl+1(t)]
∂[sl(t)] =















...
N l+1

i (t)
∑

j=1

αl+1
ij (t)[kl+1]′y(zl+1

ij (t),xl+1(t))

...















(

gl
)′

(sl(t))b

δl(t) = δl+1(t)∂[sl+1(t)]
∂[sl(t)]

end
Weight update

for all i: 1 ≤ i ≤ N l
S

N l
i (t + 1) = N l

i (t) + 1
αl

i(t + 1) =
[(

1− 2µl
i(t)λ

l
i

)

αl
i(t);−µl

i(t)δ
l
i(t)
]

zl
i,j(t + 1) = zl

i,j(t) (j = 1, . . . , N l
i (t))

zl
i,j(t + 1) = xl(t) (j = N l

i (t + 1))
l = l − 1

End computation

a The output of the network, i.e.,y(t) = xL+1(t) is also computed.
b i = 1, . . . , N l+1

S
. Note also that(kl)′y denotes the derivative of kernelkl according to its second argument.
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Chapter 3

Theory – Independent Subspace
Based Dictionary Learning

In this chapter we present our novel independent subspace based dictionary learning approaches.
Contrary to Chapter2, where the underlying assumption for the hidden sources wassparsity and
structured sparsity, here we are dealing withindepedentnon-Gaussian sources. In Section3.1 we
unify contolled dynamical systems and independent subspace based dictionary learning. Section3.2
is about the extension of the current ISA models to the partially observable case. In Section3.3
and Section3.4we are dealing with complex and nonparametric generalizations, respectively. Sec-
tion 3.5 is devoted to the convolutive case. We note that the different methods can be used in com-
binations, too. For all the introduced models, we derive separation principle based solution. These
separation principles make it possible to estimate the models even in case of different, or unknown
dimensional independent source components. In Section3.6we present a novel random projection
based, parallel estimation technique for high dimensionalinformation theoretical quantities. Numer-
ical experiments demonstrating the efficiency of our methods are given in Chapter5.

3.1 Controlled Models

The traditional ICA/ISA problem family can modelhiddenindependent variables, but does not al-
low/handlecontrol variables. In this section we couple ISA based dictionary learning methods with
control variables. To emphasize the fact that we are dealingwith sources having dynamics, in the
sequel, we will refer to such problems as independent process analysis (IPA)–instead of ISA.

In our approach will adapt the D-optimal identification of ARX (autoregressive with exogenous
input) dynamical systems, that we briefly summarize in Section 3.1.1. Section3.1.2defines the
problem domain, the ARX-IPA task. Our solution technique for the ARX-IPA problem is derived in
Section3.1.3.

3.1.1 D-optimal Identification of ARX Models

We sketch the basic thoughts that lead to D-optimal identification of ARX models. The dynamical
system to be identified is fully observed and evolves according to the ARX equation

st+1 =

Ls−1
∑

i=0

Fist−i +

Lu−1
∑

j=0

Bjut+1−j + et+1, (3.1)
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where (i)s ∈ RDs , e ∈ RDe (Ds = De) represent the state of the system and the noise, respectively,
(ii) u ∈ RDu represents the control variables, and (iii) polynomial matrix (given by matricesFi ∈
R

Ds×Ds and identity matrixI)

F[z] = I−
Ls−1
∑

i=0

Fiz
i+1 ∈ R[z]Ds×Ds (3.2)

is stable, that is
det(F[z]) 6= 0, (3.3)

for all z ∈ C, |z| ≤ 1. Our task is (i) the efficient estimation of parametersΘ =
[F0, . . . ,FLs−1,B0, . . . ,BLu−1] that determine the dynamics and (ii) noisee that drives the pro-
cess by the ‘optimal choice’ of control valuesu. Formally, the aim of D-optimality is to maximize
one of the two objectives

Jpar(ut+1) = I(Θ, st+1|st, st−1, . . . ,ut+1,ut, . . .), (3.4)

Jnoise(ut+1) = I(et+1, st+1|st, st−1, . . . ,ut+1,ut, . . .) (3.5)

for ut+1 ∈ U . In other words, we choose control valueu from the achievable domainU (e.g.,
from a box domain) such that it maximizes the mutual information between the next observation and
the parameters (or the driving noise) of the system. It can beshown [208], that if (i)Θ has matrix
Gaussian, (ii)e has Gaussian, and the covariance matrix ofe has inverted Wishart distribution,
then in the Bayesian setting, maximization of theJ objectives can be reduced to the solution of a
quadratic programming task, priors ofΘ ande remain in their supposed distribution family and
undergo simple updating. The considerations allow for control, but assume full observability about
the state variables. Now, we extend the method to hidden variables in the ARX-IPA model of the
next section.

3.1.2 The ARX-IPA Problem

In the ARX-IPA model we assume that states of the system cannot be observed directly, but its
linear and unknown mixture (x) is available for observation [10]:

st+1 =

Ls−1
∑

i=0

Fist−i +

Lu−1
∑

j=0

Bjut+1−j + et+1, (3.6)

xt = Ast, (3.7)

whereLs andLu denote the number of theFi ∈ RDs×Ds , Bj ∈ RDs×Du matrices in the corre-
sponding sums. We assume

• for the em ∈ Rdm components ofe = [e1; . . . ; eM ] ∈ RDs (Ds =
∑M

m=1 dm) that at
most one of them may be Gaussian, their temporal evolution isi.i.d. (independent identically
distributed), andI(e1; . . . ; eM ) = 0; that is, they satisfy theISA assumptions.1

• that the polynomial matrixF[z] = I −∑Ls−1
i=0 Fiz

i+1 is stable and the mixing matrixA ∈
RDs×Ds is invertible. We note, that compared to Chapter2, in the presented ISA based models
the mixing matrixA plays the role of the dictionary.

1By dm-dimensionalem components, we mean thatems cannot be decomposed into smaller dimensional independent
parts. This property is calledirreducibility in [242].
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The ARX-IPA task is to estimate the unknown mixing matrixA, parameters{Fi}Ls−1
i=0 , {Bj}Lu−1

j=0 ,
s ande by means of observationsx only.

In the special case ofLs = Lu = 0, that is

x = Ae (3.8)

we get back the traditional ISA problem, where the goal is estimate the mixing matrixA and the
hidden sourcee, and there is no control. Ifdm = 1 (∀m) also holds in ISA, i.e., the independentem

source components are one-dimensional, we obtain the ICA problem.

3.1.3 Identification Method for ARX-IPA

Below, we solve the ARX-IPA model, i.e., we include the control variables in IPA. We derive a
separation principle based solution by transforming the estimation into two subproblems: to that of
a fully observed model (Section3.1.1) and an ISA task.

One can apply the basis transformation rule of ARX processesand use (3.6) and (3.7) repeatedly
to get

xt+1 =

Ls−1
∑

i=0

(AFiA
−1)xt−i +

Lu−1
∑

j=0

(ABj)ut+1−j + (Aet+1). (3.9)

According to the d-dependent central limit theorem [195] the marginals ofAet+1 are approximately
Gaussian and thus the parameters ({AFiA

−1}Ls−1
i=0 , {ABj}Lu−1

j=0 ) and the noise (Aet+1) of process
x can be estimated by means of the D-optimality principle thatassumes a fully observed process.
The estimation ofAet+1 can be seen as the observation of an ISA problem because components
em of e are independent. ISA techniques can be used to identifyA and then from the estimated
parameters of processx, the estimations ofFi andBj follow.

Note:

1. In the above described ARX-IPA technique, the D-optimal ARX procedure is anonlineesti-
mation for the innovationε = Ae, the input of the ISA method. To the best of our knowledge,
there is no existing online ISA method in the literature. However, having such a procedure, one
can easily integrate it into the presented approach to get a fully online ARX-IPA estimation
scheme.

2. Similar ideas can be used for the estimation of an ARMAX-IPA [7], or post nonlinear model
[11]. In the ARMAX-IPA model, the state equation (3.6) is generalized toLe ≥ 0, i.e.,

st+1 =

Ls−1
∑

i=0

Fist−i +

Lu−1
∑

j=0

Bjut+1−j + et+1 +

Le−1
∑

k=0

Hket−k. (3.10)

In this case, we assume additionally that the polynomial matrix H[z] = I +
∑Le

k=1 Hkzk ∈
R[z]Ds×Ds is stable.2 In the PNL ARX-IPA model, the observation equation (3.7) is general-
ized to

xt = f(Ast), (3.11)

wheref is an unknown, but component-wise acting invertible mapping.

2Note that this requirement is automatically fullfilled forLe = 0, whenH[z] = I.
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3.2 Incompletely Observable Models

The goal of this section is to search for independent multidimensional processes subject to missing
and mixed observations. In spite of the popularity of ICA andits numerous successful applications,
the case of missing observation has been considered only forthe simplest ICA model in the literature
[219, 220]. In this section we extend the solution to (i) multidimensional sources (ISA) and (ii)
ease the i.i.d. constraint; we consider AR processes, the ARindependent process analysis (AR-IPA)
problem.

3.2.1 The AR-IPA Model with Missing Observations

We define the AR-IPA model for missing observations (mAR-IPA) [4,5]. Let us assume that we can
only partially (at certain coordinates/time instants) observe (y) the mixture (x) of independent AR
sources, that is

st+1 =

Ls−1
∑

l=0

Flst−l + et+1, xt = Ast, yt = Mt(xt), (3.12)

where

• the driving noises, or the innovationsem ∈ Rdm (e = [e1; . . . ; eM ] ∈ RD) of the hidden
sources ∈ RD (D =

∑M
m=1 dm) are independent, at least one of them is Gaussian, and i.i.d.

in time, i.e., they satisfy the ISA assumptions.

• the unknown mixing matrixA ∈ RD×D is invertible,

• the AR dynamicsF[z] = I−∑Ls−1
l=0 Flz

l+1 ∈ R[z]D×D is stable and

• the Mt ‘mask mappings’ represent the coordinates and the time indices of the non-missing
observations.

Our task is the estimation of the hidden sources and the mixing matrixA (or its inverseW) from
observationy. For the special choice ofMt = identity (∀t), the AR-IPA problem [173] is obtained.
If Ls = 0 also hold, we get the ISA task.

3.2.2 Identification Method for mAR-IPA

The mAR-IPA identification can be accomplished as follows. Observationxt is invertible linear
transformation of the hidden AR processs and thus it is also an AR process with innovationAet+1:

xt+1 =

Ls−1
∑

l=0

AFlA
−1xt−l + Aet+1. (3.13)

According to the d-dependent central limit theorem [195], the marginals of variableAe are approx-
imately Gaussian, so one carry out the estimation by

1. identifying the partially observed AR processyt, and then by

2. estimating the independent componentsem from the estimated innovation by means of ISA.
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3.3 Complex Models

Current methods in the ICA literature are only capable of coping with one-dimensional complex
indepedent sources, i.e., with the simplest ICA model. In this section by extending the independent
subspace analysis model to complex variables, we make it possible the tackle problems with mul-
tidimensinal independent sources. First we summarize a fewbasic concepts for complex random
variables (Section3.3.1). In Section3.3.2the complex ISA model is introduced. In Section3.3.3we
show, that under certain non-Gaussian assumptions the solution of the complex ISA problem can be
reduced to the solution of a real ISA problem.

3.3.1 Complex Random Variables

Below we summarize a few basic concept of complex random variables, define two mappings that
will be useful in the next section and note that an excellent review on this topic can be found in [172].

A complex random variablev ∈ CL is defined as a random variable of the form
v = vR + ivI ∈ CL, where the real and imaginary parts ofv, i.e., vR ∈ RL andvI ∈ RL are
real vector random variables. Let us define theϕv : CL 7→ R2L, ϕM : CL1×L2 7→ R2L1×2L2

mappings as

ϕv(v) = v ⊗
[

ℜ(·)
ℑ(·)

]

, ϕM (M) = M⊗
[

ℜ(·) −ℑ(·)
ℑ(·) ℜ(·)

]

, (3.14)

whereℜ stands for the real part,ℑ for the imaginary part, subscript ‘v’ (‘ M ’) for vector (matrix)
and⊗ is the Kronecker product. Known properties of mappingsϕv, ϕM are as follows [189]:

det[ϕM (M)] = | det(M)|2 (M ∈ C
L×L), (3.15)

ϕM (M1M2) = ϕM (M1)ϕM (M2) (M1 ∈ C
L1×L2 ,M2 ∈ C

L2×L3), (3.16)

ϕv(Mv) = ϕM (M)ϕv(v) (M ∈ C
L1×L2 ,v ∈ C

L2), (3.17)

ϕM (M1 + M2) = ϕM (M1) + ϕM (M2) (M1,M2 ∈ C
L1×L2), (3.18)

ϕM (cM) = cϕM (M) (M ∈ C
L1×L2 , c ∈ R). (3.19)

In words: (3.15) describes transformation of determinant, while (3.16), (3.17), (3.18) and (3.19)
expresses preservation of operation for matrix-matrix multiplication, matrix-vector multiplication,
matrix addition, real scalar-matrix multiplication, respectively.

Independence of complex random variablesvm ∈ Cdm (m = 1, . . . , M) is defined as the
independence of variablesϕv(vm), i.e,

I(ϕv(v1), . . . , ϕv(vM )) = 0, (3.20)

whereI stands for the mutual information andϕv(vm) ∈ R2dm (∀m). The entropy of a complex
independent variablev ∈ Cd is defined as

H(v) = H(ϕv(v)). (3.21)

3.3.2 Complex Independent Subspace Analysis

By the definition of independence for complex random variables detailed above, the complex valued
ISA task [17] can be defined alike to the real case [(3.8)] as

x = Ae, (3.22)
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whereA ∈ CD×D is an unknown invertible mixing matrix, the hidden sourcee is i.i.d. in timet
and theem ∈ Cdm components ofe = [e1; . . . ; eM ] ∈ CD (D =

∑M
m=1 dm) are independent, i.e.,

I(ϕv(e1), . . . , ϕv(eM )) = 0. The goal is to estimate the mixing matrixA (or its inverse) and the
hidden sourcee by making use of the observationsx only.

3.3.3 Identification Method for Complex ISA

Now, we show that one can reduce the solution of the complex ISA model to a real ISA problem in
case of certain a ‘non-Gaussian’ assumption. Namely, let usin addition assume in the complex ISA
model that at most one of the random variablesϕv(em) ∈ R2dm is Gaussian. Now, applying trans-
formationϕv to the complex ISA equation (Eq. (3.22)) and making use of the operation preserving
properties of transformationsϕv, ϕM [see (3.17)], one gets:

ϕv(x) = ϕM (A)ϕv(e). (3.23)

Given that (i) the independence ofem ∈ Cdm is equivalent to that ofϕv(em) ∈ R2dm , and (ii) the
existence of the inverse ofϕM (A) is inherited fromA [see (3.15)], we end up with a real valued
ISA task with observationϕv(x) andM pieces of2dm-dimensional hidden componentsϕv(em).
The consideration can also be extended to the non-i.i.d. case, for further details, see [6].

3.4 Nonparametric Models

The general ISA problem of separating sources with nonparametric dynamics has been hardly
touched in the literature yet [174, 240]. [174] focused on the separation of stationary and ergodic
source components of known and equal dimensions in case of constrained mixing matrices. [240]
was dealing with wide sense stationary sources that (i) are supposed to be block-decorrelated for all
time-shifts and (ii) have equal and known dimensional source components. The goal of this section
is to extend ISA to the case of (i) nonparametric, asymptotically stationary source dynamics and
(ii) unknown source component dimensions. Particularly, (i) we address the problem of ISA with
nonparametric, asymptotically stationary dynamics, (ii)beyond this extension we also treat the case
of unknown and possibly different source component dimensions, (iii) we allow the temporal evo-
lution of the sources to be coupled; it is sufficient that their driving noises are independent and (iv)
we propose a simple estimation scheme by reducing the solution of the problem to kernel regression
and ISA.

The structure of this section is as follows: Section3.4.1 formulates the problem set-up. In
Section3.4.2we describe our identification method.

