Bayesian Manifold Learning: the Locally Linear Latent Variable Model (LL-LVM)

Mijung Park 1 , Wittawat Jitkrittum 1 , Ahmad Qamar 2 , Zoltán Szabó 1 , Lars Buesing, Maneesh Sahani 1

1: Gatsby Computational Neuroscience Unit, University College London, 2: Thread Genius

Manifold Learning

- Learning in high-dim. space is hard and expensive.
- Good news: intrinsic dimensionality is often low.
- Observations lie on a low-dim. manifold embedded in a high-dim. space.
- Manifold learning: uncover the low-dim. manifold structure.

Our Goal

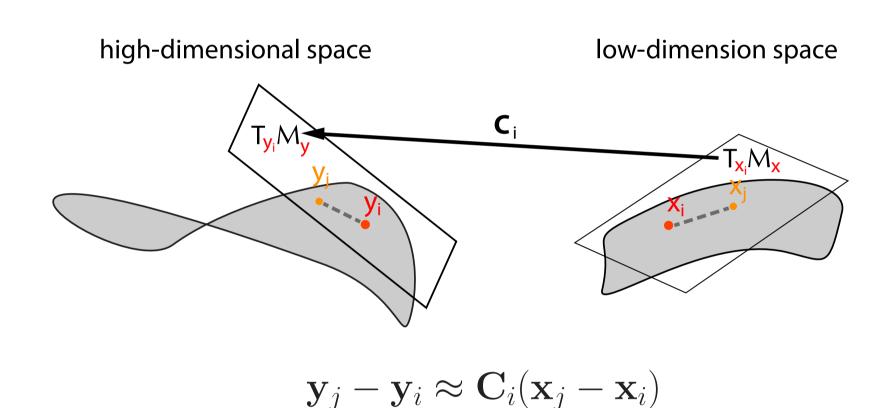
Recover data manifold in a Bayesian probabilistic way, while preserving geometric properties of local neighbourhoods.

Advantages:

- Fully probabilistic. Uncertainty estimates available.
- Principled way to evaluate manifold dimensionality.
- Learned model can handle unseen data points naturally.

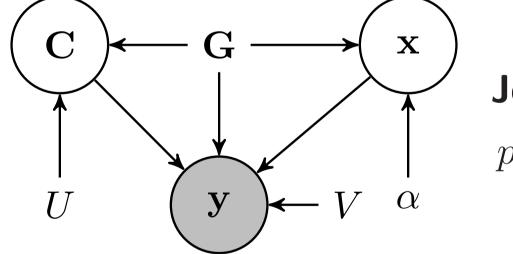
Our Approach: LL-LVM

• Assume a *locally linear* mapping between tangent spaces in low and high dimensional spaces



- Input: neighbourhood graph $\mathbf{G}=[\eta_{ij}]$ with binary adjacency indicator $\eta_{ij}=1$ if points i,j are neighbours.
- Find posterior distribution $p(\mathbf{C}, \mathbf{x} | \mathbf{y}, \mathbf{G})$ over the linear maps $\mathbf{C} = [\mathbf{C}_1, \cdots, \mathbf{C}_n]$ and the latent variables $\mathbf{x} = [\mathbf{x}_1^{\top}, \cdots, \mathbf{x}_n^{\top}]^{\top} \in \mathbb{R}^{nd_x}$.

Model



Joint distribution:

 $p(\mathbf{y}, \mathbf{C}, \mathbf{x} | \mathbf{G}) = p(\mathbf{y} | \mathbf{C}, \mathbf{x}, \mathbf{G}) p(\mathbf{C} | \mathbf{G}) p(\mathbf{x} | \mathbf{G}).$

• Prior on latent x: assume neighbouring points are similar,

$$p(\mathbf{x}|\mathbf{G},\alpha) = \mathcal{N}(\mathbf{0},\mathbf{\Pi}) \propto -\frac{1}{2} \sum_{i=1}^{n} \left(\alpha ||\mathbf{x}_i||^2 + \sum_{j=1}^{n} \eta_{ij} ||\mathbf{x}_i - \mathbf{x}_j||^2 \right),$$

where α controls the expected scale, $\Pi^{-1} = \alpha \mathbf{I}_{nd_x} + \Omega^{-1}$, $\Omega^{-1} = 2\mathbf{L} \otimes \mathbf{I}_{d_x}$ and $\mathbf{L} = \operatorname{diag}(\mathbf{G}\mathbf{1}) - \mathbf{G}$.

