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Abstract

We present a Bayesian nonparametric model that discovers implicit social struc-
ture from interaction time-series data. Social groups are often formed implicitly,
through actions among members of groups. Yet many models of social networks
use explicitly declared relationships to infer social structure. We consider a par-
ticular class of Hawkes processes, a doubly stochastic point process, that is able
to model reciprocity between groups of individuals. We then extend the Infinite
Relational Model by using these reciprocating Hawkes processes to parameterise
its edges, making events associated with edges co-dependent through time. Our
model outperforms general, unstructured Hawkes processes as well as structured
Poisson process-based models at predicting verbal and email turn-taking, and mil-
itary conflicts among nations.

1 Introduction

As social animals, people constantly organise themselves into social groups. These social groups can
revolve around particular activities, such as sports teams, particular roles, such as store managers,
or general social alliances, like gang members. Understanding the dynamics of group interactions is
a difficult problem that social scientists strive to address.

One basic problem in understanding group behaviour is that groups are often not explicitly defined,
and the members must be inferred. How might we infer these groups, and from what data? How can
we predict future interactions among individuals based on these inferred groups?

A common approach is to infer groups, or clusters, of people based upon a declared relationship
between pairs of individuals [1, 2, 3, 4]. For example, data from social networks, where two people
declare that they are “friends” or in each others’ social “neighbourhood”, can potentially be used.
However these declared relationships are not necessarily readily available, truthful, or pertinent to
inferring the social group structure of interest.

In this paper we instead propose an approach to inferring social groups based directly on a set
of real interactions between people. This approach reflects an “actions speak louder than words”
philosophy. If we are interested in capturing groups that best reflect human behaviour we should be
determining the groups from instances of that same behaviour. We develop a model which can learn
social group structure based on interactions data.
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In the work that we present, our data will consist of a sequence of many events, each event reflecting
one person, the sender, performing some sort of an action towards another person, the recipient, at
some particular point in time. As examples, the actions we consider are that of one person sending
an email to another, one person speaking to another, or one country engaging in military action
towards another.

The key property that we leverage to infer social groups is reciprocity. Reciprocity is a common
social norm, where one person’s actions towards another increases the probability of the same type
of action being returned. For example, if Bob emails Alice, it increases the probability that Alice
will email Bob in the near future. Reciprocity widely manifests across many cultures, perhaps most
commonly as the golden rule and tit for tat retaliation. When multiple people show a similar pattern
of reciprocity, our model will place these people in their own group.

The Bayesian nonparametric model we use on these time-series data is generative and accounts for
the rate of events between clusters of individuals. It is built upon mutually-exciting point processes,
known as Hawkes processes [5, 6]. Pairs of mutually-exciting Hawkes processes are able to capture
the causal nature of reciprocal interactions. Here the processes excite one another through their
actualised events. Since Poisson processes are a special case of Hawkes processes, our model is also
able to capture simpler one-way, non-reciprocal, relationships as well.

Our model is also related to the Infinite Relational Model (IRM) [1, 2]. The IRM typically assumes
that there is a fixed graph, or social network, which is observed. Here we are interested in inferring
the implicit social structure based only on the occurrences of interactions between vertices in the
graph. We apply our model to reciprocal behaviour in verbal and email conversations and to military
conflicts among nations.

The remainder of the paper is organised as follows: section 2 discusses using Poisson processes
together with the IRM. Section 3 describes our use of self-exciting and pairs of Hawkes processes,
and section 4 specifies how they are used to develop our reciprocity clustering model. Section
5 presents an inference algorithm for our model, section 6 discusses related work, and section 7
presents experimental results using our model on synthetic, email, speech and intercountry conflict
data.

2 Poisson processes with the Infinite Relational Model

The Infinite Relational Model (IRM) [1, 2] was developed to model relationships among entities
as graphs, based upon previously declared relationships. Let V denote the vertices of the graph,
corresponding to individuals, and let euv denote the presence or absence of a relationship between
vertices u and v, corresponding to an edge in the graph. The generative process of the IRM is:

π ∼ CRP(α) (1)
λpq ∼ Beta(γ, γ) ∀p, q ∈ range(π) (2)
euv ∼ Bernoulli(λπ(u)π(v)) ∀u, v ∈ V (3)

where π is a partition of the vertices V , distributed according to the Chinese restaurant process (CRP)
with concentration parameter α, with p and q indexing clusters of π. Hence vertex u belongs to the
cluster given by π(u), and consequently, the clusters in π are given by range(π). The probability
of an edge between vertex u and vertex v is then the parameter λpq associated with their pair of
clusters.