3.4.1 Functional Autoregressive Independent Process Analysis

In this section we formally define the problem set-up [1]. In our framework we use functional autore-
gressive (fAR) processes to model nonparametric stochastic time series. Our goal is to develop dual
estimation methods, i.e., to estimate both the system parameters and the hidden states for the func-
tional autoregressive independent process analysis (fAR-IPA) model, which is defined as follows.
Assume that the observation (x) is a linear mixture (A) of the hidden source (s), which evolves
according to an unknown fAR dynamics (f ) with independent driving noises (e). Formally,

st = f(st−1, . . . , st−Ls
) + et, (3.24)

xt = Ast, (3.25)

29



where the unknown mixing matrixA ∈ RD×D is invertible,Ls is the order of the process and the
em ∈ Rdm components ofe =

[

e1; . . . ; eM
]

∈ RD (D =
∑M

m=1 dm) satisfy the ISA assumptions.
The goal of the fAR-IPA problem is to estimate (i) the mixing matrix A (or it inverseW = A−1),
(ii) the original sourcest and (iii) its driving noiseet by using observationsxt only.

We list a few interesting special cases:

• If we knew the parametric form off , and if it were linear, then the problem would be the
AR-IPA task [173].

• If we assume that the dynamics of the hidden layer is zero-order AR (Ls = 0), then the
problem reduces to the original ISA problem [235].

3.4.2 Identification Method for fAR-IPA

We consider the dual estimation of the system described in (3.24)–(3.25). In what follows, we will
propose a separation technique with which we can reduce the fAR-IPA estimation problem ((3.24)–
(3.25)) to a functional AR process identification and an ISA problem. To obtain strongly consistent
fAR estimation, the Nadaraya-Watson kernel regression technique is invoked.

More formally, the estimation of the fAR-IPA problem (3.24)-(3.25) can be accomplished as
follows. The observation processx is invertible linear transformation of the hidden fAR source
processst and thus it is also fAR process with innovationAet

xt = Ast = Af(st−1, . . . , st−Ls
) + Aet (3.26)

= Af (A−1xt−1, . . . ,A
−1xt−Ls

) + Aet = g(xt−1, . . . ,xt−Ls
) + nt, (3.27)

where function
g(u1, . . . ,uLs

) = Af (A−1u1, . . . ,A
−1uLs

) (3.28)

describes the temporal evolution ofxt, and

nt = Aet (3.29)

stands for the driving noise of the observation. Making use of this form, the fAR-IPA estimation can
be carried out by fAR fit to observationxt followed by ISA onn̂t, the estimated innovation ofxt.

Note that Eq. (3.27) can be considered as a nonparametric regression problem; we have

ut = [xt−1, . . . ,xt−Ls
], vt = xt (t = 1, . . . , T ) (3.30)

samples from the unknown relation
vt = g(ut) + nt, (3.31)

whereu, v, andn are the explanatory-, response variables and noise, respectively, andg is the
unknown conditional mean or regression function. Nonparametric techniques can be applied to
estimate the unknown mean function

g(U) = E(V|U), (3.32)

e.g., by carrying out kernel density estimation for random variables (u,v) andu, whereE stands for
expectation. The resulting Nadaraya-Watson estimator (i)takes the simple form

ĝ0(u) =

∑T
t=1 vtK

(

u−ut

h

)

∑T
t=1 K

(

u−ut

h

)
, (3.33)
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whereK andh > 0 denotes the applied kernel (a non-negative real-valued function that integrates
to one) and bandwith, respectively. It can be used to providea strongly consistent estimation of the
regression functiong for stationaryxt processes [203]. It has been shown recently [204] that for
first order and onlyasymptotically stationaryfAR processes, under mild regularity conditions, one
can get strongly constistent estimation for the innovationnt by applying the recursive version of the
Nadaraya-Watson estimator

ĝ(u) =

∑T
t=1 tβDvtK(tβ(u− ut))
∑T

t=1 tβDK(tβ(u− ut))
, (3.34)

where the bandwith is parameterized byβ ∈ (0, 1/D).

3.5 Convolutive Models

In this section we address the blind subspace deconvolution(BSSD) problem; an the extension of
both the blind source deconvolution and the independent subspace analysis tasks. One can think of
the BSSD problem as a cocktail party with groups, held in an echoic room. For the undercomplete
case, where we have ‘more microphones than sources’, it has been shown recently that the problem
can be reduced to ISA by means of temporal concatenation [14]. However, the associated ISA
problem can easily become ‘high dimensional’. The dimensionality problem can be circumvented
by applying a linear predictive approximation (LPA) based reduction [12]. Here, we show that it
is possible to extend the LPA idea to thecompleteBSSD task, where the number of ‘microphones’
equals to the number of ‘sources’.3 In the undercomplete case, the LPA based solution was based
on the observation that the polynomial matrix describing the temporal convolution had, under rather
general conditions4, a polynomial matrix left inverse. In the complete case suchan inverse doesn’t
exist in general. However, provided that the convolution can be represented by an infinite order
autoregressive process, one can construct an efficient estimation method for the hidden components
via an asymptotically consistent LPA procedure. This thought is used here to extend the technique
of [12] to the complete case.

The section is structured as follows: in Section3.5.1we define the complete blind subspace
deconvolution problem, we detail our solution technique inSection3.5.2.

3.5.1 Complete Blind Subspace Deconvolution

Here, we define the BSSD task [14]. Assume that we haveM hidden, independent, multidimensional
components(random variables). Suppose also that only their

xt =

Le
∑

l=0

Hlet−l (3.35)

convolutive mixture is available for observation, wherext ∈ RDx andet is the concatenation of
the componentsem

t ∈ Rdm , that iset = [e1
t ; . . . ; e

M
t ] ∈ RDe (De =

∑M
m=1 dm). By describing

the convolution using the the polynomial matrixH[z] =
∑Le

l=0 Hlz
l ∈ R[z]Dx×De , one may write

Eq. (3.35) compactly as
x = H[z]e. (3.36)

3The overcomplete BSSD task is challenging and as of yet no general solution is known.
4If the coefficients of the undercomplete polynomial matrix are drawn from a non-degenerate continuous distribution,

such an inverse exists with probability one [180].
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We assume that the componentsem fullfill the ISA assumptions. The goal of the BSSD problem is to
estimate the original sourceet by using observationsxt only. WhileDx > De is theundercomplete
case ,Dx = De is thecompleteone. The caseLe = 0 corresponds to the ISA task, and ifdm = 1
(∀m) also holds, then the ICA task is recovered. In the BSD taskdm = 1 (∀m) andLe is a non-
negative integer.

Contrary to previous works [12,14] focusing on the undercomplete BSSD problem, here [9] we
address the complete task (D = Dx = De). In the complete BSSD problem we assume that the
polynomial matrixH[z] is stable.

3.5.2 Identification Method for Complete BSSD

Below, we derive our separation principle based solution method for the complete BSSD problem.
The invertibility ofH[z] implies that the observation processx can be represented as an infinite

order autoregressive (AR) process [211]:

xt =

∞
∑

j=1

Fjxt−j + F0et. (3.37)

By applying a finite order LPA approximation (fitting an AR process tox), the innovation process
F0et can be estimated. The innovation can be seen as the observation of an ISA problem because
components ofe are independent: ISA techniques can be used to identify componentsem. Choosing

the order of the fitted AR process tox asp = o(T
1
3 )

T→∞−−−−→∞, whereT denotes the number of sam-
ples, guarantees that the AR approximation for the MA (moving average) model is asymptotically
consistent [212].

3.6 Information Theoretical Estimations via Random Projec-
tions

The estimation of relevant information theoretical quantities, such as entropy, mutual information,
and various divergences is computationally expensive in high dimensions. However, consistent es-
timation of these quantities is possible by nearest neighbor (NN) methods (see, e.g., [228]) that use
the pairwise distances of sample points. Although search for nearest neighbors can also be expen-
sive in high dimensions [226], low dimensional approximateisometric embedding of points of high
dimensional Euclidean space can be addressed by the Johnson-Lindenstrauss Lemma [221] and the
related random projection (RP) methods [224,225]. The RP approach proved to be successful, e.g.,
in classification, clustering, search forapproximate NN(ANN), dimension estimation of manifolds,
estimation of mixture of Gaussian models, compressions, data stream computation (see, e.g., [223]).
We note that the RP approach is also related to compressed sensing [222].

In this section [8] we show a novel application of the RP technique: we estimate information
theoretical quantities using the ANN-preserving properties of the RP technique. We present our
RP based approach through the ISA problem. The ISA task can beviewed as the minimization of
the mutual information between the estimated components, or equivalently as the minimization of
the sum of Shannon’s multidimensional differential entropies of the estimated components on the
orthogonal group [239]:

J(W) =

M
∑

m=1

H (ym)→ min
W∈OD

, (3.38)

where
y = Wx, y =

[

y1; . . . ;yM
]

, ym ∈ R
dm (3.39)
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anddms are given. Estimation of cost functionJ however involves multidimensional entropy esti-
mation, which is computationally expensive in high dimensions, but can be executed by NN methods
consistently [228]. It has been shown in [227] (in the field ofimage registration with high dimen-
sional features) that the computational load can be decreased somewhat by

• dividing the samples into groups and then

• computing the averages of the group estimates.

We will combine thisparallelizable ensemble approachwith the ANN-preserving properties of RPs
and get drastic savings. We suggest the following entropy estimation method5, for each estimated
ISA componentv := ŷm

ISA:

• divide theT samples{v(1), . . . ,v(T )} into N groups indexed by setsI1, . . . , IN so that each
group containsK samples,

• for all fixed groups take the random projection ofv as

vn,RP(t) := Rnv(t) (t ∈ In; n = 1, . . . , N ;Rn ∈ R
d′

m×dm), (3.40)

• average the estimated entropies of the RP-ed groups to get the estimation

Ĥ(v) =
1

N

N
∑

n=1

Ĥ(vn,RP). (3.41)

Our particular choice forRn can be found in Section5.3.6.

5The idea can be used for a number of information theoretical quantities, provided that they can be estimated by means of
pairwise Euclidean distances of the samples.
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Chapter 4

Numerical Experiments –
Group-Structured Dictionary
Learning

In this chapter we demonstrate the efficiency of structured sparse representations. For illustration
purposes we chose the online group-structured dictionary learning approach. The efficiency of the
method is presented in 3 different applications: inpainting of natural images (Section4.1), structured
non-negative matrix factorization of faces (Section4.2) and collaborative filtering (Section4.3).

4.1 Inpainting of Natural Images

We studied the following issues on natural images:

1. Is structured dictionaryD beneficial for inpainting of patches of natural images, and how does
it compare to the dictionary of classical sparse representation? During learning ofD, training
samplesxi were fully observed (i.e.,∆i = I).

2. In this inpainting problem of image patches, we also studied the case when the training sam-
plesxi were partially observed (∆i 6= I).

3. We also show results for inpainting offull imagesusing a dictionary learned from partially
observed (∆i 6= I) patches.

In our numerical experiments we usedDi = Sdx

2 (∀i), A = Rdα without additional weighing
(AG = I, ∀G ∈ G). Group structureG of vectorα was realized on a16× 16 torus (dα = 256) with
|G| = dα applyingr = 0, 1, 2, or 3 neighbors to defineG. For r = 0 (G = {{1}, . . . , {dα}}) the
classical sparse representation is recovered. Our test database was the ICA natural image database.1

We chose 12 of the 13 images of the dataset to study the first twoquestions above (see Fig.4.1(a)),
and used the13th picture for studying the third question (Fig.4.1(b)). For each of the 12 images,
we sampled131, 072 = 217 pieces of8×8 disjunct image patches randomly (without replacement).
This patch set was divided to a training setXtr made of65, 536 pieces, and to a validation (Xval)
and test (Xtest) set with set sizes32, 768. Each patch was normalized to zero average and unit
ℓ2-norm.

1See http://www.cis.hut.fi/projects/ica/data/images/.
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(a) (b)

Figure 4.1: Illustration of the used natural image dataset.(a): 12 images of similar kind were used
to select patches for the trainingXtr, validationXval, and testXtest sets. (b): test image used for
the illustration of full image inpainting.

In thefirst experiment xis were fully observed (∆i = I) and thus the update of their statistics
was precise. This is called the BCD case in the figures. MatrixD was learned on the setXtr,
columnsdj were initialized by using a uniform distribution on the surface of theℓ2-sphere. Pixels
of the x patches in the validation and test sets were removed with probability pval

test. For a given
noise-free image patchx, let xO denote its observed version, whereO stands for the indices of
the available coordinates. The task was the inpainting of the missing pixels ofx by means of the
pixels present (xO) and by the learned matrixD. After removing the rows ofD corresponding
to missing pixels ofx, the resultingDO andxO were used to estimateα. The final estimation of
x was x̂ = Dα. According to our preliminary experiments, learning rateρ and mini-batch size
R were set to32 and64, respectively (the estimation was robust as a function ofρ andR). In
the updates ofz andα (2.24) only minor changes were experienced after 2-3 iterations,thus the
number of iterationsTα was set to5. Concerning the other parameters, we usedη = 0.5, and
κ ∈ {2−19, 2−18, . . . , 2−10}. Theǫ smoothing parameter was10−5, and the iteration number for
the update ofD wasTD = 5. Values ofpval

test were chosen from set{0.3, 0.5, 0.7, 0.9}, so for the
case ofpval

test = 0.9, only 10% of the pixels ofx were observed. For each fixed neighborhood sizer
and parameterpval

test, κ was chosen as the minimum of mean squared error (MSE) usingD trained on
patch setXtr and evaluated onXval. Having found this optimalκ on the validation set, we used its
value to compute the MSE onXtest. Then we changed the roles ofXval andXtest, that is, validated
onXtest, and tested onXval. This procedure was repeated for four random initializations (D0) and
different corruptions (Xval, Xtest). The average MSE values (multiplied by 100) and their standard
deviations for different neighbor sizesr and corruption ratespval

test are summarized in Table4.1. This
table shows that (i) the inpainting error grows with the corruption ratepval

test, (ii) compared to sparse
representation (r = 0) small neighborhood sizer = 1 gives rise to similar results,r = 2 is better
andr = 3 seems to be the best for all cases with13 − 19% improvement in precision for MSE.
Learned and average quality dictionariesD can be seen in Fig.4.2 (r = 0 no structure,r = 2, 3
with torus structure). Based on this experiment we can conclude that the structured algorithm gives
rise to better results than ordinary sparse representations.

In the second experiment, the size of the neighborhood was fixed, set tor = 3. We learned
dictionaryD onpartially observedpatches (∆i 6= I). The probabilityptr of missing any pixel from
the observations in the training set assumed values from theset{0, 0.1, 0.3, 0.5, 0.7, 0.9}. In this
case, we updatede using the approximation Eq. (2.33), hence we call this method approximate-BCD
(or BCDA, for short). The other experimental details were identical to the previous case (i.e., when
∆i = I). Results and statistics for MSE are provided for a smaller(0.3) and for a larger (0.7) value
of pval

test in Table4.2for different probability valuesptr. We found that increasingptr up toptr = 0.7
MSE values grow slowly. Note that we kept the number of samples xi at 65, 536 identical to the
previous case (∆i = I), and thus by increasingptr the effective number of observations/coordinates
decreases. Learned average quality dictionariesD are shown in Fig.4.3 for pval

test = 0.7. Note
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Table 4.1: BCD: 100× the MSE average (± std) as a function of neighbors (r = 0: sparse repre-
sentation, no structure) for differentpval

test corruption rates.
pval

test = 0.3 pval
test = 0.5

r = 0 0.65 (±0.002) 0.83 (±0.003)
r = 1 0.60 (±0.005; +6.78%) 0.85 (±0.017;−2.25%)
r = 2 0.59 (±0.005; +10.39%) 0.81 (±0.008; +2.67%)
r = 3 0.56 (±0.002; +16.38%) 0.71 (±0.002; +16.01%)

pval
test = 0.7 pval

test = 0.9
r = 0 1.10 (±0.002) 1.49 (±0.006)
r = 1 1.10 (±0.029; +0.27%) 1.45 (±0.004; +2.96%)
r = 2 1.12 (±0.029;−1.09%) 1.46 (±0.029; +2.51%)
r = 3 0.93 (±0.001; +18.93%) 1.31 (±0.002; +13.87%)

Table 4.2: BCDA (r = 3): 100× the MSE average (± std) for differentpval
test andptr corruption

rates.
ptr = 0 ptr = 0.1 ptr = 0.3

pval
test = 0.3 0.55 (±0.003) 0.56 (±0.001) 0.57 (±0.003)

pval
test = 0.7 0.91 (±0.002) 0.91 (±0.002) 0.91 (±0.002)

ptr = 0.5 ptr = 0.7 ptr = 0.9
pval

test = 0.3 0.59 (±0.001) 0.61 (±0.002) 0.71 (±0.007)
pval

test = 0.7 0.92 (±0.003) 0.93 (±0.002) 0.96 (±0.003)

that the MSE values are still relatively small for missing pixel probabilityptr = 0.9 (100× MSE
maximum is about0.96), thus our proposed method is still efficient in this case. Reconstruction with
value0.92 (100×MSE) is shown in Fig.4.4.

