
modulation of siesta behavior could be

surveyed in additional Drosophila popula-

tions and species to more precisely

determine its degree of conservation.

Intriguingly, in the distantly related fungus

Neurospora crassa the central clock gene

frequency undergoes temperature-

dependent splicing to ensure a stable

period length across a range of tempera-

tures, suggesting that circadian clock

circuits may have preferentially incorpo-

rated temperature-sensitive splicing

mechanisms (Diernfellner et al., 2007).

In a broader context, the experiments

presented in the paper point to multiple

mechanisms besides dmpi8 splicing that

seasonally modulate daily activity in

Drosophila. First, photoperiod modulates

the onset of evening activity in the

absence of conditional per splicing at

the last intron in D. yakuba. Second,

temperature modulates siesta time in

transgenic D. melanogaster lacking

a temperature-sensitive dmpi8. While the

explanation for the former observation

likely involves clock-dependent synchro-

nization of the evening activity peak

relative to dusk, a combination of clock-

dependent and clock-independent be-

havioral responses to temperature may

help explain the latter observation.

Regardless, it is clear that we can expect

new discoveries concerning the molec-

ular basis of seasonal behavior to keep

appearing for quite some time.
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Is decision making in the brain (a) optimal, (b) stochastic, (c) probabilistic, or (d) all of the above? Two papers
in this issue of Neuron by Beck et al. and Furman and Wang address these questions by constructing model
neural circuits capable of picking one option given multiple perceptual choices.
The neurobiological basis of decision-

making has been intensely studied by

systems neuroscientists over the last few

decades. Much of this work has been

based on paradigms in which, in each trial,

a subject selects one of two possible

choices. In parallel with the experimental

work, a variety of theories and models

have been proposed, and what stands

out is that even highly simplified phenom-

enological models have been able to

capture much of the psychophysical and

neurobiological data in the two-alternative

tasks (Smith and Ratcliff, 2004). Recently,
946 Neuron 60, December 26, 2008 ª2008 E
however, Mike Shadlen’s group added

an important piece to this puzzle with

aneurophysiological studythathadanovel

feature: it used a task with four alternatives

(Churchland et al., 2008). These new

experimental results, which on the surface

seem deceptively similar to those obtained

with two-alternative tasks, strongly disam-

biguate and constrain the models, and

as a consequence, this issue of Neuron

delivers something rather unprecedented

in neuroscience: back-to-back theoretical

papers addressing the same experimental

data but starting from entirely different
lsevier Inc.
approaches (Beck et al., 2008; Furman

and Wang, 2008). Both studies describe

neural circuits that replicate psychophys-

ical and neurophysiological results ob-

tained during choice behaviors. However,

Xiao-Jing Wang’s group aimed to capture

as much biophysical detail as possible,

whereas Alex Pouget’s group aimed to

implement key mathematical principles

that neural circuits should employ if they

are to generate optimal choices.

One of the most popular paradigms for

studying the neural basis of decision-

making is a two-alternative forced-choice

mailto:esalinas@wfubmc.edu
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task in which a group of dots moving in

random directions is displayed and the

subject must decide whether the overall

motion is to the left or to the right (or any

opposite directions). The choice is indi-

cated with an eye movement either to

a left or to a right target. The difficulty of

the task is controlled by the coherence

parameter, which is the proportion of

dots that move in the same direction, left

or right. Psychophysical performance in

this task is summarized by plotting two

quantities, the percentage of correct

choices and the subject’s reaction time,

as functions of coherence.

A lot is known about the neurophysio-

logical underpinning of this task, which

includes three key processing stages.

First, neurons in cortical area MT respond

to the random-dot stimuli and are thought

to mediate the perceptual experience of

visual motion (Salzman et al., 1992; Brit-

ten et al., 1993). Each MT neuron fires

preferentially in response to motion in

one particular direction.

Second, motion information encoded

by the MT responses is then relayed to

other cortical areas involved in the gener-

ation of motor commands for moving the

eyes, such as area LIP. The perceptual

decision is at least partially created at

this point, because the activity of LIP

neurons reflects the progressive accumu-

lation of sensory evidence in favor of one

or the other motor alternative (Shadlen

and Newsome, 2001; Hanks et al., 2006).

Think of two LIP cells with the left and right

targets covering their receptive fields.