Prior on linear maps: matrix normal,

 $p(\mathbf{C}|\mathbf{G}, \mathbf{U}) = \mathcal{MN}(\mathbf{0}, \mathbf{U}, \mathbf{\Omega}), \text{ where } \mathbb{E}[\mathbf{C}\mathbf{C}^{\top}] \propto \mathbf{U}, \mathbb{E}[\mathbf{C}^{\top}\mathbf{C}] \propto \mathbf{G}.$

• Likelihood: penalise the approximation error,

$$p(\mathbf{y}|\mathbf{C}, \mathbf{x}, \mathbf{V}, \mathbf{G}) = \mathcal{N}(\boldsymbol{\mu}_{\mathbf{y}}, \boldsymbol{\Sigma}_{\mathbf{y}})$$

$$\propto -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \eta_{ij} ((\mathbf{y}_{j} - \mathbf{y}_{i}) - \mathbf{C}_{i}(\mathbf{x}_{j} - \mathbf{x}_{i}))^{\top} \mathbf{V}^{-1} ((\mathbf{y}_{j} - \mathbf{y}_{i}) - \mathbf{C}_{i}(\mathbf{x}_{j} - \mathbf{x}_{i})),$$

where $\mathbf{V}^{-1} = \gamma \mathbf{I}$ and γ is to be learned.

Variational EM

ullet Maximising log marginal likelihood is intractable. Maximise lower bound ${\mathcal F}$ instead

$$\log p(\mathbf{y}|\mathbf{G}, \boldsymbol{\theta}) \ge \iint q(\mathbf{C}, \mathbf{x}) \log \frac{p(\mathbf{y}, \mathbf{C}, \mathbf{x}|\mathbf{G}, \boldsymbol{\theta})}{q(\mathbf{C}, \mathbf{x})} d\mathbf{x} d\mathbf{C} := \mathcal{F}(q(\mathbf{C}, \mathbf{x}), \boldsymbol{\theta}).$$

- For computational tractability, assume $q(\mathbf{C}, \mathbf{x}) = q(\mathbf{x})q(\mathbf{C})$.
- Variational expectation maximisation (EM) algorithm:
- ullet E-step for computing $q(\mathbf{C},\mathbf{x})$ by

$$q(\mathbf{x}) \propto \exp \left[\int q(\mathbf{C}) \log p(\mathbf{y}, \mathbf{C}, \mathbf{x} | \mathbf{G}, \boldsymbol{\theta}) d\mathbf{C} \right] = \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_{\mathbf{x}}, \boldsymbol{\Sigma}_{\mathbf{x}}),$$
 $q(\mathbf{C}) \propto \exp \left[\int q(\mathbf{x}) \log p(\mathbf{y}, \mathbf{C}, \mathbf{x} | \mathbf{G}, \boldsymbol{\theta}) d\mathbf{x} \right] = \mathcal{N}(\mathbf{c} | \boldsymbol{\mu}_{\mathbf{c}}, \boldsymbol{\Sigma}_{\mathbf{c}}).$

ullet M-step for learning $oldsymbol{ heta}=\{lpha,\mathbf{U},\gamma\}$,

$$\hat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta}} \mathcal{F}(q(\mathbf{C}, \mathbf{x}), \boldsymbol{\theta}).$$