In our third illustration we show full image inpainting using dictionaryD learned withptr =
0.5 and using the13th image (X) shown in Fig.4.1(b). We executed inpainting consecutively on all
8 × 8 patches of imageX and for each pixel of imageX, we averaged all estimationŝxi from all
8 × 8 patches that contained the pixel. Results are shown in Fig.4.4for pval

test = 0.3 and0.7 values.
We also provide the PSNR (peak signal-to-noise ratio) values of our estimations. This measure for
vectorsu,v ∈ Rd (i.e., for vectors formed from the pixels of the image) is defined as

PSNR(u,v) = 10 log10

[

(max(maxi |ui|, maxj |vj |))2
1
d ‖u− v‖22

]

, (4.1)

(a) (b) (c)

Figure 4.2: Illustration of the online learned group-structuredD dictionaries with the BCD technique
and MSE closest to the average (see Table4.1) andpval

test = 0.7. (a): r = 0, (b): r = 2, (c): r = 3.
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(a) (b) (c)

Figure 4.3: Illustration of the online learned group-structuredD dictionaries for the BCDA technique
with MSE closest to the average (see Table4.2) andpval

test = 0.7. (a): ptr = 0, (b): ptr = 0.1, (c):
ptr = 0.5.

(a) (b)

(c) (d)

Figure 4.4: Inpainting illustration using the online learned group-structuredD dictionaries for the
BCDA technique with MSE closest to the average (see Table4.2) andptr = 0.5. (a): measured, (b):
estimated, PSNR = 36 dB. (a)-(b):pval

test = 0.3. (c)-(d): the same as (a)-(b), but withpval
test = 0.7, in

(d) PSNR = 29 dB.

where the higher value is the better. Acceptable values in wireless transmission (lossy image and
video compression) are around20 − 25 dB (30 dB). By means ofD and for missing probability
pval

test = 0.3 we achieved36 dB PSNR, whereas for missing probabilitypval
test = 0.7 we still have29

dB PSNR, underlining the efficiency of our method.

4.2 Online Structured Non-negative Matrix Factorization on
Faces

It has been shown on the CBCL database that dictionary vectors (di) of the offline NMF method can
be interpreted as face components [139]. However, to the best of our knowledge, there is no existing
NMF algorithm as of yet, which could handle generalG group structures in an online fashion. Our
OSDL method is able to do that, can also cope with only partially observed inputs, and can be
extended with non-convex sparsity-inducing norms. We illustrate our approach on the color FERET2

dataset: we setDi = Sdx

2 ∩ R
dx

+ (∀i), A = R
dα

+ , ∆i = I andη = 0.5. We selected1, 736 facial

2See http://face.nist.gov/colorferet/.
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Figure 4.5: Illustration of the online learned structured NMF dictionary. Upper left corner: training
samples.

pictures from the dataset. Using affine transformations we positioned the noses and eyes to the same
pixel coordinates, reduced the image sizes to140 × 120, and set theirl2 norms to be one. These
images were the observations for our ODSL method (xi, dx = 49, 140 = 140×120×3 minus some
masking). The group structureG was chosen to be hierarchical; we applied a full, 8-level binary tree.
Each node with its corresponding descendants formed the sets ofG ∈ G (dα = 255). According to
our experiments, the learned dictionaryD was influenced mostly by the constantκ, and similarly
to Section4.1, it proved to be quite insensitive to the value of the learning factorρ, and to the size
of the mini-batches (R). Fig. 4.5 shows a few elements from the online estimated structured NMF
dictionary (usingκ = 2−10.5, ρ = 32, R = 8, AG = I (∀G ∈ G), Tα = 5, TD = 5 andε = 10−5).
We can observe that the proposed algorithm is able to naturally develop and hierarchically organize
the elements of the dictionary: towards the leaves the learned filters reveal more and more details.
We can also notice that the colors are separated as well. Thisexample demonstrates that our method
can be used for large problems where the dimension of the observations is about50, 000.

4.3 Collaborative Filtering

The proliferation of online services and the thriving electronic commerce overwhelms us with alter-
natives in our daily lives. To handle this information overload and to help users in efficient decision
making, recommender systems (RS) have been designed. The goal of RSs is to recommend per-
sonalized items for online users when they need to choose among several items. Typical problems
include recommendations for which movie to watch, which jokes/books/news to read, which hotel
to stay at, or which songs to listen to.

One of the most popular approaches in the field of recommendersystems iscollaborative filtering
(CF). The underlying idea of CF is very simple: Users generally express their tastes in an explicit
way by rating the items. CF tries to estimate the users’ preferences based on the ratings they have
already made on items and based on the ratings of other, similar users. For a recent review on
recommender systems and collaborative filtering, see e.g.,[158].

38



Novel advances on CF show thatdictionary learningbased approaches can be efficient for mak-
ing predictions about users’ preferences [160]. The dictionary learning based approach assumes that
(i) there is a latent, unstructured feature space (hidden representation) behind the users’ ratings, and
(ii) a rating of an item is equal to the product of the item and the user’s feature. To increase the
generalization capability, usuallyℓ2 regularization is introduced both for the dictionary and for the
users’ representation.

Here, we extend the application domain of structured dictionary learning in the direction of col-
laborative filtering. With respect to CF, further constraints appear for structured dictonary learning
since (i) online learning is desired and (ii) missing information is typical. There are good reasons
for them: novel items/users may appear and user preferencesmay change over time. Adaptation
to users also motivate online methods. Furthermore, users can evaluate only a small portion of the
available items, which leads to incomplete observations, missing rating values.

To do so, we formulate the CF task as an OSDL optimization problem in Section4.3.1. Ac-
cording to the CF literature, oftentimes neighbor-based corrections improve the precision of the
estimation. We also use this technique (Section4.3.2) to improve the OSDL estimations. Numerical
results are presented in Section4.3.3.

4.3.1 Collaborative Filtering as Structured Dictionary Learning

Below, the CF task is transformed into an OSDL problem. Consider thetth user’s known ratings
as OSDL observationsxOt

. Let the optimized group-structured dictionary on these observations
beD. Now, assume that we have a test user and his/her ratings, i.e., xO ∈ R|O|. The task is to
estimatex{1,...,dx}\O, that is, the missing coordinates ofx (the missing ratings of the user) that can
be accomplished as follows:

1. Remove the rows of the non-observed{1, . . . , dx}\O coordinates fromD. The obtained
|O| × dα sized matrixDO andxO can be used to estimateα by solving the structured sparse
coding problem (2.2).

2. Using the estimated representationα, estimatex as

x̂ = Dα. (4.2)

4.3.2 Neighbor Based Correction

According to the CF literature, neighbor based correction schemes may further improve the precision
of the estimations [158]. This neighbor correction approach

• relies on the assumption that similar items (e.g., jokes/movies) are rated similarly and

• it can be adapted to OSDL-based CF estimation in a natural fashion.

Here, we detail the idea. Let us assume that the similaritiessij ∈ R (i, j ∈ {1, . . . , dx}) between
individual items are given. We shall provide similarity forms in Section4.3.3. Let dkαt ∈ R be
the OSDL estimation for the rating of thekth non-observed item of thetth user (k 6∈ Ot), where
dk ∈ R

1×dα is thekth row of matrix D ∈ R
dx×dα , andαt ∈ R

dα is computed according to
Section4.3.1.

Let the prediction error on the observable item neighbors (j) of the kth item of thetth user
(j ∈ Ot\{k}) bedjαt − xjt ∈ R. These prediction errors can be used for the correction of the
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OSDL estimation (dkαt) by taking into account thesij similarities:

x̂kt = dkαt + γ1

[
∑

j∈Ot\{k} skj(d
jαt − xjt)

∑

j∈Ot\{k} skj

]

, or (4.3)

x̂kt = γ0(d
kαt) + γ1

[
∑

j∈Ot\{k} skj(d
jαt − xjt)

∑

j∈Ot\{k} skj

]

, (4.4)

wherek 6∈ Ot. Here, (4.3) is analogous to the form of [160], (4.4) is a simple modification: it
modulates the first term with a separateγ0 weight.

4.3.3 Numerical Results

This section is structured as follows: We have chosen the Jester dataset for the illustration of the
OSDL based CF approach. It is a standard benchmark for CF. This is what we introduce first. Then
we present our preferred item similarities. The performance measure used to evaluate the CF based
estimation follows. The final part of this section is about our numerical experiences.

The Jester Dataset

The dataset [161] contains4, 136, 360 ratings from73, 421 users to100 jokes on a continuous
[−10, 10] range. The worst and best possible gradings are−10 and+10, respectively. A fixed
10 element subset of the jokes is called gauge set and it was evaluated by all users. Two third of the
users have rated at least36 jokes, and the remaining ones have rated between15 and35 jokes. The
average number of user ratings per joke is46.

Item Similarities

In the neighbor correction step (4.3) or (4.4) we need thesij values representing the similarities of
the ith andjth items. We define this value as the similarity of theith andjth rows (di anddj) of
the optimized OSDL dictionaryD [160]:

S1 : sij = sij(d
i,dj) =

(

max(0,
〈

di,dj
〉

)

‖di‖2 ‖dj‖2

)β

, or (4.5)

S2 : sij = sij(d
i,dj) =

(
∥

∥di − dj
∥

∥

2

2

‖di‖2 ‖dj‖2

)−β

, (4.6)

whereβ > 0 is the parameter of the similarity measure. Quantitiessij are non-negative; if the value
of sij is close to zero (large) then theith andjth items are very different (very similar).

Performance Measure

In our numerical experiments we used the RMSE (root mean square error) measure for the evaluation
of the quality of the estimation, since RMSE is one of most popular measures in the CF literature.
The RMSE measure is the average squared difference of the true and the estimated rating values:

RMSE =

√

√

√

√

1

|S|
∑

(i,t)∈S

(xit − x̂it)2, (4.7)

whereS denotes either the validation or the test set.
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Evaluation

Here we illustrate the efficiency of the OSDL-based CF estimation on the Jester database using the
RMSE performance measure. To the best of our knowledge, the top results on this database are
RMSE = 4.1123 [159] and RMSE =4.1229 [160]. Both works are from the same authors. The
method in the first paper is called item neigbor and it makes use of only neighbor information.
In [160], the authors used a bridge regression based unstructured dictionary learning model—with a
neighbor correction scheme—, they optimized the dictionary by gradient descent and setdα to 100.
These are our performance baselines.

To study the capability of the OSDL approach in CF, we focusedon the following issues:

• Is structured dictionaryD beneficial for prediction purposes, and how does it compare to the
dictionary of classical (unstructured) sparse dictionary?

• How does the OSDL parameters and the similarity/neighbor correction applied affect the effi-
ciency of the prediction?

• How do different group structuresG fit to the CF task?

In our numerical studies we chose the Euclidean unit sphere for Di = Sdx

2 (∀i), andA = Rdα ,
and no additional weighing was applied (dG = χG, ∀G ∈ G, whereχ is the indicator function). We
setη of the group-structured regularizerΩ to 0.5. Group structureG of vectorα was realized on

• a d × d toroid (dα = d2) with |G| = dα applyingr ≥ 0 neighbors to defineG. For r = 0
(G = {{1}, . . . , {dα}}) the classical sparse representation based dictionary is recovered.

• a hierarchy with a complete binary tree structure. In this case:

– |G| = dα, and groupG of αi contains theith node and its descendants on the tree, and

– the size of the tree is determined by the number of levelsl. The dimension of the hidden
representation is thendα = 2l − 1.

The sizeR of mini-batches was set either to8, or to 16 and the forgetting rateρ was chosen from
set{0, 1

64 , 1
32 , 1

16 , 1
8 , 1

4 , 1
2 , 1}. Theκ weight of structure inducing regularizerΩ was chosen from

the set{ 1
2−1 , 1

20 , 1
21 , 1

22 , 1
24 , 1

26 , . . . , 1
214 }. We studied similaritiesS1, S2 [see (4.5)-(4.6)] with both

neighbor correction schemes [(4.3)-(4.4)]. In what follows, corrections based on (4.3) and (4.4)
will be calledS1, S2 andS0

1 , S0
2 , respectively. Similarity parameterβ was chosen from the set

{0.2, 1, 1.8, 2.6, . . . , 14.6}. In the BCD step of the optimization ofD, Tα = 5 iterations were
applied. In theα optimization step, we usedTD = 5 iterations, whereas smoothing parameterǫ was
10−5.

We used a90% − 10% random split for the observable ratings in our experiments,similarly
to [160]:

• training set (90%) was further divided into 2 parts:

– we chose the80% observation set{Ot} randomly, and optimizedD according to the
correspondingxOt

observations,

– we used the remaining10% for validation, that is for choosing the optimal OSDL pa-
rameters (r or l, κ, ρ), BCD optimization parameter (R), neighbor correction (S1, S2,
S0

1 , S0
2 ), similarity parameter (β), and correction weights (γis in (4.3) or (4.4)).

• we used the remaining10% of the data for testing.

The optimal parameters were estimated on the validation set, and then used on the test set. The
resulting RMSE score was the performance of the estimation.
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Toroid Group Structure. In this section we provide results using toroid group structure. We set
d = 10. The size of the toroid was10 × 10, and thus the dimension of the representation was
dα = 100.

In the first experiment we study how the size of neighborhood (r) affects the results. This
parameter corresponds to the ‘smoothness’ imposed on the group structure: whenr = 0, then there
is no relation between thedj columns inD (no structure). As we increaser, thedj feature vectors
will be more and more aligned in a smooth way. To this end, we set the neighborhood size tor = 0
(no structure), and then increased it to1, 2, 3, 4, and5. For each(κ, ρ, β), we calculated the RMSE
of our estimation, and then for each fixed (κ, ρ) pair, we minimized these RMSE values inβ. The
resulting validation and test surfaces are shown in Fig.4.6. For the best (κ, ρ) pair, we also present
the RMSE values as a function ofβ (Fig. 4.7). In this illustration we usedS0

1 neighbor correction
andR = 8 mini-batch size. We note that we got similar results usingR = 16 too. Our results can
be summarized as follows.

• For a fixed neighborhood parameterr, we have that:

– The validation and test surfaces are very similar (see Fig.4.6(e)-(f)). It implies that
the validation surfaces are good indicators for the test errors. For the bestr, κ andρ
parameters, we can observe that the validation and test curves (as functions ofβ) are
very similar. This is demonstrated in Fig.4.7, where we usedr = 4 neighborhood size
andS0

1 neighbor correction. We can also notice that (i) both curveshave only one local
minimum, and (ii) these minimum points are close to each other.

– The quality of the estimation depends mostly on theκ regularization parameter. As we
increaser, the bestκ value is decreasing.

– The estimation is robust to the different choices of forgetting factors (see Fig.4.6(a)-(e)).
In other words, this parameterρ can help in fine-tuning the results.

• Structured dictionaries (r > 0) are advantageous over those methods that do not impose struc-
ture on the dictionary elements (r = 0). ForS0

1 andS0
2 neighbor corrections, we summarize

the RMSE results in Table4.3. Based on this table we can conclude that in the studied param-
eter domain

– the estimation is robust to the selection of the mini-batch size (R). We got the best
results usingR = 8. Similarly to the role of parameterρ, adjustingR can be used for
fine-tuning.

– theS0
1 neighbor correction lead to the smallest RMSE value.

– When we increaser up tor = 4, the results improve. However, forr = 5, the RMSE
values do not improve anymore; they are about the same that wehave usingr = 4.

– The smallest RMSE we could achieve was4.0774, and the best known result so far was
RMSE = 4.1123 [159]. This proves the efficiency of our OSDL based collaborative
filtering algorithm.

– We note that our RMSE result seems to be significantly better than the that of the com-
petitors: we repeated this experiment 5 more times with different randomly selected
training, test, and validation sets, and our RMSE results have never been worse than
4.08.