Often in interaction data there are many instances of interactions between the same pair of
individuals–this cannot be modelled by the IRM. A straightforward way to modify the IRM to ac-
count for this is to use a Gamma-Poisson observation model instead of this usual Beta-Bernoulli
model. Unfortunately, a vanilla Gamma-Poisson observation model does not allow us to predict
events into the future, outside the observed time window. Therefore we consider using a Poisson
process instead.

Poisson processes are stochastic counting processes. For an introduction see [7]. We shall consider
Poisson processes on [0,∞), such that the number of events in any interval [s, s′) of the real-half
line, denoted N [s, s′), is Poisson distributed with rate λ(s′ − s).
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Figure 1: A simple example. The graph in the top left shows the clusters and edge weights learned by our
model from the data in the bottom right plot. The top right plot shows the rates of interaction events between
clusters. The bottom right plot shows the interaction events. In the graph, the width and temperature (how red
the colour is) denotes the expected rate of events between pairs of clusters (using equations (9) and (10)). While
in plots on the right, line colours indicates the identity of cluster pairs, and box colours indicate the originator
of the event: Alice (red), Bob (blue), Mallory (black). Alice and Bob interact with each other such that they
positively reciprocate each others’ actions. Mallory, however, has an asymmetric relationship with both Alice
and Bob. Only after many events caused by Mallory do Alice or Bob respond, and when they do respond they
both, similarly, respond more sparsely.

With Gamma priors on the rate parameter, the full Poisson Process IRM model is:

π ∼ CRP(α) (4)
λpq ∼ Gamma(δ, β) ∀p, q ∈ range(π) (5)

Nuv(·) ∼ PoissonProcess(λπ(u)π(v)) ∀u, v ∈ V (6)

where Nuv(·) is the random counting measure of the Poisson process, and δ and β are respectively
the shape and inverse scale parameters of the Gamma prior on the rate of the Poisson processes, λpq .

Inference proceeds by conditioning on, Nuv[0, T ) = nuv where nuv is the total number of events
directed from u to v in the given time interval. Since conjugacy can be maintained, due to the
superposition property of Poisson processes, inference in this model is possible in much the same
way as in the original IRM [2, 1].

There are two notable deficiencies of this model: the rate of events on each edge is independent of
every other edge, and conditioned on the time interval containing all observed events, the times of
these events are uniformly distributed. This is not the typical pattern we observe in interaction data.
If I send an email to someone, it is more likely that I will receive an email from them than had I not
sent an email, and the probability of receiving a reply decreases as time advances. In the following
sections we will introduce and utilise mutually-exciting Hawkes processes, which are able to exactly
model these phenomena.

3 Self-Exciting and Pairs of Mutually-Exciting Hawkes Processes

Hawkes [5, 6] introduced a family of self- and mutually-exciting Markov point processes, often
called Hawkes processes. These processes are intuitively similar to Poisson processes, but unlike
Poisson processes, the rates of Hawkes processes depend upon their own historic events and those
of other processes in an excitatory fashion.

We shall consider an array of K × K Hawkes processes, where K is the number of clusters in a
partition drawn from a CRP restricted to the individuals V . As in the IRM, the CRP allows the
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number of processes to grow in an unconstrained manner as the number of individuals in the graph
grows. However, unlike the IRM, these Hawkes processes will be pairwise-dependent: the Hawkes
process governing events from cluster p to cluster q, will depend upon the Hawkes process governing
events from cluster q to cluster p.