Illustration 1: Mitigating Short-Circuiting Problems

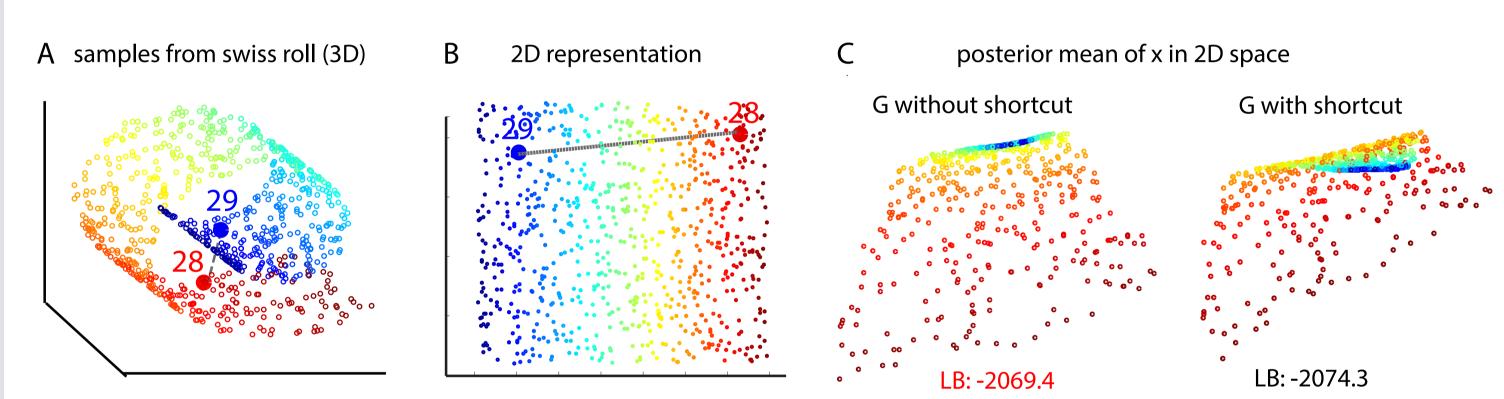


Figure : (A) Two datapoints seem close to each other, (B) but actually far in 2D space. (C) Short-circuiting the two datapoints lower the lower bound.

ullet The lower bound ${\mathcal F}$ can be used to evaluate a hypothesised neighbourhood structure.