When the subject starts viewing the

random-dot display, the firing rates of

both neurons are low. Then, as it becomes

clear that the dots move, say, preferen-

tially to the left, the activity of the neuron

with the left target in its receptive field

starts ramping up, and when it reaches

a certain threshold level, an eye movement

to the left target is triggered. This ramping

activity is neither decidedly sensory nor

decidedly motor. On one hand, it is tightly

correlated with the subject’s motor

choice. For instance, at zero coherence

the subject essentially picks one of the

targets at random, and the chosen target

is reliably signaled by the LIP firing rates.

On the other hand, the slope of the climb-

ing activity increases with coherence, so it

is strongly modulated by the strength and

direction of motion.
Third, LIP and other cortical areas

project to downstream motor centers,

such as the superior colliculus, which

are thought to select one motor action

unambiguously (McPeek and Keller,

2004; Lo and Wang, 2006). Activation of

these higher-level motor areas, together

with initiation of the eye movement,

occurs once the accumulated sensory

evidence reaches a certain threshold level

(Hanes and Schall, 1996; Shadlen and

Newsome, 2001; Lo and Wang, 2006).

The two new modeling studies in this

issue of Neuron simulate the formation of

a decision during the random-dot motion

discrimination task in a circuit of intercon-

nected LIP neurons. These models repli-

cate the single-neuron activity recorded in

monkeys, as well as the animals’ perfor-

mance and reaction-time curves as func-

tions of coherence, in two- and multiple-

alternative tasks. It may sound as if the

two model circuits are very similar, and

indeed, the networks have similar connec-

tivity footprints and similar input and

output representations—but they spring

from extremely different mathematical

approaches.

The model by Furman and Wang (2008)

is closely related to ‘‘attractor networks,’’

circuits that, due to strong recurrent inter-

actions, are capable of generating multiple

stable patterns of activity in the absence of

specific inputs (Wang, 2001). Attractor net-

works have been traditionally used as

models for memory because they produce

self-sustained responses; however, only

a subsetof the neurons can behighlyactive

at any given time, and it is this internal

competition which makes them useful for

decision making. In contrast, the model

by Beck and colleagues (2008) is grounded

on ‘‘Bayesian inference,’’ which is the

mathematics used for calculating the

probability that a hypothesis is true.

Bayesian inference is fundamental for

many branches of science. In neurosci-

ence, it is used to understand both the

variability of neurons—their spontaneous

fluctuations in activity—and how they

represent uncertainty in the world (Pouget

et al., 2003; Ma et al., 2006).

Furman and Wang (2008) took the

bottom-up route. They constructed a

network with roughly 2000 excitatory and

500 inhibitory neurons connected all-to-

all, and included as much biophysical

detail as possible given those numbers.
Neuron 60,
The neurons in their network produce

spikes and interact witheach other through

realistic synaptic conductances. This one

is the descendent of an earlier model by

Wang (2002) that had a much simpler

architecture and which provided several

key insights about the dynamics of spiking

networks. In particular, it showed that

a competition between two alternatives

can be reproduced accurately by two pop-

ulations of neurons that inhibit each other

reciprocally but that contain excitatory

recurrent interactions within each popula-

tion. This organization creates a ‘‘slow

reverberation’’ whereby the activity of one

population progressively ramps up and

dominates over the other, as observed in

real data. In addition, this kind of model

produces simulated spike trains with high

variability, close to the variability observed

in recorded cortical neurons. High vari-

ability is fundamental, because it allows

a network to behave stochastically in the

face of ambiguous or insufficient evidence:

in trials with zero coherence, when the dots

move inall directions, the modelessentially

flips a coin; it chooses one of the two

options randomly, just like subjects do.

The new model by Furman and Wang

(2008) generalizes these principles to the

case of a larger circuit in which many pop-

ulations compete with each other in

a continuous way. Thus, the model is cap-

able of slow reverberation and stochastic

behavior but even when there are many

possible choices. This is how it works

(see Figure 1). The receptive fields of the

model LIP neurons are spatially arranged

along a circle around the fixation point.

The choice targets are located on that

same circle. The model neurons are

driven by a background input, by an input

that corresponds to the presence of

a choice target inside the receptive field,

and by simulated MT spikes. The neuron

at, say, the 12 o’clock position receives

input from MT neurons that prefer vertical

motion, the neuron at the 6 o’clock posi-

tion receives input from MT neurons that

prefer downward motion, and so on.