Let Npq be the counting measure of the (p, q)th Hawkes process. Each Hawkes process is a point
process whose rate at time t is given by:

λpq(t) = γpqnpnq +

∫ t

−∞
gpq(t− s)dNqp(s) (7)

where γpq is the base rate of the counting measure of the Hawkes, process, Npq . np and nq are the
number of individuals in cluster p and q respectively, and gpq is a non-negative function such that∫∞
0
gpq(s)ds < 1, ensuring that Npq is stationary. Nqp is the counting measure of the reciprocating

Hawkes process of Npq . Intuitively, if Npq governs events from cluster p to cluster q, then Nqp
governs events from cluster q to cluster p. Equation (7) shows how the rates of events in these two
processes are intimately intertwined.

Since Nqp is an atomic measure, whose atoms correspond to the times of events, we can express the
rate of Npq given in (7), by conditioning on the events of its reciprocating processes Nqp, as:

λpq(t) = γpqnpnq +
∑

i:tqpi <t

gpq(t− tqpi ) (8)

where tqpi denotes the times of the ith event of process Nqp. Thus the rate of the process Npq at time
t is some base rate at which events occur, γpq , plus an additional rate of gpq(t− tqpi ) for each event
in the reciprocating processNqp. Figure 1(top) shows an example of how λpq(t) and λqp(t) vary for
these pairs of processes.

If gpq(·) = 0 then the process is a Poisson process with rate γpqnpnq . When p = q, the process
is self-exciting: its current rate depends solely on its own previous events. In our application, self-
exciting processes model interactions within a social group, as they model cohesion in reciprocity:
individual reciprocation within a group is as if towards oneself. In the case of p 6= q, each pair of
processes Npq and Nqp mutually excite one another. An event in one increases the probability of an
event from the other, and so on. Importantly, the type of reciprocation (parameterised by gpq and
gqp, respectively) differs between events from group p to group q and events from group q to group
p. This difference in reciprocity is what we would like our model to leverage to learn about social
groups.

Hawkes processes are an example of doubly stochastic point processes. The rate of events is itself
a random variable. By integrating out the events of Nqp we can see that this process is stationary,
as its rate does not depend upon time, and also gain further insight into the role of the functions gpq
and gqp. For self-exciting Hawkes processes, where p = q, the marginal rate is:

E[λpp(t)] = n2p
γpp

1−Gpp
(9)

whilst for a pair of mutually-exciting Hawkes processes the marginal rate is:

E[λpq(t)] = npnq
γpq + γqpGpq
1−GpqGqp

(10)

where Gpq =
∫ t
−∞ gpq(t − u)du which tempers the effect of the rate of events from one process

on the rate of the other. The closer Gpq is to zero, the more Poisson-like Hawkes processes behave.
Whilst as Gpq approaches one, the rate of events in Npq are increasingly caused by those in Nqp.

4 Hawkes Processes with the Infinite Relational Model

We combine Hawkes processes with the IRM as follows. We pick the form for the gpq functions as

gpq(δ) = βpqe
− δ
τpq [5, 6, 8, 9]. Examples of using this parameterisation are shown in Figure 1(top).
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Due to the memorylessness property of the exponential distribution, inference with Hawkes pro-
cesses with this parameterisation takes time linear in the number of events [10]. Our generative
model is as follows:

π ∼ CRP(α) (11)

λpq(t) = γpqnpnq + βpq

∫ t

−∞
e
− t−sτpq dNqp(s) ∀p, q ∈ range(π) (12)

Npq(·) ∼ HawkesProcess(λpq(·)) (13)
Nuv(·) ∼ Thinning(Nπ(u)π(v)(·)) ∀u, v ∈ V (14)

where, as before, π is a partition of the individuals, drawn from a Chinese restaurant process (CRP)
with concentration parameter α. For each pair of clusters p and q, we associate a time-varying rate
λpq(t) which dictates the rate of events from individuals in cluster p to individuals in cluster q, and
a Hawkes process Npq . As described in the previous section, this rate depends upon the specific
events sent in the opposite direction, from cluster q to cluster p, whose measure is also random and
is denoted Nqp(·).
Each random measureNuv(·) governs events between a particular pair of individuals within clusters
p and q respectively. Nuv(·) are drawn by thinning the cluster random measure Npq(·) among all
of the edges between individuals in clusters p and q. Thinning means distributing the atoms of
Npq(·) among each Nuv(·), such that Npq =

∑
u,v Nuv(·). Constructing the edge measures by

thinning means it is sufficient to ensure that
∫∞
0
gpq(u)du < 1 for the process to be stationary.