In thesecond experimentwe studied how the different neighbor corrections (S1, S2, S0
1 , S0

2 )
affect the performance of the proposed algorithm. To this end, we set the neighborhood parameter
to r = 4 because it proved to be optimal in the previous experiment. Our results are summarized in
Table4.4. From these results we can observe that
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Figure 4.6: Validation surfaces [(a)-(e)] and test surfaces (f) as a function of forgetting factor (ρ)
and regularization (κ). For a fixed(κ, ρ) parameter pair, the surfaces show the best RMSE values
optimized in theβ similarity parameter. The group structure (G) is toroid. The applied neighbor
correction wasS0

1 . (a): r = 0 (no structure). (b):r = 1. (c): r = 2. (d): r = 3. (e)-(f): r = 4, on
the same scale.
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Figure 4.7: Validation and test curves for toroid group structure using the optimal neighborhood
sizer = 4, regularization weightκ = 1

210 , forgetting factorρ = 1
25 , mini-batch sizeR = 8, and

similarity parameterβ = 3.4. The applied neighbor correction wasS0
1 .

Table 4.3: Performance (RMSE) of the OSDL prediction using toroid group structure (G) with
different neighbor sizesr (r = 0: unstructured case). First-second row: mini-batch sizeR = 8,
third-fourth row:R = 16. Odd rows:S0

1 , even rows:S0
2 neighbor correction. For fixedR, the best

performance is highlighted with boldface typesetting.
r = 0 r = 1 r = 2 r = 3 r = 4

R = 8 S0
1 4.1594 4.1326 4.1274 4.0792 4.0774

S0
2 4.1765 4.1496 4.1374 4.0815 4.0802

R = 16 S0
1 4.1611 4.1321 4.1255 4.0804 4.0777

S0
2 4.1797 4.1487 4.1367 4.0826 4.0802

• our method is robust to the selection of correction methods.Similarly to theρ andR parame-
ters, the neighbor correction parameter can help in fine-tuning the results.

• The introduction ofγ0 in (4.4) with the application ofS0
1 andS0

2 instead ofS1 andS2 proved
to be advantageous in the neighbor correction phase.

• For the studied CF problem, theS0
1 neighbor correction method (withR = 8) lead to the

smallest RMSE value,4.0774.

• TheR ∈ {8, 16} setting yielded us similarly good results. Even withR = 16, the RMSE
value was4.0777.

Table 4.4: Performance (RMSE) of the OSDL prediction for different neighbor corrections using
toroid group structure (G). Columns: applied neighbor corrections. Rows: mini-batch sizeR = 8
and16. The neighbor size was set tor = 4. For fixedR, the best performance is highlighted with
boldface typesetting.

S1 S2 S0
1 S0

2

R = 8 4.0805 4.0844 4.0774 4.0802
R = 16 4.0809 4.0843 4.0777 4.0802
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Hierarchical Group Structure. In this section we provide results using hierarchicalα represen-
tation. The group structureG was chosen to represent a complete binary tree.

In our third experiment we study how the number of levels (l) of the tree affects the results.
To this end, we set the number of levels tol = 3, 4, 5, and6. Sincedα, the dimension of the
hidden representationα, equals to2l − 1, thesel values give rise to dimensionsdα = 7, 15, 31,
and63. Validation and test surfaces are provided in Fig.4.8(a)-(c) and (e)-(f), respectively. The
surfaces show for each(κ, ρ) pair, the minimum RMSE values taken in the similarity parameterβ.
For the best(κ, ρ) parameter pair, the dependence of RMSE onβ is presented in Fig.4.8(d). In this
illustration we usedS0

1 neighbor correction, and the mini-batch size was set toR = 8. Our results
are summarized below. We note that we obtained similar results with mini-batch sizeR = 16.

• For fixed number of levelsl, similarly to the toroid group structure (where the sizer of the
neighborhood was fixed),

– validation and test surfaces are very similar, see Fig.4.8(b)-(c). Validation and test
curves as a function ofβ behave alike, see Fig.4.8(d).

– the precision of the estimation depends mostly on the regularization parameterκ; forget-
ting factorρ enables fine-tuning.

• The obtained RMSE values are summarized in Table4.5 for S0
1 andS0

2 neighbor corrections.
According to the table, the quality of estimation is about the same for mini-batch sizeR = 8
andR = 16; the R = 8 based estimation seems somewhat more precise. Consideringthe
neighbor correction schemesS0

1 andS0
2 , S0

1 provided better predictions.

• As a function of the number of levels, we got the best result for l = 4, RMSE =4.1220; RMSE
values decrease untill = 4 and then increase forl > 4.

• Our best obtained RMSE value is4.1220; it was achieved for dimension onlydα = 15.
We note that this small dimensional, hierarchical group structure based result is also better
than that of [160] with RMSE =4.1229, which makes use of unstructured dictionaries with
dα = 100. The result is also competitive with the RMSE =4.1123 value of [159].

In our fourth experiment we investigate how the different neighbor corrections (S1, S2, S0
1 , S0

2 )
affect the precision of the estimations. We fixed the number of levels tol = 4, since it proved to be
the optimal choice in our previous experiment. Our results are summarized in Table4.6. We found
that

• the estimation is robust to the choice of neighbor corrections,

• it is worth including weightγ0 [see (4.4)] to improve the precision of prediction, that is, to
apply correctionS0

1 andS0
2 instead ofS1 andS2, respectively.

• the studiedR ∈ {8, 16}mini-batch sizes provided similarly good results.

• for the studied CF problem the best RMSE value was achieved using S0
1 neighbor correction

and mini-batch sizeR = 8.
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Figure 4.8: Validation surfaces [(a)-(b), (e)-(f)] and test surfaces (c) as a function of forgetting factor
(ρ) and regularization (κ). (d): validation and test curve using the optimal number oflevelsl = 4,
regularization weightκ = 1

22 , forgetting factorρ = 0, mini-bach sizeR = 8, similarity parameter
β = 1.8. Group structure (G): complete binary tree. Neighbor correction:S0

1 . (a)-(c),(e)-(f): for
fixed (κ, ρ) parameter pair, the surfaces show the best RMSE values optimized in theβ similarity
parameter. (a):l = 3. (b)-(c): l = 4, on the same scale. (e):l = 5. (f): l = 6.
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Table 4.5: Performance (RMSE) of the OSDL prediction for different number of levels (l) using
binary tree structure (G). First-second row: mini-batch sizeR = 8, third-fourth row:R = 16. Odd
rows:S0

1 , even rows:S0
2 neighbor correction. For fixedR, the best performance is highlighted with

boldface typesetting.
l = 3 l = 4 l = 5 l = 6

R = 8 S0
1 4.1572 4.1220 4.1241 4.1374

S0
2 4.1669 4.1285 4.1298 4.1362

R = 16 S0
1 4.1578 4.1261 4.1249 4.1373

S0
2 4.1638 4.1332 4.1303 4.1383

Table 4.6: Performance (RMSE) of the OSDL prediction for different neighbor corrections using
binary tree structure (G). Rows: mini-batch sizeR = 8 and16. Columns: neighbor corrections.
Neighbor size:r = 4. For fixedR, the best performance is highlighted with boldface typesetting.

S1 S2 S0
1 S0

2

R = 8 4.1255 4.1338 4.1220 4.1285
R = 16 4.1296 4.1378 4.1261 4.1332
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Chapter 5

Numerical Experiments – Indepedent
Subspace Based Dictionary Learning

In this chapter we illustrate the efficiency of the proposed IPA estimation methods (Chapter3). Test
databases are described in Section5.1. To evaluate the solutions, we use the performance measure
given in Section5.2. Our numerical results are presented in Section5.3.

5.1 Test Datasets

We conducted experiments using the following datasets to assess the efficiency and robustness of
our methods:

ABC, 3D-geom: In theABC database, the distribution of the hidden sourcesem were uniform on
2-dimensional images (dm = 2) of the English alphabet. The number of components can be
M = 26. For illustration, see Fig.5.1(b).

In the3D-geomtestems were random variables uniformly distributed on 3-dimensional geo-
metric forms (dm = 3, M = 6), see Fig.5.1(a).

celebrities, smiley: Thecelebritiesandsmileytest has 2-dimensional source components (dm = 2)
generated from cartoons of celebrities (M = 10) and 6 basic facial expressions (M = 6), re-
spectively.1 Sourcesem were generated by sampling 2-dimensional coordinates proportional
to the corresponding pixel intensities. In other words, 2-dimensional images were considered
as density functions. For illustration, see Fig.5.1(c)-(d).

d-geom, d-spherical: In the d-geomdatasetems were random variables uniformly distributed on
dm-dimensional geometric forms. Geometrical forms were chosen as follows. We used: (i)
the surface of the unit ball, (ii) the straight lines that connect the opposing corners of the unit
cube, (iii) the broken line betweendm +1 points0→ e1 → e1 +e2 → . . .→ e1 + . . .+edm

(whereei is thei canonical basis vector inRdm , i.e., all of its coordinates are zero except the
ith, which is 1), and (iv) the skeleton of the unit square. Thus, the number of componentsM
was equal to4, and the dimension of the components (dm) can be scaled and different. For
illustration, see Fig.5.1(f).

1See http://www.smileyworld.com.
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In the d-sphericaltest hidden sourcesem were spherical random variables [188]. Since
spherical variables assume the formv = ρu, whereu is uniformly distributed on thedm-
dimensional unit sphere, andρ is a non-negative scalar random variable independent ofu,
they can be given by means ofρ. We chose3 pieces of stochatistic representationsρ: ρ was
uniform on[0, 1], exponential with parameterµ = 1 and lognormal with parametersµ = 0,
σ = 1. For illustration, see Fig.5.1(g). In this case, the number of component wasM = 3,
and the dimension of the source components (dm) can be varied.

ikeda: In the ikedatest, the hiddensm
t = [sm

t,1, s
m
t,2] ∈ R2 sources realized the ikeda map

sm
t+1,1 = 1 + λm[sm

t,1 cos(wm
t )− sm

t,2 sin(wm
t )], (5.1)

sm
t+1,2 = λm[sm

t,1 sin(wm
t ) + sm

t,2 cos(wm
t )], (5.2)

whereλm is a parameter of the dynamical system and

wm
t = 0.4− 6

1 + (sm
t,1)

2 + (sm
t,2)

2
. (5.3)

M = 2 was chosen with initial pointss1
1 = [20; 20], s2

1 = [−100; 30] and parametersλ1 =
0.9994, λ2 = 0.998, see Fig.5.1(e) for illustration.

all-k-independent: In theall-k-independentdatabase [18,238], thedm-dimensional hidden compo-
nentsv := em were created as follows: coordinatesvi (i = 1, . . . , k) were independent uni-
form random variables on the set {0,. . . ,k-1}, whereasvk+1 was set tomod(v1 + . . .+ vk, k).
In this construction, everyk-element subset of{v1, . . . , vk+1} is made of independent vari-
ables anddm = k + 1.

Beatles: Our Beatlestest is a non-i.i.d. example. Here, hidden sources are stereo Beatles songs.2

8 kHz sampled portions of two songs (A Hard Day’s Night, Can’t Buy Me Love) made the
hiddensms. Thus, the dimension of the componentsdm was2, the number of the components
M was2, and the dimension of the hidden sourceD was4.

5.2 Performance Measure, the Amari-index

Below, we present the performance index that was used to measure the quality of the estimations.
First, we focus on the ISA problem. Identification of the ISA model is ambiguous. However, the

ambiguities of the model are simple: hidden components can be determined up to permutation of
the subspaces and up to invertible linear transformations within the subspaces [171, 242]. Thus, in
the ideal case, the product of the estimated ISA demixing matrix ŴISA and the ISA mixing matrix
A, i.e., matrix

G = ŴISAA (5.4)

is a block-permutation matrix (also called block-scaling matrix [240]). This property can also be
measured for source components with different dimensions by a simple extension [1] of the Amari-
index [181], that we present below. Namely, assume that we have a weight matrixV ∈ RM×M made
of positive matrix elements. Loosely speaking, we shrink thedi × dj blocks of matrixG according
to the weights of matrixV and apply the traditional Amari-index for the matrix we obtain. Formally,
one can (i) assume without loss of generality that the component dimensions and their estimations
are ordered in increasing order (d1 ≤ . . . ≤ dM , d̂1 ≤ . . . ≤ d̂M ), (ii) decomposeG into di × dj

2See http://rock.mididb.com/beatles/.
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(a) (b)

(c)

(d) (e)

(f) (g)

Figure 5.1: Illustration of the3D-geom(a),ABC(b), celebrities(c), smiley(d), ikeda(e),d-geom(f)
andd-spherical(g) datasets.

blocks (G =
[

Gij
]

i,j=1,...,M
) and definegij as the sum of the absolute values of the elements of

the matrixGij ∈ Rdi×dj , weighted withVij :

gij = Vij

di
∑

k=1

dj
∑

l=1

|
(

Gij
)

k,l
|. (5.5)

Then the Amari-index with parametersV can be adapted to the ISA task of possibly different com-
ponent dimensions as follows

rV(G) :=
1

2M(M − 1)





M
∑

i=1

(

∑M
j=1 gij

maxj gij
− 1

)

+

M
∑

j=1

(

∑M
i=1 gij

maxi gij
− 1

)



 . (5.6)

One can see that0 ≤ rV(G) ≤ 1 for any matrixG, andrV(G) = 0 if and only if G is block-
permutation matrix withdi × dj sized blocks.rV(G) = 1 is in the worst case, i.e, when all thegij

elements are equal. Let us note that this novel measure (5.6) is invariant, e.g., for multiplication with
a positive constant:rcV = rV (∀c > 0). Weight matrixV can be uniform (Vij = 1), or one can use
weighing according to the size of the subspaces:Vij = 1/(didj). We will use the shorthandr(·) for
the first variant, if not stated otherwise. We note that one could also use other norms in the definition
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of gij , for example, (5.5) could be extended to

gij = Vij





di
∑

k=1

dj
∑

l=1

|
(

Gij
)

k,l
|q




1
q

(q > 1). (5.7)

Similarly, for the problems presented in Chapter3, one can estimate the hidden source compo-
nents only up to the ISA ambiguities. Thus, having the mixingmatrixA at hand, the performance of
the estimations can be measured by the block-permutation property of matrixG = ŴISAA, where
ŴISA denotes the estimated demixing matrix of the derived ISA subproblems. In case of the

• complex ISA problem, we measure the block-permutation property of G = ŴISAϕM (A)
using the associated component dimensions over the real domain, i.e.,2×dm (m = 1, . . . , M ).

• BSSD problem, where the mixing is described by a convolutioninstead ofx = Ae, we
choseG as the linear transformation that optimally approximates the relatione 7→ ê, whereê
denotes the estimated hidden source.

5.3 Numerical Results

Here, we illustrate the efficiency of the proposed IPA estimation techniques. In Section5.3.1, Sec-
tion 5.3.2, Section5.3.3, Section5.3.4and Section5.3.5we are dealing with the ARX-IPA, mAR-
IPA, complex ISA, fAR-IPA and complete BSSD problem, respectively. Numerical results demon-
strating the efficiency of random projection based entropy estimations are given in Section5.3.6.

In our numerical experiments, the ISA subtask was solved according to the ISA separation theo-
rem [14,235]: we grouped/clustered the computed ICA components. One may apply different clus-
tering methods—beyond the exhaustive search, which becomes rapidly prohibitive as the dimension
of the problem is increasing—e.g.,

Greedy search: We exchange two estimated ICA components belonging to different subspaces, if
the exchange decreases the value of the ISA cost as long as such pairs exist.

Global search: One may apply global permutation search methods of higher computational burden.
The cross-entropy solution suggested for the traveling salesman problem (TSP) [190] can,
for example, be adapted to our case [18]. In the TSP problem, apermutation of cities is
searched for and the objective is to minimize the cost of the travel. We are also searching for
a permutation, but now the travel cost is replaced by the ISA cost function.

Spectral clustering: An efficient method with good scaling properties has been putforth in [13,15]
for searching the permutation group for the ISA separation theorem (see, Table5.1). This
approach builds upon the fact that the mutual information between different ISA subspaces
em is zero due the assumption of independence. The method assumes that coordinates ofem

that fall into the same subspace can be paired by using the mutual information between the
coordinates only.

The mutual information of the computed ICA elements can be efficiently estimated, e.g., by
the generalized variance [17], the kernel canonical correlation analysis (KCCA) method [187],
or the robustness of the estimation against noise can be improved further by applying copula
methods [248]. One may carry out the clustering step, e.g., by spectral clustering methods;
such a technique is the NCut method [191]. Spectral clustering methods scale well since a
single machine can handle a million observations (in our case estimated ICA elements) within
several minutes [209].
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Table 5.1: Approximation that scales well for the permutation search task in the ISA separation
theorem.