Illustration 2: Modelling USPS Handwritten Digits

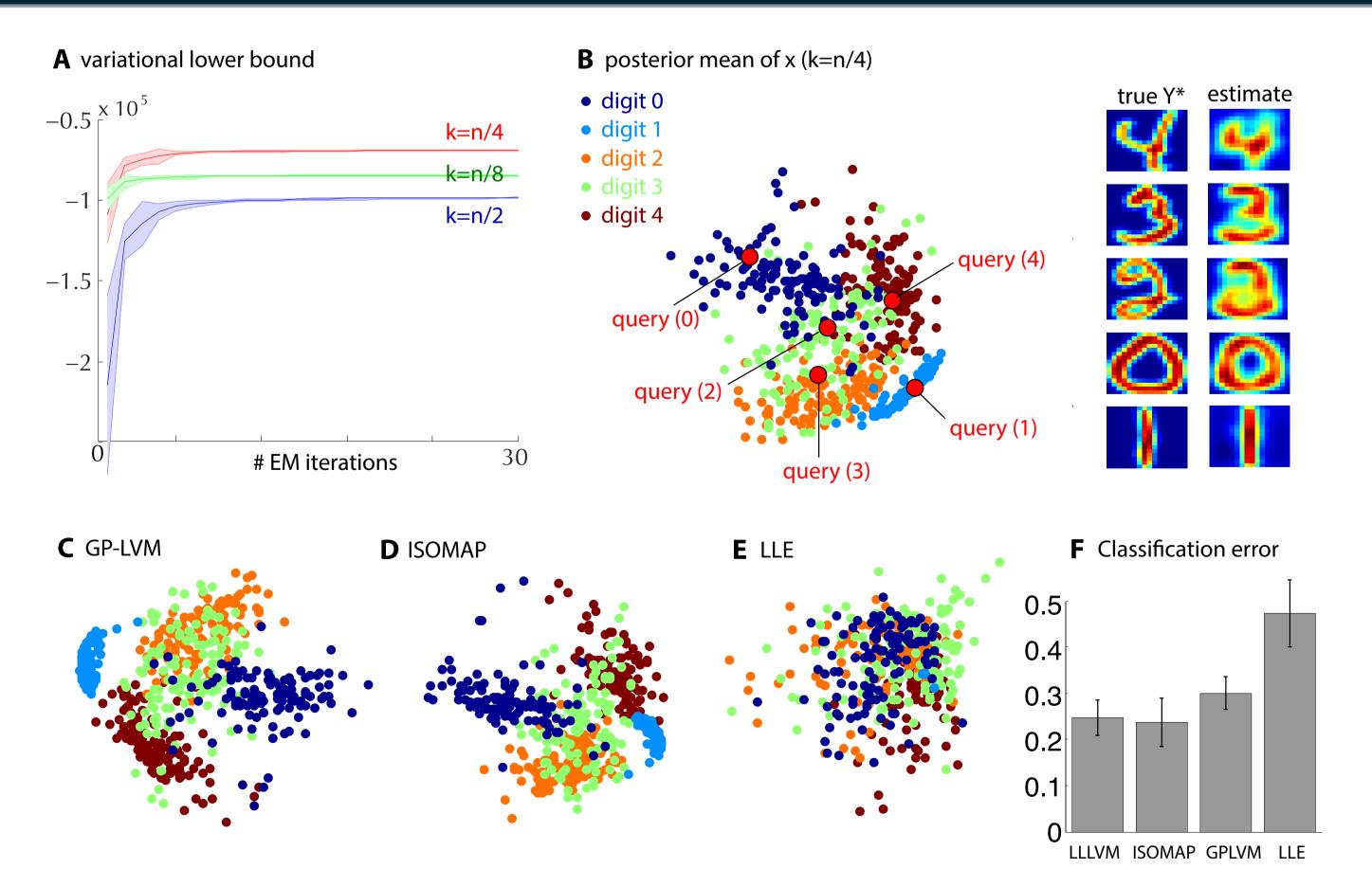
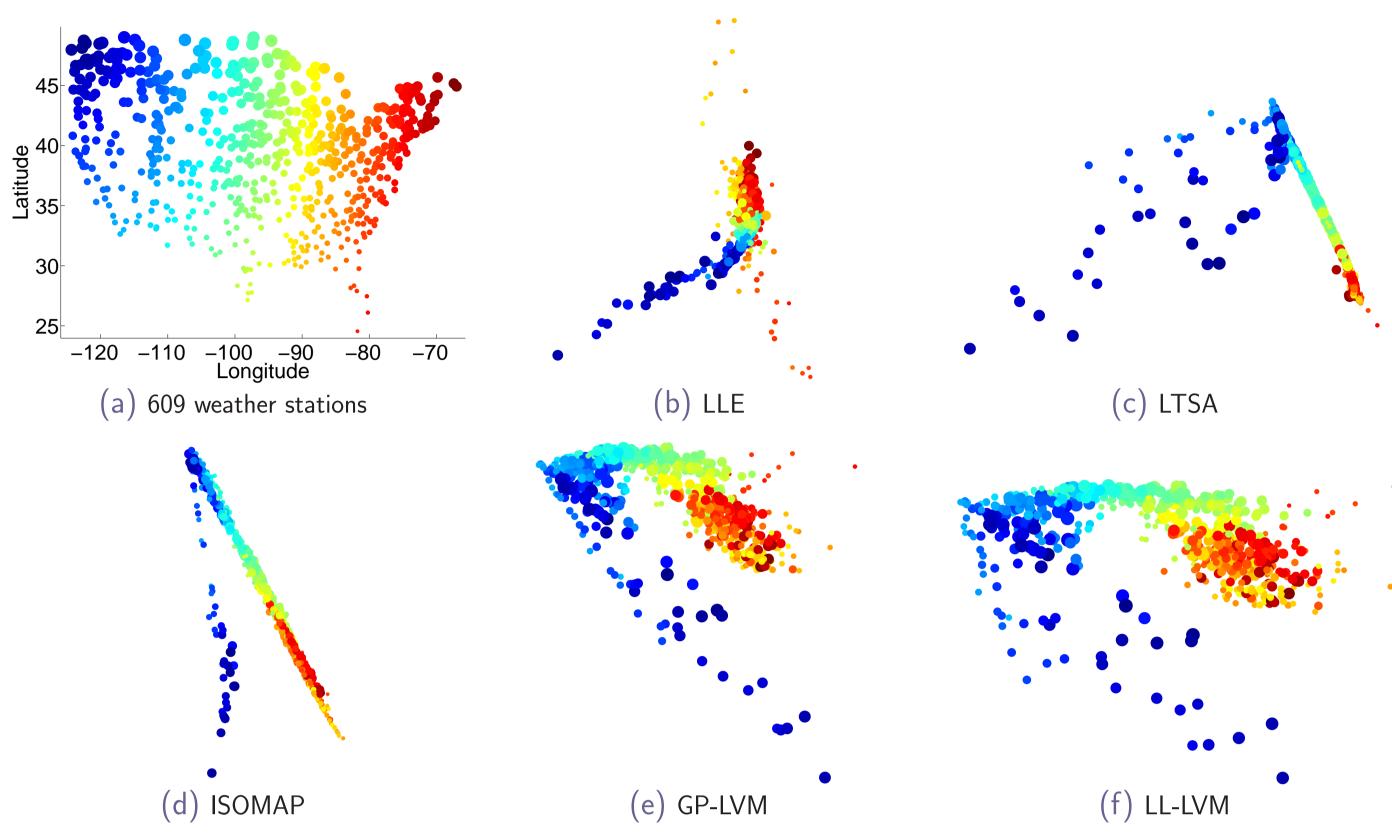