This condition, under the chosen parameterisation, implies that τpqβpq < 1. When all βpq = 0,
this model is equivalent to the Poisson process IRM in section 2. Henceforth we will use uniform
thinning—each event in Npq(·) is assigned uniformly at random among all Nuv(·) where p = π(u)
and q = π(v)—but in principle any thinning scheme may be used.

For a Hawkes process Npq , the rate at which no events occurs in the interval [s, s′) is:

e−
∫ s′
s
λpq(t)dt (15)

Suppose we observe the times of all the events in [0, T ), {tuvi }
nuv
i=1 for process Nuv (nuv being the

total number of events from u to v in [0, T )). Suppose that individual u is in cluster p and that
individual v is in cluster q. Furthermore, assume there are no events before time 0. The likelihood
of each edge between individuals u and v is thus:

p({tuvi }
nuv
i=1 |θpq, {t

qp
i }

nqp
i=1) = e

− 1
npnq

∫ T
0
λpq(t)dt

nuv∏
i=1

λpq(t
uv
i )

npnq
(16)

where θpq = (γpq, βpq, τpq), {tqpi }
nqp
i=1 are the times of the reciprocal events. We place proper

uniform priors on logα, γpq , βpq , and τpq , enforcing the constraint that τpqβpq < 1.

5 Inference

We perform posterior inference using Markov chain Monte Carlo. Our model is a departure from
previous IRM-based models as there is no conjugate prior for the likelihood. Thus we cannot simply
integrate out these parameters, and must sample them.

To infer the partition of individuals π, the concentration parameter α, and the parameters of each
Hawkes process θpq = (γpq, βpq, τpq), we use Algorithm 5 [11] adapted to the IRM and slice
sampling [12] to draw samples from the posterior. We initialise the chain from the prior. Slice
sampling is used for α and each of γpq , βpq , and τpq . When setting the bounds of the slice sampler
for βpq (τpq) we set the upper bound to 1

τpq
( 1
βpq

) respectively, to ensure that βpqτpq ≤ 1.

6 Related work

Several authors have considered modelling occurrence events [13, 14, 15] using piecewise constant
rate Markov point processes for known number of event types. Our work directly models interaction

5



events (where an event is structured to have a sender and recipient) and the number of possible
events types is not limited. [16] describes a model of occurrence events as a discrete time-series
using a latent first-order Markov model. Our model differs in that it considers interaction events in
continuous time and requires no first-order assumption.

The model in Section 2 relates the work of [17] to the IRM [1], yielding a version of their model
that learns the number of clusters whilst maintaining conjugacy. However our model does not use a
Poisson process to model event times, instead using processes which have a time-varying rate.

Simma and Jordan [10] describe a cascade of Poisson processes, forming a marked Hawkes process.
Hawkes processes are also the basis of this work, however our work does not use side-channel
information to group individuals by imposing fixed marks on the process; instead we learn structure
among several co-dependent Hawkes processes and use Bayesian inference for the parameters and
structure.

Paninski et al [18, 19] describe a process similar to a Hawkes process that uses an additional link
function to allow for inhibition amongst neurons. The interest is in modelling the activation and
co-activation of neurons and as such they do not directly model cluster structure among the neurons,
while our model does model this structure. Learning such structure among neurons is a potential
interesting future application of this model.

Our model may also be seen as a probabilistic interpretation of the interaction rank of [20], which
we leverage to discover global clustering structure. An interesting future direction would be to learn
a per-person (i.e., ego-centric) clustering structure.

7 Experiments

In our experiments we compared our model to the Poisson process IRM (Section 2), a single Hawkes
process and a single Poisson process. These latter two models are equivalent to the first two models
where just one cluster is used.

We compared these models quantitatively by comparing their log predictive densities (with respect
to the space of ordered sequences of events) on events falling in the final 10% of the total time of the
data (Table 2). We normalised the times of all events such that the first 90% of total time lay in the
interval [0, 1]. We ran our inference algorithm for 5000 iterations and discarded the first 500 burn-in
samples, repeating each experiment 10 times from different initialisations from the prior.