When the random dots are turned on in

the simulation, the LIP units at the target

positions slowly integrate their inputs until

one of them dominates and suppresses

the rest, due to the mutual inhibition

across the circuit.

Beck and colleagues (2008), on the

otherhand,alsoconstructedacompetitive
December 26, 2008 ª2008 Elsevier Inc. 947
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spiking network. Their description,

however, is more abstract because

the firingof each neuron isdetermined

through an analog quantity that repre-

sents firing rate, or spiking probability.

This is important, because it lets the

authors control what the network is

actually computing. How did Beck

et al. (2008) generate this model?

They took a decidedly top-down

approach. Starting with Bayesian

principles, they derived a number of

conditions that a neural circuit should

satisfy if it is to make optimal choices;

optimal in the sense that the sensory

information on which the choice is

based is accumulated over time as

efficiently as possible. Key to obtain-

ing these conditions was an earlier

study (Ma et al., 2006) showing that

the variability of cortical neurons is of

a special type, a type that drastically

simplifies the representation of prob-

abilities and their combinations

through neural activity. As a conse-

quence of that result, it turns out that

the optimal computational strategy

for LIP could not be simpler: each

LIP unit should add over time the input

that it receives from MT. What is

surprising is that, according to the

theory, such integration should be

the same regardless of the task, the

number of targets, the correlations in the

input signals, and even if the parameters

of the sensory signal (e.g., contrast or

coherence) change during the course of

a trial.

This gives rise to an interesting predic-

tion: if the coherence of the display

changes in the middle of a trial, the slopes

of the ramping responses should change

accordingly, regardless of how much

has been accumulated so far. Furman

and Wang (2008) did not simulate this

situation, and it will be important to see

if their model—and real LIP neurons—

show this effect. Similarly, their results

predict that a particular pattern of errors

should be seen when the choice targets

are relatively close to each other, and it

will be interesting to see if this also

happens in reality and in the model of

Beck and colleagues (2008).

What, then, are the key differences

between the two LIP models? Which is

better? I think these are the wrong ques-

tions. The biophysical model has many

degrees of freedom that can be tweaked,

and even more details can be added to

it, so in a way its predictive power is limited

by the very same level of detail that makes

it convincing. On the other hand, the prob-

abilistic model establishes a set of compu-

tational operations, rather than a specific

circuit, so it requires some kind of transla-

tion into a biophysical substrate, which,

again, is less constrained.

In my view, these models represent

highly complementary approaches, and

a better question is simply how to chal-

lenge and exploit them so that we learn

something new about decision making.

For example, according to the probabi-

listic model, the LIP responses should

reflect not only the choice made but also

its certainty, the probability that the deci-

sion is correct. This feature may be

amenable to experimental verification

through novel variants of the random-dot

task. For instance, normally, certainty

goes hand-in-hand with coherence—

but this dependency can be disrupted.

Suppose that there are four targets

and the motion is clearly to the left;

suddenly, the left target disappears

and the subject has to choose one

of the remaining targets. In this

case, the LIP activity should encode

the choice, as usual, but the subject

will be quite certain that it was wrong.

This certainty should have an impact

on the LIP responses.

If such an effect is indeed found

experimentally, then the next ques-

tion will be, what biophysical mecha-

nisms account for it? Turn, then, to

Furman and Wang’s level of descrip-

tion. Their model may reproduce the

effect with little or no additional modi-

fication. Alternatively, to replicate the

impact of certainty it might be neces-

sary to simulate, for example, addi-

tional voltage-sensitive currents on

the cell membranes, or the action of

specific neuromodulators. In any

case, with this tool it should be

possible to identify at least candidate

electrochemical mechanisms.

The broader point is that, ideally,

there should be a back-and-forth

dialog, not only between experimen-

talists and theoreticians, but also

between the two levels of description,

whereby the high-level model tells us

what the circuit is computing and the

low-level one tells us how. This type of

synergy is much more likely to advance

our understanding of decision making,

and of neural function in general, than

a single modeling framework alone, or no

framework at all.

For now, we can say that decision

making is based on stochastic neural

dynamics and that, at least under certain

conditions, it is optimal according to the

principles of Bayesian inference. There-

fore, regarding the question posed at the

beginning of this preview, the evidence

gathered so far indicates that the correct

choice is (d), all of the above.
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