Figure : (**A**): Variational lower bound with different k's (#neighbours). (**B**): Posterior mean of \mathbf{x} by LL-LVM. (**F**): 1-NN classification error on test data using the inferred \mathbf{x} .

• Classification with LL-LVM coordinates outperforms GP-LVM and LLE, and matches ISOMAP.

Illustration 3: Mapping Climate Data

- Goal: Recover 2D geographical relationships between weather stations.
- ullet $\mathbf{y}_i = 12$ -dim. vector of monthly precipitation measurements at a weather station.



• The projection obtained from LL-LVM recovers the topological arrangement of the stations to a large degree.

Gaussian Process Latent Variable Model (GP-LVM)[1, 2]

- ullet Define a mapping from latent ${f X}$ to data ${f Y}$ using GP.
- ullet For data $\mathbf{Y}=[\mathbf{y}_1,\ldots,\mathbf{y}_{d_u}]\in\mathbb{R}^{n imes d_y}$ and latents $\mathbf{X}=[\mathbf{x}_1,\ldots,\mathbf{x}_{d_x}]\in\mathbb{R}^{n imes d_x}$,

$$p(\mathbf{Y}|\mathbf{X}) = \prod_{k=1}^{d_y} \mathcal{N}(\mathbf{y}_k|\mathbf{0}, \mathbf{K} + \beta^{-1}\mathbf{I}_n),$$

where the i, jth element of the covariance matrix is

 $k(\mathbf{x}_i, \mathbf{x}_j) = \sigma_f^2 \exp\left[-\frac{1}{2}\sum_{q=1}^{d_x} \alpha_q(x_{i,q} - x_{j,q})^2\right]$, and α_q 's determine dimensionality of latent space.

- Limitations:
- No preservation of local neighbourhood properties
- Smoothness of manifold constrained by pre-chosen covariance function.
- Use auxiliary variable for variational inference. Restrict the choice of covariance function.

Relationship of LL-LVM and GP-LVM

Integrating out C from likelihood yields

$$p(\mathbf{y}|\mathbf{x}, \mathbf{G}, \boldsymbol{\theta}) = \int p(\mathbf{y}|\mathbf{C}, \mathbf{x}, \mathbf{G}, \boldsymbol{\theta}) p(\mathbf{C}|\mathbf{G}, \boldsymbol{\theta}) d\mathbf{C} = \frac{1}{Z_{Y_y}} \exp\left[-\frac{1}{2}\mathbf{y}^{\top} \mathbf{K}_{LL}^{-1} \mathbf{y}\right]$$

• In contrast to GP-LVM, the precision matrix \mathbf{K}_{LL}^{-1} is directly determined by the graph structure given the observations.

$$\mathbf{K}_{LL}^{-1} = (2\mathbf{L} \otimes \mathbf{V}^{-1}) - (\mathbf{W} \otimes \mathbf{V}^{-1}) \mathbf{\Lambda} (\mathbf{W}^{\top} \otimes \mathbf{V}^{-1}),$$

where ${f W}$ is a function in ${f x}$ and ${f L}$ and ${f \Lambda}$ is a function in ${f x}^{ op}{f x}$ and ${f L}$.

Conclusion

A new probabilistic approach to manifold learning preserving local geometries in data and equipped with straightforward variational inference.

References

- [1] N.D. Lawrence. GP-LVM. NIPS 2003.
- [2] M.K. Titsias, N.D. Lawrence. Bayesian GP-LVM. *AISTATS*, 2010.