Synthetic data We generated synthetic data to highlight differences between our model and the al-
ternatives. The data involves three individuals and is plotted in Figure 1. Table 1 shows details of the
fit of the model to the data, and Table 2 shows the predictive results. The Poisson IRM is uncertain
how to cluster individuals as it cannot model the temporal dependence between individuals, while
the Hawkes IRM can and so performs better at prediction as well. A single Hawkes process does
not model the structure among individuals and so performs worse than the Hawkes IRM, although
it is able to model dependence among events.

Enron email threads We took the five longest threads from the Enron 2009 data set [21]. We
identified threads by the set of senders and receivers, and their subject line (after removing common
subject line prefixes such as “Re:”, “Fwd:” and so on, removing punctuation and making all letters
lower case). All of these threads involve two different people so there is little scope for learning
much group structure in these data: either both people are in the same cluster, or they are in two
separate clusters. However as can be seen in Table 2 these data suggest a predictive advantage
to using mutually-exciting Hawkes processes, as automatically determined by our model, instead
of a single self-exciting Hawkes process and of both of these approaches over their corresponding
Poisson processes model. A self-exciting Hawkes process is unable to mark the sender and receiver
of events as differing, whilst Poisson process-based models are unable to model the causal structure
of events.

Santa Barbara Conversation Corpus We took five conversations from the Santa Barbara Con-
versation Corpus [22] involving the largest number of people. These results are labelled “SB conv”
followed by the conversation identifier in this corpus, in the results in Tables 1 and 2. These con-

6



Dan$

Gran$
Rose$

Pa,$

Bern$
X$

Cher$
Paul$$
Many$
Dere$
Kare$

IRQ$

KUW$
USA$

RUS$
CHN$

AFG$
TAW$

Figure 2: Graphs of clusters of individuals inferred by our model. Edge width and temperature (how
red the colour is) denotes the expected rate of events between pairs of clusters (using equations (9)
and (10); edges whose marginal rate is below 1 are not included). On the left is the graph inferred
on the “SB conv 26” data set. On the right is the graph inferred on the “Small MID” data set.

versations cover a variety of social situations: questions during a university lecture (12), a book
discussion group (23), a meeting among city officials (26), a family argument/discussion (33), and a
conversation at a family birthday party (49). We modelled the turn-taking behaviour of these groups
by taking the times of when one speaker switched to the next. In Figure 2(left) we show the cluster
graph found by our model for conversation 26, involving city officials discussing a grant application.
The identities of participants in all of these data are anonymised, preventing an exact interpretation.
However, the model captures the discussive to-and-fro of the meeting, where PATT appears to be the
chair of the meeting, and DAN, ROSE and GRAN are the main discussors, all of whom discuss with
the chair, initially in question and an answer format, and among themselves, with other members of
the audience chipping in sporadically.

Correlates of war We use version 3.0 of the Militarized Interstate Disputes (MIDs) data set [23] to
model correlates of war. This data set spans the years 1993 to 2001, and consists of MID incidents,
along with the countries involved in the incidents. Incidents vary from diplomatic threats of military
force to the actual deployment of military force against another state. A detailed description of each
incident is available in [24].

The results of all models on the correlates of war data are given in Table 2 with details of the fits
in Table 1 in the rows entitles “Small MID” and “Full MID”. The full MID data set consists of 82
countries—yielding a large graph. For exposition purposes, we show the graph (in Figure 2(right))
on part of the MID data set, by restricting to events among the USA, Kuwait, Afghanistan, Taiwan,
Russia, China, and Iraq. Thicker and redder lines between clusters (computed from equations 9 and
10) reflect a higher rate of incidents directed between the countries along the edge.

The results of the clustering given by our model are in keeping with that discussed in [24]. There
were three main conflicts involving the countries we modelled during the time period this data
covers. These conflicts involve 1) Russia and Afghanistan, 2) Taiwan (sometimes with support from
the USA) and China (sometimes with support from Russia), and 3) Iraq, Kuwait, and the USA. 1)
Revolved mostly around border disputes coming out of the Soviet war in Afghanistan, and incidents
sometimes involved using former Soviet countries as proxies. 2) Reflects conflict between Taiwan
and China over potential Taiwanese independence. Lastly, 3) deals with conflicts between Iraq and
either Kuwait or the USA coming out of the Persian Gulf war. It is interesting to note that groups
involving smaller countries were found to be more likely to initiate incidents with larger countries
in a dispute (e.g. Iraq was almost always the instigator of disputes in their conflict with Kuwait and
the USA). Since the data ends in 2001, relatively few disputes with Afghanistan involve the USA.
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Hawkes IRM Poisson IRM
N T E[K] log probability E[K] log probability