Construct an undirected graph with nodes corresponding to ICA coordinates and edge
weights (similarities) defined by thepairwise statistical dependencies, i.e., the mutual in-
formation of the estimated ICA elements:S = [Î(êICA,i, êICA,j)]

D
i,j=1. Cluster the ICA

elements, i.e., the nodes using similarity matrixS.

Finally, it may be worth noting that one can construct examples that do not satisfy the con-
ditions detailed in Table5.1. The all-k-independentconstruction [18, 238] belongs to this
family.

In our experiments the ICA components were estimated by the well-known fastICA algorithm [182].
The performance of our methods are also summarized by notched boxed plots, which show the
quartiles (Q1, Q2, Q3), depict the outliers, i.e., those that fall outside of interval [Q1 − 1.5(Q3 −
Q1), Q3 +1.5(Q3−Q1)] by circles, and whiskers represent the largest and smallestnon-outlier data
points.

5.3.1 ARX-IPA Experiments

Here, we illustrate the efficiency of the proposed ARX-IPA estimation technique (Section3.1) [10];
results on databases3D-geom(dm = 3, M = 6, Ds = 3 × 6 = 18), ABC (dm = 2, M = 10,
Ds = 2 × 10 = 20) andcelebrities(dm = 2, M = 10, Ds = 2 × 10 = 20) are provided.3 For
each individual parameter, the performance of20 random runs were averaged. Our parameters are:
T , the sample number of observationsxt, Ls, the order of dynamics of the AR part,Lu, the tempo-
ral memory of the effect of the control applied,δu, the upper limit of the magnitude of the control
(U := {u : maxi |ui| ≤ δu}), andλ, parameter of the stableF[z]. ‘Random run’ means random
choice of quantitiesF[z], Bjs, A ande. In each simulationA was a random orthogonal matrix4,
sample numberT varied between1, 000 and100, 000, we optimizedJpars andJnoise on intervals
[1, T/2] and[T/2+1, T ], respectively (see footnote3), the dimension of the control was equal to the
dimension ofs (Du = Ds), the ISA task was solved by using the JFD (joint f-decorrelation; gener-
alized variance dependence, greedy permutation search) method [17], the elements of matricesBj

were generated independently from standard normal distributions, and the stableF[z] was generated
as follows

F[z] =

Ls−1
∏

i=0

(I− λOiz) (|λ| < 1, λ ∈ R), (5.8)

where matricesOi ∈ RDs×Ds were random orthogonal (Oi ∈ ODs ).
We sum up our experiences about the ARX-IPA method here:

1. Dependence onδu: We studied the effect of the magnitude of control (δu) on the precision
of the estimation for ‘small’Ls, Lu (Ls, Lu ≤ 3) values and forλ = 0.95. We found that
for a range of not too large control valuesδu the estimation is precise (Fig.5.2(a)) and the
error follows a power law in the number of samples:r(T ) ∝ T−c (c > 0) is a straight

3We note that the InfoMax objectivesJpar andJnoise look forward only by one-step, so the method is greedy. The
objective could be extended to include long-term cumulatedcontributions, but the solution is not yet known for this task.
According to experiences, estimation of noisee can proceed by usingJpar first for a some iterations and then useJnoise to
compute the control values [208].

4In our studied ISA based problems, one can assume without loss of generality that theA mixing matrix belongs to the
orthogonal family, this corresponds to a simple normalizing assumption.
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Figure 5.2: ARX-IPA problem, estimation error (Amari-index) as a function of sample number on
log-log scale for different control magnitudes (a), and databases (b).

(a) (b) (c)

Figure 5.3: ARX-IPA problem, illustration for the3D-geomdatabase (Ls = Lu = 3, δu = 0.2,
λ = 0.95, T = 50, 000), for an estimation with average estimation error (100× Amari-index =
0.55%). (a): observed signalxt. (b) Hinton-diagram ofG: the product of the estimated demixing
matrix and the mixing matrix of the derived ISA task (= approximately block-permutation matrix
with 3× 3 blocks). (c): estimated components–recovered up to the ISAambiguities.

line on log-log scale. Similar results were found for all three databases in all experiments
(Fig. 5.2(b)). Figure5.3 illustrates the results of the estimations. In the rest of the studies we
fixed the maximum of the control magnitude toδu = 0.2 and show the results of the3D-geom
database.

2. Dependence onLu: Increasing the temporal memory of the effect of the controlapplied (Lu =
3, 5, 10, 20, 50) precise estimation was found even forLu = 50. The estimation errors are
shown in Fig.5.4(a).

3. Dependencies onLs andλ: We found that the order of the dynamics of the AR process (Ls)
can be increased provided thatλ in Eq. (5.8) is decreased: ForLu = 1 and forLs = 5, 10, 20,
50, the estimation is precise up to values approximately equalto λ = 0.85− 0.9, 0.65− 0.7,
0.45− 0.5, 0.25− 0.3, respectively. Results are depicted in Fig.5.4(b).

For further illustration concerning the ARMAX-IPA and PNL ARX-IPA models, see [7,11].
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Figure 5.4: ARX-IPA problem, estimation error (Amari-index) as a function of (a) temporal memory
of controlLu, and (b) order of the AR processLs.

5.3.2 mAR-IPA Experiments

Here, we illustrate the efficiency of the proposed mAR-IPA estimation technique (Section3.2) [4,5];
results on databasesABC (dm = 2, M = 3, D = 2 × 3 = 6), 3D-geom(dm = 3, M = 2,
D = 3 × 2 = 6) andBeatles(dm = 2, M = 2, D = 2 × 2 = 4) are provided. For each individual
parameter, the performance of10 random runs (A, F[z], e) were averaged. Our parameters are:
T , the sample number of observationsyt, Ls, the order of the AR process,p, the probability of
missing observation inMt (xt,is, the coordinates of processxt, were not observed with probability
p, independently), andλ, the (contraction) parameter of the stable polynomial matrix F[z]. It is
expected that if the roots ofF[z] are close to the unit circle then our estimation will deteriorate. We
investigated this by generating the polynomial matrixF[z] as

F[z] =

Ls−1
∏

i=0

(I− λOiz) (|λ| < 1, λ ∈ R), (5.9)

where matricesOi ∈ RD×D were random orthogonal (Oi ∈ OD) and theλ → 1 limit was stud-
ied. Mixing matrixA was a random orthogonal matrix. AR fit subject to missing observations
was accomplished by means of (i) the maximum likelihood (ML)principle [206], (ii) the subspace
technique [205], and (iii) in a Bayesian framework using normal-inverted Wishart (shortlyNIW)
conjugate prior and filling in the next missing data using themaximum-a-posteriori estimation of
the parameters [207]. The dependency of the estimated ICA elements elements was estimated by
means of the KCCA method [187]. The performance of the methodis summarized by notched boxed
plots.

TheLs order of the AR process was1 and2 for theABC and the3D-geomtasks, respectively,
contraction parameterλ was varied between values0.1 and0.99, the probability of missing obser-
vations took different values (p = 0.01, 0.1, 0.15, 0.2), and sample numberT was set to1, 000,
2, 000, and5, 000. According to our experiences, the methods are efficient on both tasks. The most
precise method isML followed by thesubspacemethod and theNIW technique (see Fig.5.5(a)).
Running time of the algorithms is the opposite and theML technique is computation time demand-
ing (see Fig.5.5(b)). Considering the ratio of missing observations – in theparameter range we
studied – theML, thesubspaceand theNIW method can handle parameterp up to0.2 − 0.3 (see
Fig. 5.5(c)-(d)),p = 0.15−0.2, andp = 0.1−0.15, respectively. Figure5.5(c)-(d) demonstrate that
theML method works robustly for the contraction parameterλ and provides reasonable estimations
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for values around 1. Figure5.5(e)-(j) illustrate the ML component estimations for differentp values.
Because of the high computation demands of theML technique, the performances of thesub-

spaceandNIW methods were studied on theBeatlestest. According to the Schwarz’s Bayesian
criterion we used the crudeLs = 10 AR estimation. Results for sample numberT = 30, 000 are
summarized in Fig.5.6. According to the figure, the methods give reasonable estimations up to
p = 0.1− 0.15. In accord with our previous experiences, thesubspacemethod is more precise, but
it is somewhat slower.

5.3.3 Complex ISA Experiments

Here, we illustrate the efficiency of the presented complex ISA method (Section3.3) [6]. We provide
empirical results on thed-sphericaldataset (M = 3). In our experiments, theem ∈ Cdm complex
source components were defined by the2dm-dimensionald-sphericalconstruction making use of the
ϕv bijection. By the technique described in Section3.3the complex ISA problem was mapped to a
real valued ISA problem. Then, the KCCA technique [187] was applied to estimate the dependence
of the estimated ICA elements. The dimension of the complex components (dm) were unknown to
the algorithm, the clustering of the computed ICA coordinates and the estimation of the component
dimensions were accomplished by the NCut [191] spectral clustering technique.

For all parameter values, the average performances upon10 random initializations ofe and
A were taken. Our parameters includedT , the sample number of observationsxt, anddms, the
dimensions of the components.5 The mixing matrixA was chosen uniformly from the unitary group
UD (D =

∑M
m=1 dm).6 The sample number of observationsxt changed as2, 000 ≤ T ≤ 50, 000.

In the first experiment the (complex) dimension of the hiddensources were equal, and varied as
k× [1; 1; 1] wherek was chosen from the set{2, 3, . . . , 12}. We investigated the estimation error as
a function of the sample number. Our results for the obtainedaverage Amari-indices are summarized
in Fig.5.7(a). The figure demonstrates that the algorithm was able to estimate the hidden components
with high precision. Moreover, as it can be seen the estimation errors are approximately linear as a
function of the sample number, that is the Amari-index decreases according to power lawr(T ) ∝
T−c (c > 0). The estimated source components are illustrated by Hinton-diagrams, see Fig.5.7(c).
Exact numerical values for the estimation errors can be found in Table5.2.

In our second experiment the (complex) dimension of the sources could be different and took the
valuesk × [1; 1; 2], wherek was the element of the set{2, 3, . . . , 12}. The obtained performance
values are plotted in Fig.5.7(b). As it can be seen, (i) the method is able to uncover the hidden
source components with high precision and the Amari-indices again follow a power law decay.
Hinton-diagram of the estimated sources with average Amari-index are presented in Fig.5.7(d).
Exact numerical values for the Amari-indices are given in Table 5.3.

These results show the efficiency of our complex ISA method.

5.3.4 fAR-IPA Experiments

Now we illustrate the efficiency of the fAR-IPA algorithm [1]presented in Section3.4. We provide
empirical results on thesmiley(dm = 2, M = 6, D = 2× 6 = 12), d-geom(d1 = 2, d2 = d3 = 3,
d4 = 4, M = 4, D = 2+3+3+4 = 12), andikedadatasets (dm = 2, M = 2, D = 2×2 = 4). For
illustration purposes, we chose fAR orderLs = 1 and used the recursive Nadaraya-Watson technique
(3.34) for functional AR estimation with the Gaussian kernel. TheKCCA technique [187] was

5In the Amari-index the possible non-equality of the component dimensions (dm) were also taken into account through
the Vij = 1/(2di2dj) construction, see Section5.2. Here, the ‘2di ’ and ‘2dj ’ terms correspond to the associated real
valued problem dimensions.

6Similarly to the real ISA problem, where the mixing matrixA can be supposed to be ortogonal, here the unitary property
of the mixing matrixA can be assumed without loss of generality.
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Figure 5.5: mAR-IPA problem, illustration of the estimations on the3D-geomandABC datasets.
(a), (b): Amari-index and elapsed time, respectively as a function of the probability of missing ob-
servation (p) for the3D-geomdataset on log-log scale and for AR orderLs = 1 and sample number
T = 5, 000. (c)-(d): Amari-index for theML method forp = 0.2 and forp = 0.3 as a function of
the AR order for theABC test. (e)-(j): illustration of the estimation for theML method:Ls = 1,
T = 5, 000, λ = 0.9; (e) observation before mappingMt (x). (g): estimated components (êm) with
average Amari-index forp = 0.01. (f): Hinton-diagram of matrixG for (g)–it is approximately a
block-permutation matrix with2× 2 blocks. (h)-(j): like (g), but forp = 0.1, p = 0.2, andp = 0.3,
respectively.
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Figure 5.6: mAR-IPA problem, illustration of thesubspaceand theNIW methods for theBeatles
dataset for sample numberT = 30, 000 and AR orderLs = 10. (a): Amari-index as a function of
the rate of missing observationsp on log-log scale, (b): elapsed time.
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Figure 5.7: Illustration of the complex ISA estimations. (a)-(b): the average Amari-indices are
plotted as a function of the sample number on log-log scale. (a): the hidden source dimensions are
equal,k × [1; 1; 1]. (b): the hidden source dimension can be different,k × [1; 1; 2]. (c): Hinton-
diagram of matrixG with Amari-index closest to the average performance for the‘k × [1; 1; 1]’
problem withk = 12 and sample numberT = 50, 000. TheG matrix is approximately block-
permutation matrix with(2× 12)× (2× 12) sized blocks. (d): the same as (c), but for the different
dimensionalk×[1; 1; 2] case withk = 12. For exact performance values, see Table5.2and Table5.3.
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Table 5.2: 100× Amari-index (that is, in percentage) for the complex ISA problem on the ‘k ×
[1; 1; 1]’ test: average± standard deviation. Number of samples:T = 50, 000.

k = 2 k = 4 k = 6

0.55% (±0.08%) 0.70% (±0.04%) 0.83% (±0.03%)

k = 8 k = 10 k = 12
0.96% (±0.04%) 1.07% (±0.03%) 1.18% (±0.02%)

Table 5.3: 100× Amari-index (that is, in percentage) for the complex ISA problem on the ‘k ×
[1; 1; 2]’ test: average± standard deviation. Number of samples:T = 50, 000.

k = 2 k = 4 k = 6

0.56% (±0.04%) 0.82% (±0.03%) 0.97% (±0.02%)

k = 8 k = 10 k = 12
1.13% (±0.02%) 1.24% (±0.02%) 1.37% (±0.03%)

applied to estimate the dependence of the computed ICA elements. The clustering was carried out by
greedy optimization for tasks when the component dimensions were known (smiley, ikedadatasets).
We also studied the case when these component dimensions were unknown (d-geomdataset); in
this case we used the NCut [191] spectral technique to cluster the estimated ICA components into
ISA subspaces. Mixing matrixA was random orthogonal. For datasetsmileyandd-geom, f was
the composition of a randomF matrix with entries distributed uniformly on interval[0, 1] and the
noninvertible sine function,f(u) = sin(Fu). For each individual parameter, the performance of
10 random runs were averaged. Our parameters includedT , the sample number of observations
xt, and bandwithβ ∈ (0, 1/D) to study the robustness of the kernel regression approach.β was
reparameterized asβ = βc

D andβc was chosen from the set{ 1
2 , 1

4 , 1
8 , 1

16 , 1
32 , 1

64}. The performance
of the method is summarized by notched boxed plots.

For thesmileydataset, Fig.5.8demonstrates that the algorithm was able to estimate the hidden
components with high precision. Fig.5.8(a) shows the Amari-index as a function of the sample
number, forM = 2 (D = 4). The estimation error is plotted on log scale for differentbandwith
parameters. Fig.5.8(c-d) indicate that the problem withM = 6 components (D = 12) is still
amenable to our method when the sample size is large enough (T = 100, 000). Fig. 5.8(c) shows
the estimated subspaces, and Fig.5.8(d) presents the Hinton-diagram. It is approximately a block-
permutation matrix with2 × 2 blocks indicating that the algorithm could successfully estimate the
hidden subspaces.

Our experiences concerning thed-geomdataset are summarized in Fig.5.9. In contrast to the
previous experiment, here the dimensions of the hidden components were different and unknown to
the algorithm. As it can be seen from Fig.5.9(a), our method provides precise estimations on this
dataset for sample sizeT = 100, 000 − 150, 000. The Hinton-diagram of matrixG with average
(closest to the median) Amari-index is depicted in Fig.5.9(b). Again, this is close to a block-
permutation matrix indicating that the proposed method wasable to estimate the hidden subspaces.

We ran experiments on theikedadataset too. Fig.5.10(a) illustrates that if we simply use a
standard autoregressive approximation method (AR-IPA) [173], then we cannot find the proper sub-
spaces. Nevertheless, the Amari-index values of Fig.5.10(a) show that the functional AR-IPA ap-
proach was able to estimate the hidden subspaces for sample numberT ≥ 10, 000. The figure also
shows that the estimation is precise for a wide range of bandwith parameters. The Hinton-diagram
of matrix G with average (closest to the median) Amari-index is depicted in Fig. 5.10(c). This is
a block diagonal matrix, which demonstrates that our methodwas able to separate the mixed sub-
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Figure 5.8: fAR-IPA problem, illustration of the estimations on thesmileydataset. (a): Amari-index
as a function of the sample number, forM = 2. (b): observed signalxt, the first two 2-dimensional
projections whenM = 6. (c): estimated components (êm) with average (closest to the median)
Amari-index forM = 6, βc = 1

32 , T = 100, 000. (d): Hinton-diagram of matrixG.
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Figure 5.9: fAR-IPA problem, illustration of the estimations on thed-geomdataset. (a) Amari-index
on log scale as a function of the sample number for different bandwith parameters on thed-geom
dataset (with component dimensions:d1 = 2, d2 = d3 = 3, d4 = 4). (b): Hinton-diagram ofG
with average (closest to the median) Amari-index for dataset d-geom, βc = 1

32 , T = 150, 000–it is
approximately a block-permutation matrix with one2× 2, two 3× 3 and one4× 4 sized block.

.
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Figure 5.10: Illustration of the estimations on theikedadataset. (a): Amari-index as a function of the
sample number for different bandwith parameters, for AR-IPA and the proposed fAR-IPA approach.
(b): Observation,xt. (c): Hinton-diagram ofG with average (closest to the median) Amari-index.
(d): Estimated subspaces using the fAR-IPA method (βc = 1

2 , T = 20, 000).

spaces. The estimated hidden sources (with average Amari-index) are illustrated in Fig.5.10(d).
Our model (Eq. (3.24)-(3.25)) belongs to the family of state space models. Though the dynamics

of the hidden variablesst is nonlinear, one might wonder whether with a standard linear dynamical
system (LDS) based identification method we could identify the parameterA and the driving noise
et. The following experiment demonstrates that this is not thecase; while our method is efficiently
able to cope with this problem, the LDS based identification leads to very poor results. For this
purpose we treated the observationsxt as if they had been generated by an LDS with unknown
parameters. We estimated its parameters with the EM method [229, 230], and then using these
estimated parameters we applied a Kalman smoother [231] to estimate the hidden dynamical layer
st and the driving noiseet. After this estimation we post-processed the estimated noise êt with
ISA. We performed these estimations on thesmileyandd-geomdatasets. Using 10 independent
experiments, the EM-LDS based estimators led tor = 0.56 andr = 0.48 Amari-indices (minima
of theQ2 medians), respectively. These results are very poor; the EM-LDS based method was not
able to identify the noise components. On the contrary, the proposed fAR-IPA method successfully
estimated the noise components and providedr = 0.0041 andr = 0.0055 Amari-indices (Fig.5.8,
Fig. 5.9).

5.3.5 Complete BSSD Experiments

Now we illustrate the efficiency of the complete BSSD method presented in Section3.5. Results on
databasessmiley(dm = 2, M = 6, D = 2× 6 = 12), 3D-geom(dm = 3, M = 4, D = 3× 4 = 12)
andBeatles(dm = 2, M = 2, D = 2 × 2 = 4) are provided here. For each individual parameter,
the performance of20 random runs were averaged. Our parameters are:T , the sample number of
observationsxt, Le, the parameter of the length of the convolution (the length of the convolution is
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Table 5.4: Complete BSSD problem, Amari-index in percentages on thesmiley, 3D-geom(λ =
0.85, T = 20, 000) and the Beatles dataset (λ = 0.9, T = 100, 000) for different convolution
lengths: mean± standard deviation. For other sample numbers, see Fig.5.11.

Le = 1 Le = 2 Le = 5 Le = 10

smiley 0.99% (±0.11%) 1.04% (±0.09%) 1.22% (±0.15%) 1.69% (±0.26%)
3D-geom0.42% (±0.06%) 0.54% (±0.05%) 0.88% (±0.14%) 1.15% (±0.24%)
Beatles 0.72% (±0.12%) 0.75% (±0.11%) 0.90% (±0.23%) 6.64% (±7.49%)

Le + 1), andλ, parameter of the stableH[z]. It is expected that if the roots ofH[z] are close to the
unit circle then our estimation will deteriorate, because the stability ofH[z] comes to question. We
investigated this by generating the polynomial matrixH[z] as follows:

H[z] =

[

Le
∏

l=0

(I− λOiz)

]

H0 (|λ| < 1, λ ∈ R), (5.10)

where matricesH0 andOi ∈ RD×D were random orthogonal (Oi ∈ OD) and theλ → 1 limit
was studied. ‘Random run’ means random choice of quantitiesH[z] ande. The AR fit to obser-
vation xt was performed by the method detailed in [183]. To study how the o(T 1/3) AR order
(see Section3.5.2) is exploited, the order of the estimated AR process was limited from above by
pmax(T ) = 2⌊T 1

3
− 1

1000 ⌋, and we used the Schwarz’s Bayesian criterion to determine the optimal
popt order from the interval[1, pmax(T )]. The ISA subtask on the estimated innovation was carried
out by the JFD method [17].

First we studied the Amari-index as a function of the sample size. For thesmileyand3D-geom
databases the sample numberT varied between1, 000 and20, 000. The length of convolution varied
asLe = 1, 2, 5, 10. Theλ parameter ofH[z] was chosen as0.4, 0.6, 0.7, 0.8, 0.85, 0.9. Results are
shown in Fig.5.11(a)-(b). The estimation errors indicate that forLe = 10 and aboutλ = 0.85 the
estimation is still efficient, see Fig.5.12for an illustration of the estimated source components. The
Amari-indices follow the power lawr(T ) ∝ T−c (c > 0). The power law decline is manifested
by straight line on log-log scale. The slopes of these straight lines are very close to each other.
Numerical values for the estimation errors are given in Table 5.4. The estimated optimal AR orders
are provided in Fig.5.11(c). The figure demonstrates that asλ → 1 the maximal possible order
pmax(T ) is more and more exploited.

On theBeatlesdatabase theλ parameter was increased to0.9, and the sample numberT varied
between1, 000 and100, 000. Results are presented in Fig.5.11(d). According to the figure, for
Le = 1, 2, 5 the error of estimation drops for sample numberT = 10, 000 − 20, 000, and for
Le = 10 the ‘power law’ decline of the Amari-index, which was apparent on thesmileyand the
3D-geomdatabases, also appears. Numerical values for the estimation errors are given in Table5.4.
On theBeatlestest, the maximal possible AR orderpmax(T ) was fully exploited on the examined
parameter domain.

5.3.6 ISA via Random Projections

Now we demonstrate the efficiency of the random projection based entropy estimation presented
in Section3.6 [8] on indepedent subspace analysis. Results on databasesd-spherical, d-geomand
all-k-independentare provided here. The experimental studies focused on the following issues:

1. What dimensional reduction can be achieved in the entropyestimation of the ISA problem by
means of random projections?
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Figure 5.11: Complete BSSD problem, precision of the estimations and the estimated optimal AR
orders. The plots are on log-log scale. (a), (b): on thesmiley(3D-geom) database the Amari-index
as a function of the sample number for differentλ → 1 parameter values ofH[z] and convolution
lengths, respectively. In (a):Le = 10, in (b): λ = 0.85. (c): on thesmiley(3D-geom) database the
estimated AR order as a function of the sample number withLe = 10 for differentλ values. (d): the
same as (b), but for theBeatlesdataset withλ = 0.9. For graphical illustration, see Fig.5.12. For
numerical values, see Table5.4.

62
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Figure 5.12: Complete BSSD problem, illustration of the estimations on the3D-geom[(a),(b),(e)-(i)]
andsmiley[(c),(d),(j)-(n)] datasets. Number of samples:T = 20, 000. Length of the convolution:
Le = 10. In the first row: λ = 0.4. (a), (c): observed convolved signalxt. (b), (d): Hinton-
diagram ofG, ideally a block-permutation matrix with2 × 2 and3 × 3 sized blocks, respectively.
(e)-(i), (j)-(n): estimated componentsêm, recovered up to the ISA ambiguities from left to right for
λ = 0.4, 0.6, 0.7, 0.8, 0.85. All the plotted estimations have average Amari-indices, see Fig.5.11(a).
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2. What speed-up can be gained with the RP dimension reduction?

3. What are the advantages of our RP based approach in global optimization?

In our experiments the number of components was minimal (M = 2). For each individual parameter,
the performance of50 random runs were averaged. Our parameters includedT , the sample number
of observationsxt andd, the dimension of the components (d = d1 = d2). We also studied different
estimations of the ISA cost function: we used the RADICAL (robust, accurate, direct ICA algorithm)
procedure7 [199] and the NN method [239] for entropy estimation and KCCA[237] for mutual
information estimation. The reduced dimensiond′ in RP and the optimization method (greedy,
global (CE), NCut [13]) of the ISA cost were also varied in different tests. Random run means
random choice of quantitiesA ande. The size of the randomly projected groups was set to|In| =
2, 000, except for the cased = 50, when it was5, 000. RP was realized by thedatabase-friendly
projectiontechnique, i.e., thern,ij coordinates ofRn were drawn independently from distribution
P (rn,ij = ±1) = 1/2, but more general constructions could also be used [224,225].

In the first study we were interested in the limits of the RP dimension reduction. We increased
dimensiond of the subspaces for thed-sphericaland thed-geomdatabases (d = 2, 10, 20, 50) and
studied the extreme case, the RP dimensiond′ was set to1. Results are summarized in Fig.5.13(a)-
(b) with quartiles (Q1, Q2, Q3). We found that the estimation error decreases with sample number
according to a power law [r(T ) ∝ T−c (c > 0)] and the estimation works up to aboutd = 50.
For thed = 50 case we present notched boxed plots (Fig.5.13(c)). According to the figure, the
error of estimation drops for sample numberT = 100, 000 for both types of datasets: for databases
50-geomand50-spherical, respectively, we have5 and9 outliers from50 random runs and thus
with probability90% and82%, the estimation is accurate. As for question two, we compared the
efficiency (Q1, Q2, Q3) of our method ford = 20 with the NN methods by RP-ing intod′ = 1
andd′ = 5 dimensions. Results are shown in Fig.5.13(e)-(f).8 The figure demonstrates that for
database20-geomperformances are similar, but for database20-sphericalour method has smaller
standard deviation forT = 20, 000. At the same time our method offers 8 to 30 times speed-up
at T = 100, 000 for serial implementations. Figure5.14 presents the components estimated by
our method for dimensionsd = 2 andd = 50, respectively. With regard to our third question,
the ISA problem can often be solved by grouping the estimatedICA coordinates based on their
mutual information. However, this method, as illustrated by (Q1, Q2, Q3) in Fig. 5.13(d), does not
work for ourall-4-independentdatabase. Inserting the RP based technique into global optimization
procedure, we get accurate estimation for this case, too. CEoptimization was used here. Results are
presented in Fig.5.13(d).

7We chose RADICAL, because it is consistent, asymptoticallyefficient, converges rapidly, and it is computationally
efficient. By RADICAL, we mean the spacing based entropy estimation part of the algorithm.

8We note that ford = 20 and without dimension reduction the NN methods are very slowfor the ISA tasks.
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Figure 5.13: Performance of the RP method in ISA. Notations:‘RPd′ - method of cost estimation
(method of optimization if not greedy)’. (a), (b): accuracyof the estimation versus the number of
samples for thed-sphericaland thed-geomdatabases on log-log scale. (c): notched boxed plots for
d = 50, (d): Performance comparison on theall-4-independentdatabase between the RP method
using global optimization and the NCut based grouping of theestimated ICA coordinates using
the pairwise mutual information graph (on log-log scale). (e)-(f): Accuracy and computation time
comparisons with the NN based method for the20-sphericaland the20-geomdatabases (on log-log
scale).
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(a) (b) (c)

(d) (e)

Figure 5.14: RP based ISA, estimated components and Hinton-diagrams. Number of samples:T =
100, 000. Databases2-geom: (a)-(c), 50-spherical: (d), 50-geom: (e). (a): observed signalsxt,
(b): Hinton-diagram ofG: the product of the mixing matrix of the ISA task and the estimated
demixing matrix is approximately a block-permutation matrix with 2×2 sized blocks, (c): estimated
componentŝem, recovered up to the ISA ambiguities, (d)-(e): Hinton-diagrams of the50-spherical
and the50-geomtests, respectively. Hinton-diagrams have average Amari-indices: for (b) 0.2%, for
(d) 1%, for (e) 12%.
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Chapter 6

Conclusions

In this thesis we addressed the dictionary learning problemin case of two different assumptions on
the hidden sources: (i) group sparsity and (ii) independentsubspaces (ISA, independent subspace
analysis).

In the former case, we proposed a new dictionary learning method, which (i) is online, (ii) en-
ables overlapping group structures on the hidden representation/dictionary, (iii) applies non-convex,
sparsity inducing regularization, and (iv) can handle the partially observable case, too. We reduced
the formulated online group-structured dictionary learning (OSDL) problem to convex subtasks, and
using a block-coordinate descent approach and a variational method we derived online update rules
for the statistics of the cost of the dictionary. The efficiency of our algorithm was demonstrated by
several numerical experiments. We have shown that in the inpainting problem of natural images the
proposed OSDL method can perform better than the traditional sparse methods. We have shown that
our approach can be used for the online structured NMF problem, too, and it is able to hierarchically
organize the elements of the dictionary. We have also dealt with collaborative filtering (CF) based
recommender systems. Our extensive numerical experimentsshowed that structured dictionaries
have several advantages over the state-of-the-art CF methods: more precise estimation can be ob-
tained, and smaller dimensional feature representation can be sufficient by applying group-structured
dictionaries. Moreover, the estimation behaves robustly as a function of the OSDL parameters and
the applied group structure.

We derived novel kernel based function approximation techniques and kernel – sparsity equiva-
lences. In particular, we generalized a variant of sparse coding scheme to reproducing kernel Hilbert
spaces (RKHS) with component-wise,ǫ-sparse properties and proved that the obtained problem can
be transformed to a generalized family of support vector machine (SVM) problem. We also showed
that SVMs can be embedded into multilayer perceptrons (MLP)and for the obtained multilayer
kerceptron architecture the backpropagation procedure ofMLPs can be generalized.

We extended the ISA problem to several domains. Our work was motivated by a central result, a
10-year-old unresolved hypothesis of the ICA (independentcomponent analysis) research, the ISA
separation principle. This principle (i) enables one to solve the ISA problem via traditional ICA
up to permutation, (ii) has been rigorously proven for certain distribution types recently (sufficient
conditions are now known for the principle), (iii) forms thebasis of the state-of-the-art ISA solvers,
(iv) makes it possible to estimate the unknown number and thedimensions of the sources efficiently.

We generalized the ISA problem to numerous new directions including the controlled, the par-
tially observed, the complex valued and the nonparametric case. We derived separation principle
based solution techniques for the formulated problems. This approach makes it possible to (i) ap-
ply state-of-the-art algorithms for the obtained subproblems (ICA, spectral clustering, D-optimal
identification, kernel regression, etc.) and (ii) tackle the case of unknown source component dimen-
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sions efficiently. We extended the Amari-index performancemeasure to different dimensional com-
ponents. Our extensive numerical illustrations demonstrated the robustness and attractive scaling
properties of the approach. The novel models may also lead toa new generation of control assisted
data mining applications, interaction paradigms, biomedical, econometric and financial prediction
approaches.
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Appendix A

Proofs

A.1 Online Group-Structured Dictionary Learning

In this section we focus on the OSDL problem. We will derive the update equations for the statis-
tics describing the minimum point of̂ft (SectionA.1.2). During the derivation we will need an
auxiliary lemma concerning the behavior of certain matrix series. We will introduce this lemma in
SectionA.1.1.

A.1.1 The Forgetting Factor in Matrix Recursions

Let Nt ∈ RL1×L2 (t = 1, 2, . . .) be a given matrix series, and letγt =
(

1− 1
t

)ρ
, ρ ≥ 0. Define the

following matrix series with the help of these quantities:

Mt = γtMt−1 + Nt ∈ R
L1×L2 (t = 1, 2, . . .), (A.1)

M′
t =

t
∑

i=1

(

i

t

)ρ

Ni ∈ R
L1×L2 (t = 1, 2, . . .). (A.2)

Lemma 1. If ρ = 0, thenMt = M0 + M′
t (∀t ≥ 1). Whenρ > 0, thenMt = M′

t (∀t ≥ 1).