Synthetic 3 239 2.00 594.04±0.01 1.36 533.65±0.00
Small MID 7 57 4.30 33.59±0.02 1.02 -63.99±0.03

Full MID 82 412 13.67 -638.25±1.16 3.93 -1412.49±5.38
Enron 0 2 896 2.00 6724.76±0.01 2.00 4516.77±0.00
Enron 1 2 204 2.00 1202.99±0.02 2.00 692.32±0.00
Enron 2 2 122 2.00 616.37±0.02 2.00 336.02±0.00
Enron 3 2 117 2.00 497.53±0.02 2.00 318.38±0.00
Enron 4 2 85 2.00 252.60±0.02 2.00 192.74±0.00

SB conv 23 18 832 11.87 1581.72±0.12 3.01 599.29±0.42
SB conv 26 11 95 4.26 170.34±0.03 2.00 -51.92±0.14
SB conv 12 12 133 4.11 233.41±0.03 2.53 -59.12±0.15
SB conv 49 11 620 8.85 1728.13±0.07 3.40 990.75±0.15
SB conv 33 10 499 8.44 803.22±0.16 2.03 431.59±0.12

Table 1: Details of data sets and fits of the structured models. N denotes the number of individuals in the data
set. T denotes the total number of events in the data set. E[K] is the average number of clusters found in the
posterior. Log probability is the average log probability of the training data.

Hawkes IRM Poisson IRM Hawkes Poisson
Synthetic 43.00±0.00 -6.76±0.02 39.88±0.01 -3.88±0.00

Small MID 12.69±0.04 -50.88±0.02 6.37±0.01 -50.86±0.00
Full MID -134.97±2.98 -355.29±5.61 -188.08±0.00 -302.65±0.00

Enron 0 259.20±0.01 39.33±0.00 233.44±0.00 40.11±0.00
Enron 1 436.66±0.01 133.29±0.00 380.27±0.01 105.71±0.00
Enron 2 139.40±0.01 24.14±0.00 118.86±0.00 22.88±0.00
Enron 3 124.22±0.01 21.06±0.00 101.71±0.01 21.03±0.00
Enron 4 127.82±0.02 28.38±0.00 109.62±0.00 22.08±0.00

SB conv 23 132.57±0.27 -198.34±0.23 30.93±0.00 -213.18±0.00
SB conv 26 -5.85±0.02 -16.83±0.09 -6.05±0.00 -14.54±0.00
SB conv 12 96.07±0.03 -97.89±0.10 33.18±0.00 -128.53±0.00
SB conv 49 220.85±0.09 -116.62±0.12 126.94±0.00 -83.62±0.00
SB conv 33 46.19±0.06 -100.83±0.04 21.71±0.00 -83.79±0.00

Table 2: Average log predictive results for each model with standard errors

8 Discussion

We have presented a Bayesian nonparametric approach to learning the structure among collections
of co-dependent Hawkes processes, which on several interaction data sets consistently outperforms
both unstructured and Poisson-based models in terms of predictive likelihoods. The intuition behind
why our model works well is that it captures part of the reciprocal nature of interactions among
individuals in social situations, which in turn requires modelling some of the causal relationship of
events. By learning this structure, our model is able to make better predictions.

There are several future directions. For example, individuals might contribute to groups differently
to one another. There may be different kinds of events between individuals and other side-channel
information. Both of these artefacts may be modelled by replacing the uniform thinning scheme
proposed above, with a detailed model of these effects. It would be interesting to consider other
parameterisations of gpq(·) that, for example, include periods of delay between reciprocation; the
exponential parameterisation lends itself to efficient computation [10] whilst other parameterisations
do not necessarily have this property. But different choices of gpq(·) may yield better statistical
models. Another interesting avenue is to explore other structure amongst interaction events using
Hawkes processes, beyond reciprocity.
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