Proof.

1. Caseρ = 0: Sinceγt = 1 (∀t ≥ 1), thusMt = M0 +
∑t

i=1 Ni. We also have that
(

i
t

)0
= 1

(∀i ≥ 1), and thereforeM′
t =

∑t
i=1 Ni, which completes the proof.

2. Caseρ > 0: The proof proceeds by induction.

• t = 1: In this caseγ1 = 0, M1 = 0 ×M0 + N1 = N1 andM′
1 = N1, which proves

thatM1 = M′
1.

• t > 1: Using the definitions ofMt andM
′

t, and exploiting the fact thatMt−1 = M
′

t−1
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by induction, after some calculation we have that:

Mt = γtMt−1 + Nt =

(

1− 1

t

)ρ
[

t−1
∑

i=1

(

i

t− 1

)ρ

Ni

]

+ Nt (A.3)

=

(

t− 1

t

)ρ
[

t−1
∑

i=1

(

i

t− 1

)ρ

Ni

]

+

(

t

t

)ρ

Nt (A.4)

=
t
∑

i=1

(

i

t

)ρ

Ni = M′
t. (A.5)

A.1.2 Online Update Equations for the Minimum Point of f̂t

Our goals are (i) to find the minimum of

f̂t(D) =
1

∑t
j=1(j/t)ρ

t
∑

i=1

(

i

t

)ρ [
1

2
‖xOi

−DOi
αi‖22 + κΩ(αi)

]

(A.6)

in dj while the other column vectors ofD (di (i 6= j)) are being fixed, and (ii) to derive online
update rules for the statistics of̂ft describing this minimum point.̂ft is quadratic indj , hence in
order to find its minimum, we simply have to solve the following equation:

∂f̂t

∂dj
(uj) = 0, (A.7)

whereuj denotes the optimal solution. We can treat theΩ, and the 1
P

t
j=1

(j/t)ρ terms in (A.6) as

constants, since they do not depend ondj . Let D−j denote the slightly modified version of matrix
D; its jth column is deleted. Similarly, letαi,−j denote the vectorαi where itsjth coordinate is
discarded. Now, we have that

0 =
∂f̂t

∂dj
=

∂

∂dj

[

t
∑

i=1

(

i

t

)ρ

‖∆i(xi −Dαi)‖22

]

(A.8)

=
∂

∂dj

[

t
∑

i=1

(

i

t

)ρ

‖∆i[(xi −D−jαi,−j)− djαi,j ]‖22

]

(A.9)

=
∂

∂dj

[

t
∑

i=1

(

i

t

)ρ

‖(∆iαi,j)dj −∆i(xi −D−jαi,−j)‖22

]

(A.10)

= 2

t
∑

i=1

(

i

t

)ρ

∆iαi,j [(∆iαi,j)dj −∆i(xi −D−jαi,−j)] (A.11)

= 2

t
∑

i=1

(

i

t

)ρ

∆iα
2
i,jdj − 2

t
∑

i=1

(

i

t

)ρ

∆iαi,j(xi −D−jαi,−j), (A.12)
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where we used the facts that

xOi
−DOi

αi = ∆i(xi −Dαi), (A.13)

∂ ‖Ay − b‖22
∂y

= 2AT (Ay − b), (A.14)

∆i = ∆T
i = (∆i)

2. (A.15)

After rearranging the terms in (A.12), we have that
(

t
∑

i=1

(

i

t

)ρ

∆iα
2
i,j

)

uj = (A.16)

=

t
∑

i=1

(

i

t

)ρ

∆iαi,j(xi −D−jαi,−j) (A.17)

=

t
∑

i=1

(

i

t

)ρ

∆ixiαi,j −
t
∑

i=1

(

i

t

)ρ

∆iD−jαi,−jαi,j (A.18)

=

t
∑

i=1

(

i

t

)ρ

∆ixiαi,j −
t
∑

i=1

(

i

t

)ρ

∆i(D−jαi,−j + djαi,j − djαi,j)αi,j (A.19)

=

t
∑

i=1

(

i

t

)ρ

∆ixiαi,j −
t
∑

i=1

(

i

t

)ρ

∆iDαiαi,j +

(

t
∑

i=1

(

i

t

)ρ

∆iα
2
i,j

)

dj . (A.20)

We note that (A.18) is a system of linear equations, and its solutionuj does not depend ondj . We
have introduced the ‘djαij − djαij ’ term only for one purpose; it can help us with deriving the
recursive updates foruj in a simple form. Define the following quantities

Cj,t =

t
∑

i=1

(

i

t

)ρ

∆iα
2
i,j ∈ R

dx×dx (j = 1, . . . , dα), (A.21)

Bt =
t
∑

i=1

(

i

t

)ρ

∆ixiα
T
i = [b1,t, . . . ,bdα,t] ∈ R

dx×dα , (A.22)

ej,t =

t
∑

i=1

(

i

t

)ρ

∆iDαiαi,j ∈ R
dx (j = 1, . . . , dα). (A.23)

Here (i)Cj,ts are diagonal matrices and (ii) the update rule ofBt contains the quantity∆ixi, which
is xOi

extended by zeros at the non-observable ({1, . . . , dx} \ Oi) coordinates. By using these
notations and (A.20), we obtain thatuj satisfies the following equation:

Cj,tuj = bj,t − ej,t + Cj,tdj . (A.24)

Now, according to Lemma1, we can see that (i) whenρ = 0 andCj,0 = 0, B0 = 0, or (ii) ρ > 0
andCj,0, B0 are arbitrary, then theCj,t andBt quantities can be updated online with the following
recursions:

Cj,t = γtCj,t−1 + ∆tα
2
t,j , (A.25)

Bt = γtBt−1 + ∆txtα
T
t , (A.26)
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whereγt =
(

1− 1
t

)ρ
. We use the following online approximation forej,t:

ej,t = γtej,t−1 + ∆tDαtαt,j , (A.27)

with initialization ej,0 = 0 (∀j), andD is theactual estimation for the dictionary. This choice
seems to be efficient according to our numerical experiences.

Note. In the fully observable special case (i.e., when∆i = I, ∀i) the(A.21)-(A.23) equations have
the following simpler form:

Cj,t = I

t
∑

i=1

(

i

t

)ρ

α2
i,j , (A.28)

Bt =
t
∑

i=1

(

i

t

)ρ

xiα
T
i , (A.29)

ej,t =

t
∑

i=1

(

i

t

)ρ

Dαiαi,j = D

t
∑

i=1

(

i

t

)ρ

αiαi,j . (A.30)

Define the following term:

At =

t
∑

i=1

(

i

t

)ρ

αiα
T
i ∈ R

dα×dα , (A.31)

and letaj,t denote thejth column ofAt. Now,(A.30) can be rewritten as

ej,t = Daj,t, (A.32)

and thus(A.24) has the following simpler form:

(At)j,juj = bj,t −Daj,t + (At)j,jdj . (A.33)

Here(·)j,j stands for the(j, j)th entry of its argument. By applying again Lemma1 for (A.31), we
have that when (i)ρ = 0 andA0 = 0, or (ii) ρ > 0 andA0 is arbitrary, thenAt can be updated
online with the following recursion:

At = γtAt−1 + αtα
T
t . (A.34)

We also note that in the fully observable case(A.26) reduces to

Bt = γtBt−1 + xtα
T
t , (A.35)

and thus [135] is indeed a special case of our model:

• We calculateuj by (A.33).

• To optimizef̂t, it is enough to keep track ofAt andBt instead of{Cj,t}dα

j=1,Bt, {ej,t}dα

j=1.

• The quantitiesAt andBt can be updated online by(A.34) and(A.35).
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A.2 Correspondence of the(c, e)-SVM and (p, s)-Sparse Prob-
lems

In this section we give the proof of Proposition1.
We will use the fact that the Moore-Penrose generalized inverse of a matrixG ∈ R

n×m, G− ∈
Rm×n uniquely exists and it has the properties:

GG−,G−G : symmetric matrices (A.36)

GG−G = G (A.37)

G−GG− = G−. (A.38)

We modify Eq. (2.51) using the assumption thatf(xi) = yi (i = 1, . . . , l). Exploiting that for
the norm‖·‖2

H
= 〈·, ·〉

H
holds, and that scalar products are bilinear we obtain

F (a) =
1

2
‖f‖2

H
−

l
∑

i=1

ai 〈f(·), k(·,xi)〉H (A.39)

+
1

2

l
∑

i,j=1

aiaj 〈k(·,xi), k(·,xj)〉H +

l
∑

i=1

pi |ai|si
.

According to the reproducing property of the kernel, and ourf(xi) = yi (i = 1, . . . , l) assump-
tion, one can see that

〈f(·), k(·,xi)〉H = f(xi) = yi, (A.40)

〈k(·,xi), k(·,xj)〉H = k(xi,xj) = Gij . (A.41)

By dropping the first term ofF (a), which is independent ofa, we get that the minimization ofF (a)
is equivalent to

1

2
aTGa− yT a +

l
∑

i=1

pi |ai|si
→ min

a∈Rl
, (A.42)

whereG = [Gij ] = [k(xi,xj)] is the Gram matrix of the{xi} samples. By rewriting thesi-
insensitive terms introducing slack variables, and introducing the notations = [s1; . . . ; sl], the
optimization problem (A.42) is equivalent to

min
a,s+,s−

[

1

2
aT Ga− yT a + pT

(

s+ + s−
)

]

, (A.43)

subject to







a ≤ s + s+

−a ≤ s + s−

0 ≤ s+, s−







.

Now we take the dual of this problem using the Lagrangian approach

max
d+,d−,q+,q−≥0

L(d+,d−,q+,q−) = (A.44)

=
1

2
aT Ga− yT a+pT

(

s+ + s−
)

− (q+)T s+ − (q−)T s−

−(d+)T (s + s+ − a)− (d−)T (s + s− + a).
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At the optimum, the derivatives of LangrangianL taken by the primal variables disappear, that is

0 =
∂L

∂a
= aT G− yT + (d+ − d−)T , (A.45)

0 =
∂L

∂s+
= pT − (d+)T − (q+)T , (A.46)

0 =
∂L

∂s−
= pT − (d−)T − (q−)T . (A.47)

Reordering and transposing (A.45), we have

aTG =
(

y − (d+ − d−)
)T

, (A.48)

Ga =
(

y − (d+ − d−)
)

, (A.49)

where the symmetry of Gram matrixG was also exploited. Using (A.48), we can substitute expres-
sion

(

y − (d+ − d−)
)T

a = aT Ga (A.50)

to L. One can also replace matrixG of the Lagrangian byGG−G according to (A.37), and then
insert the expressions foraT G andGa using (A.48) and (A.49) to obtain

aTGa = aT (GG−G)a = (aT G)G−(Ga) (A.51)

=
(

y − (d+ − d−)
)T

G−
(

y − (d+ − d−)
)

. (A.52)

Using expressions (A.46) and (A.47) in the LagrangianL, the variablesq+,q− disappear, but their
non-negativity conditions, with (A.46) and (A.47) give rise to constraintsp ≥ d+ andp ≥ d− for
variablesd+ andd−. We can also change the minimization of LagrangianL to maximization by
changing the sign. Taken together, we have that our optimization task is that of

min
p≥d+,d−≥0

[

1

2
(y − (d+ − d−))T G−(y − (d+ − d−)) + (d+ + d−)T s

]

. (A.53)

The terms of the quadratic expression can be expanded and reordered. Upon dropping terms not
containing variablesd+ or d−, and making use of the symmetry ofG− inherited fromG, one
obtains that the optimization problem is

min
p≥d+,d−≥0

[

1

2
(d+ − d−)T G−(d+ − d−)− (d+ − d−)TG−y + (d+ + d−)T s

]

. (A.54)

Now, comparing the obtained result with (2.48), we can see that one can transform the dual of
the (p, s)-sparse task to that of the(c, e)-SVM task according to the relation the(d∗,d,G,y) ↔
(d+,d−,G−,G−y) = (d+,d−,G−GG−,G−y). At the last equality, the (A.38) property of the
generalized inverse was used. This is what we wanted to prove. �

A.3 Backpropagation for Multilayer Kerceptrons

In the sequel, we derive propagation rule for the multilayerkerceptron network. We carry out the
derivation for stochastic gradient descent optimization.The cost function is has two terms:c(t) =
ε2(t) + r(t). In SectionA.3.1 we focus on the derivative of theε2(t) approximation term. In
SectionA.3.2, we are dealing with the regularization part. The obtained results are embedded into
stochastic gradient descent optimization in SectionA.3.3.
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A.3.1 Derivative of the Approximation Term

In this section we derive the derivative of theε2(t) approximation term. First, we list basic relations,
involved by the MLK structure. For the case of better readability, below, indext is dropped [precise
form: xl = xl(t), yl = yl(t), sl = sl(t),wl

i = wl
i(t)].

xl = yl−1 ∈ R
N l

I (l = 1, . . . , L + 1), (A.55)

xl+1 = gl(sl) (l = 1, . . . , L), (A.56)

sl =













〈

wl
1, ϕ

l(xl)
〉

Hl

...
〈

wl
i, ϕ

l(xl)
〉

Hl

...













(l = 1, . . . , L; i = 1, . . . , N l
S) (A.57)

=













〈

wl
1, ϕ

l(gl−1(sl−1))
〉

Hl

...
〈

wl
i, ϕ

l(gl−1(sl−1))
〉

Hl

...













(l = 2, . . . , L; i = 1, . . . , N l
S), (A.58)

sl+1 =













〈

wl+1
1 , ϕl+1(gl(sl))

〉

Hl+1

...
〈

wl+1
i , ϕl+1(gl(sl))

〉

Hl+1

...













(l = 1, . . . , L− 1; i = 1, . . . , N l+1
S ). (A.59)

Our goal is to compute the quantity∂[ε2(t)]

∂[wl
i(t)]

, which according to the chain rule and the definition

of sl(t) takes the form

∂[ε2(t)]

∂[wl
i(t)]

=
∂[ε2(t)]

∂[sl
i(t)]

∂[sl
i(t)]

∂[wl
i(t)]

= δl
i(t)ϕ

l(xl(t)) (l = 1, . . . , L; i = 1, . . . , N l
S), (A.60)

whereδl
i(t) is theith coordinate of the backpropagated error of layerl defined as

δl(t) =
∂[ε2(t)]

∂[sl(t)]
(l = 1, . . . , L). (A.61)

Let us notice that the derivative (A.60) can be expressed by using quantityδl
i(t) and by the feature

representation of the inputxl(t) arriving to thelth layer, i.e., byϕl(xl(t)).
Making use of the chain rule again and the definition ofδl+1(t), the backpropagated error satis-

fies the relation

δl(t) =
∂[ε2(t)]

∂[sl(t)]
=

∂[ε2(t)]

∂[sl+1(t)]

∂[sl+1(t)]

∂[sl(t)]
= δl+1(t)

∂[sl+1(t)]

∂[sl(t)]
(l = 1, . . . , L− 1). (A.62)

One can compute this recursion for the backpropagated error, and thus the required derivative

(A.60), provided that (i)δL(t) and (ii) ∂[ε2(t)]
∂[sl(t)]

are available. In the sequel, we focus on the compu-
tation of these two quantities.
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TheδL(t) quantity can be computed as follows:

δL(t) =
∂[ε2(t)]

∂[sL(t)]
=

∂
[

∥

∥d(t)− gL(sL(t))
∥

∥

2

2

]

∂[sL(t)]
(A.63)

= 2
[

gL
(

sL(t)
)

− d(t)
]T (

gL
)

′
(

sL(t)
)

(A.64)

= 2 [y(t) − d(t)]
T (

gL
)

′

(sL(t)). (A.65)

Here we used the chain rule, the equation

∂[‖d− y‖22]
∂y

= 2(y − d)T , (A.66)

and inserted the relation
y(t) = gL

(

sL(t)
)

, (A.67)

imposed by the MLK architecture.
To compute

∂[sl+1(t)]

∂[sl(t)]
(l = 1, . . . , L− 1) (A.68)

(A.59) is made use of. It is sufficient to consider terms of the form

∂[〈w, ϕ(g(s))〉
H

]

∂[s]
(A.69)

and then to ‘compile’ the full derivative from them. The value of (A.69) can computed by means of
the following lemma.

Lemma 2. Letw ∈ H = H(k) be a point in the RKHSH. Let us assume the followings:

1. Explicit case: thex 7→ 〈w, ϕ(x)〉
H

and the functiong are differentiable.

2. Implicit case:

• Let kernelk be differentiable w.r.t. both arguments and letk′
y denote the derivative of

the kernel according to its second argument.

• We also assume thatw is within the image space of the feature space representation of
a finite number of pointszi. That is

w ∈ Im (ϕ(z1), ϕ(z2), . . . , ϕ(zN )) ⊆ H. (A.70)

Let this expansion bew =
N
∑

j=1

αjϕ(zj), whereαj ∈ R.

Then we have two cases:

1. Explicit case:
∂[〈w, ϕ(g(s))〉

H
]

∂[s]
=

∂ [〈w, ϕ(u)〉
H

]

∂[u]

∣

∣

∣

∣

u=g(s)

g′(s). (A.71)

2. Implicit case:

∂[〈w, ϕ(g(s))〉
H

]

d[s]
=

N
∑

j=1

αjk
′
y(zj ,g(s))g′(s). (A.72)
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Proof.

1. Explicit case: the statement follows from the chain rule.

2. Implicit case:

∂[〈w, ϕ(g(s))〉
H

]

∂[s]
=

∂
[〈

∑

j αjϕ(zj), ϕ(g(s))
〉

H

]

∂[s]
(A.73)

=
∂
[

∑

j αj 〈ϕ(zj), ϕ(g(s))〉
H

]

∂[s]
(A.74)

=
∂
[

∑

j αjk (zj ,g(s))
]

∂[s]
(A.75)

=
∑

j

αjk
′
y(zj ,g(s))g′(s). (A.76)

In the first equation the expansion ofw and the linear property of the scalar product was
exploited. Then, the relation (2.35) between the feature mapping and the kernel was applied.
The last step follows from the chain rule.

Let us turn back to the computation of Eq. (A.68):

1. Explicit case: According to Lemma2 we have

∂[sl+1(t)]

∂[sl(t)]
=













...
∂[〈wl+1

i (t),ϕl+1(u)〉
Hl+1 ]

∂[u]

∣

∣

∣

∣

u=gl(sl(t))

(

gl
)′

(sl(t))

...













(A.77)

=













...
∂[〈wl+1

i (t),ϕl+1(u)〉
Hl+1 ]

∂[u]

∣

∣

∣

∣

u=xl+1(t)

...













(

gl
)′

(sl(t)) (A.78)

(l = 1, . . . , L− 1; i = 1, . . . , N l+1
S ).

In the second equation (i) we used identity (A.56) and (ii) pulled out the term
(

gl
)′ (

sl(t)
)

.

2. Implicit case: For termswl+1
i (t) we have the expansion property expressed by Eq. (2.59). This

was our starting assumption. In subsectionA.3.3, we shall see that this property is ‘inherited’
from time (t) to time (t + 1). Thus,

wl+1
i (t) =

N l+1

i (t)
∑

j=1

αl+1
ij (t)ϕl+1(zl+1

ij (t)) (l = 1, . . . , L− 1; i = 1, . . . , N l+1
S ) (A.79)
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and the derivative (A.68), we need, takes the form

∂[sl+1(t)]

∂[sl(t)]
=















...
N l+1

i (t)
∑

j=1

αl+1
ij (t)[kl+1]′y(zl+1

ij (t),gl(sl(t)))
(

gl
)′

(sl(t))

...















(A.80)

=















...
N l+1

i (t)
∑

j=1

αl+1
ij (t)[kl+1]′y(zl+1

ij (t),xl+1(t))

...















(

gl
)′

(sl(t)) (A.81)

(l = 1, . . . , L− 1; i = 1, . . . , N l+1
S ).

Here, the second equation is based on identity (A.56). Matrix term
(

gl
)′ (

sl(t)
)

was pulled
out.

A.3.2 Derivative of the Regularization Term

The derivative of the regularization termr(t) is simple:

∂[r(t)]

∂[wl
i(t)]

=

∂

[

L
∑

l=1

N l
S
∑

i=1

λl
i

∥

∥wl
i(t)
∥

∥

2

Hl

]

∂[wl
i(t)]

= 2λl
iw

l
i(t) (l = 1, . . . , L; i = 1, . . . , N l

S). (A.82)

Note that the respective terms of the derivative are scaled version of the actual weights,wl
i(t). This

form makes possible implicit tuning in the dual space.

A.3.3 Derivative of the Cost

Using identity

∂[c(t)]

∂[wl
i(t)]

=
∂[ε2(t)]

∂[wl
i(t)]

+
∂[r(t)]

∂[wl
i(t)]

(l = 1, . . . , L; i = 1, . . . , N l
S) (A.83)

as well as our results on the approximation and the regularization terms [i.e., Eqs. (A.60), and
(A.82)], for the

wl
i(t + 1) = wl

i(t)− µl
i(t)

∂[c(t)]

∂[wl
i(t)]

(l = 1, . . . , L; i = 1, . . . , N l
S). (A.84)

stochastic gradient descent form we have

wl
i(t + 1) = wl

i(t)− µl
i(t)

(

δl
i(t)ϕ

l(xl(t)) + 2λl
iw

l
i(t)
)

(A.85)

= (1 − 2µl
i(t)λ

l
i)w

l
i(t)− µl

i(t)δ
l
i(t)ϕ

l(xl(t)) (A.86)

(l = 1, . . . , L; i = 1, . . . , N l
S).

The same in dual form is as follows

αl
i(t + 1) = [

(

1− 2µl
i(t)λ

l
i

)

αl
i(t);−µl

i(t)δ
l
i(t)] (l = 1, . . . , L; i = 1, . . . , N l

S). (A.87)
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In turn, according to (A.86) the expansion property of the weight vectors of the network[i.e.,
Eq. (2.59)] is inherited from time (t) to time (t + 1). In particular, the expansion is valid for pa-
rameter setwl

i received at the end of the computation. To sum up, the backpropagation procedure
holds for MLK. The derived explicit and implicit proceduresare summarized in Table2.5 and Ta-
ble2.6, respectively.

79



Appendix B

Abbreviations

Abbreviations used in the paper are listed in TableB.1.

Table B.1: Acronyms.

Abbreviation Meaning

ANN approximate nearest neighbor
AR autoregressive

ARMA autoregressive moving average
ARMAX ARMA with exogenous input

ARX AR with exogenous input
BCD block coordinate descent

BCDA approximate block coordinate descent
BSD blind source deconvolution
BSSD blind subspace deconvolution

CE cross-entropy
CF collaborative filtering

ECG electro-cardiography
EEG electro-encephalography
EM expectation maximization
fAR functional AR
fMRI functional magnetic resonance imaging

ICA/ISA/IPA independent component/subspace/process analysis
i.i.d. independent identically distributed
JFD joint f-decorrelation

KCCA kernel canonical correlation analysis
Lasso least absolute shrinkage and selection operator
LDS linear dynamical system
LPA linear prediction approximation
MA moving average
mAR AR with missing values
MEG magneto-encephalography
ML maximum likelihood

MLK multilayer kerceptron
MLP multilayer perceptron
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MSE mean square error
NIW normal-inverted Wishart
NN nearest neighbor

NMF non-negative matrix factorization
OSDL online group-structured dictionary learning
PCA principal component analysis
PNL post nonlinear

PSNR peak signal-to-noise ratio
QP quadratic programming

RADICAL robust, accurate, direct ICA algorithm
RBF radial basis function
RIP restrictive isometry property

RMSE root mean square error
RKHS reproducing kernel Hilbert space

RP random projection
RS recommender system

SDL structured dictionary learning
SVM support vector machine
TSP traveling salesman problem
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[239] Barnabás Póczos and András Lőrincz. Independent subspace analysis using k-nearest neigh-
borhood distances. Artificial Neural Networks: Formal Models and their Applications
(ICANN), 3697:163–168, 2005.

[240] Fabian J. Theis. Blind signal separation into groups of dependent signals using joint block
diagonalization. InInternational Society for Computer Aided Surgery (ISCAS), pages 5878–
5881, 2005.

[241] Aapo Hyvärinen and Patrik O. Hoyer. Emergence of phaseand shift invariant features by
decomposition of natural images into independent feature subspaces.Neural Computation,
12:1705–1720, 2000.

[242] Fabian J. Theis. Towards a general independent subspace analysis. InAdvances in Neural
Information Processing Systems (NIPS), pages 1361–1368, 2007.

[243] Harald Stögbauer, Alexander Kraskov, Sergey A. Astakhov, and Peter Grassberger. Least
dependent component analysis based on mutual information.Physical Review E - Statistical,
Nonlinear, and Soft Matter Physics, 70(066123), 2004.

[244] Alok Sharma and Kuldip K. Paliwal. Subspace independent component analysis using vector
kurtosis.Pattern Recognition, 39:2227–2232, 2006.

[245] Michael A. Casey and Alex Westner. Separation of mixedaudio sources by independent
subspace analysis. InInternational Computer Music Conference (ICMC), pages 154–161,
2000.

[246] Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. Fetal electrocardiogram extrac-
tion by blind source subspace separation.IEEE Transactions on biomedical engineering,
47(5):567–572, 2000.

[247] Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. Fetal electrocardiogram extrac-
tion by source subspace separation. InIEEE SP/Athos Workshop on Higher-Order Statistics,
pages 134–138, 1995.

[248] Sergey Kirshner and Barnabás Póczos. ICA and ISA usingSchweizer-Wolff measure of
dependence. InInternational Conference on Machine Learning (ICML), pages 464–471,
2008.

[249] Carlos Silva Santos, João Eduardo Kögler Jr., and Emílio Del Moral Hernandez. Using in-
dependent subspace analysis for selecting filters used in texture processing. InInternational
Conference on Image Processing (ICIP), pages 465–468, 2005.

[250] Florian Kohl, Gerd Wübbeler, Dorothea Kolossa, Clemens Elster, Markus Bär, and Reinhold
Orglmeister. Non-independent BSS: A model for evoked MEG signals with controllable
dependencies. InIndependent Component Analysis and Signal Separation (ICA), pages 443–
450, 2009.

97



Short Summary in English

In my thesis I focus on (i) sparse and group-sparse coding, kernel based approximation, and (ii)
independent subspace analysis (ISA) based dictionary learning.

1. I constructed a general dictionary optimization scheme for group-sparse codes; I derived novel
kernel – sparsity equivalences and kernel based function approximation techniques:

(a) I developed a general dictionary learning technique which is (i) online, (ii) enables over-
lapping group structures with (iii) non-convex sparsity-inducing regularization and (iv)
handles the partially observable case—previous approaches in the literature could han-
dle two of these four desirable properties at most. I demonstrated the efficiency of the
approach in 3 different applications: (i) inpainting of natural images, (ii) non-negative
hierarchical matrix factorization of large-scale face images, and (iii) collaborative filter-
ing.

(b) I defined an extended, component-wise acting,ǫ-sparsity inducing approximation
scheme in reproducing kernel Hilbert spaces (RKHS), and proved that the obtained prob-
lem is equivalent to a generalization of SVMs (support vector machine).

(c) I embedded SVMs to multilayer perceptrons (MLP). I proved that the well-known back-
propagation method of MLPs can be generalized to the formulated multilayer SVM net-
work.

2. I derived novel independent subspace assumption based dictionary learning problems and so-
lution techniques:

(a) I coupled the active learning and the AR-IPA (autoregressive independent process anal-
ysis) tasks, and reduced the solution of the estimation problem to D-optimal ARX (‘X’:
exogenous input) identification and ISA.

(b) I generalized the results of (a) to (i) the composition oflinear and coordinate-wise acting
nonlinear case, the so-called post nonlinear mixtures, and(ii) temporal (convolutive)
mixing.

(c) I extended the problem of independent component analysis in case of missing observa-
tions from the former one-dimensional, i.i.d. sources to (i) multidimensional sources of
(ii) not equal/-known dimensions, and (iii) relaxed the i.i.d. assumption to AR. I reduced
the estimation to incompletely observed AR identification and ISA.

(d) I generalized the ISA problem to complex variables, and proved that under certain non-
Gaussian assumption the solution can be reduced to real valued ISA.

(e) I extended the ISA task to the case of (i) nonparametric, asymptotically stationary source
dynamics, (ii) treating the case of unknown and not necessarily equal source component
dimensions. I reduced the solution of the problem to kernel regression and ISA.

(f) I generalized the ISA problem to convolutive mixtures, and reduced the solution of the
problem to AR identification and ISA.

(g) Making use of the approximate distance preserving property of random projections,
I presented a parallel estimation method for high dimensional information theoretical
quantities. I demonstrated the efficiency of the approach inISA.
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Short Summary in Hungarian

Disszertációm a (i) ritka és csoport-ritka kódolás, kernelalapú közelítés, illetve (ii) a független altér
(independent subspace analysis, ISA) feltevés és kiterjesztései melletti generátorrendszer tanulási
problémával foglalkozik.

1. Általános csoport-ritka kódokhoz tartozó generátorrendszerek optimalizációjára módszert ad-
tam; újtípusú ritkaság – kernel alapú ekvivalenciát, illetve kernel alapú függvényapproximá-
ciós módokat származtattam:

(a) A ritka kódokhoz tartozó generátorrendszer tanulási problémát kiterjesztettem (i) átfedő
csoport-struktúrát, (ii) nem-konvex regularizációt, (iii) hiányos megfigyeléseket, és (iv)
online érkez̋o megfigyeléseket megengedő esetre–korábbi irodalombeli megközelítések
ezen kívánalmak közül legfeljebb kettőt tudtak egyidejűleg kezelni. Módszerem
hatékonyságát (i) természetes képek kitöltési problémáján, (ii) nagyfelbontású arcok
online, hierarchikus nem-negatív mátrix faktorizációján, és (iii) kollaboratív szűrési
területeken demonstráltam.

(b) RKHS (reproducing kernel Hilbert space)-ekben definiált ritka reprezentációs problémát
kiterjesztettem az egyes koordináták mentén ható,ǫ-ritkaságokat indukáló formára. Iga-
zoltam, hogy az így definiált alak SVM-ek (support vector machine, SVM) egy ál-
talánosított családjával ekvivalens.

(c) Többrétegű perceptronokba (multilayer perceptron, MLP) támasztóvektor gépeket
ágyazva többrétegű SVM hálókat konstruáltam. Az összekapcsolt többrétegű kercep-
tron hálózatra beláttam, hogy az MLP-k hibavisszaterjesztésen alapuló hangolási eljárása
kiterjeszthet̋o.

2. Független altér feltevés mellett új generátorrendszer tanulási feladatokat és megoldási tech-
nikákat származtattam:

(a) Az aktív tanulás és az AR-IPA (autoregressive independent process analysis) feladatot
összekapcsoltam, és a megoldást D-optimális ARX (’X’: exogén input) becslésre és ISA
feladatra redukáltam.

(b) Az (a) munka eredményeit (i) koordinátánként ható nemlinearitás, ún. poszt nemlineáris
irányban, illetve (ii) id̋obeli keverést (konvolúció) megengedő irányban általánosítottam.

(c) A hiányosan megfigyelt független komponens keresést az eddigi 1-dimenziós, i.i.d. for-
rások esetéről kiterjesztettem (i) többdimenziós, (ii) nem feltétlenül azonos/adott dimen-
ziós forrásokra, (iii) az i.i.d. kényszert is egyúttal AR irányban enyhítve. A megoldást
hiányosan megfigyelt AR becslésre és ISA problémára vezettem.

(d) Az ISA problémát általánosítottam komplex változós esetre, és a megoldást alkalmas
nem-Gauss-sági feltevések esetén valós változós problémára visszavezettem.

(e) Az ISA feladatot kiterjesztettem (i) nemparametrikus,asszimptotikusan stacionárius
forrásdinamikákra, (ii) az ismeretlen forrásdimenziók esetét is kezelve. A feladat
megoldását kernel regresszióra és ISA feladatra redukáltam.

(f) Az ISA problémát konvolutív irányban általánosítottam, a megoldást AR becslésre és
ISA feladatra redukáltam.

(g) A véletlen projekciók közelítő páronkénti távolság̋orző tulajdonságára építve, nagy di-
menziós információelméleti mennyiségek gyors, párhuzamosítható becslésére mutattam
technikát és azt ISA probléma megoldására adaptáltam.
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