
A Derivation of Eq. (10)

To show that Eq. (10) does indeed follow from Eq. (8), we need to compute the mean and covariance
of δµi, and the derivatives of Sq(µ) with respect to µi. We start with the former. The mean of δµi,
which is given by (see Eq. (7) and (9))

�δµi� =
1

K

�

k

�gi(x(k))�p − �gi(x)�p = 0 . (A.1)

The covariance can be computed by noting that δµi is the mean of K uncorrelated, zero mean
random variables (see Eq. (9)), which implies that

�δgiδgj�p =
1

K
[�gi(x)gj(x)�p − �gi(x)�p�gj(x)�p] =

Cp
ij

K
(A.2)

where the last equality follows from the definition given in Eq. (11a).

We next compute derivatives of the entropy with respect to the µi. Using Eq. (6) for the entropy, we
have

∂Sq(µ)

∂µi
=

∂ logZ(µ)

∂µj
− λi −

�

j

µj
∂λj

∂µi
. (A.3)

From the definition of logZ(µ), Eq. (5), it is straightforward to show that

∂ logZ(µ)

∂µi
=

�

j

µj
∂λj

∂µi
(A.4)

Inserting Eq. (A.4) into (A.3), the first and third terms cancel, and we are left with

∂Sq(µ)

∂µi
= −λi . (A.5)

The second derivative of the entropy is thus trivial,

∂2Sq(µ)

∂µi∂µj
= − ∂λi

∂µj
. (A.6)

This quantity is hard to compute, so instead we compute its inverse, ∂µj/∂λi. Using the definition
of µj ,

µj =
�

x

gj(x)
exp [

�
i λigi(x)]

Z(µ)
, (A.7)

differentiating both sides with respect to λi, and applying Eq. (A.4), we find that

∂µj

∂λi
= �gi(x)gj(x)�q(x|µ) − �gi(x)�q(x|µ)�gj(x)�q(x|µ) = Cq

ij . (A.8)

The right hand side is the covariance matrix within the model class.

Combining Eq. (A.6) with (A.8) and noting that

∂λi

∂λi�
=

�

j

∂λi

∂µj

∂µj

∂λi�
= δii� ⇒ ∂λi

∂µj
= Cq−1

ij , (A.9)

we have
∂2Sq(µ)

∂µi∂µj
= −Cq−1

ij . (A.10)

Inserting Eqs. (A.1), (A.1), (A.5) and (A.10) into (8), we arrive at Eq. (10).
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B Alternative derivation of the within-model class bias

We present a brief alternative derivation of the within-class bias from classical results about the
asymptotic distribution of maximum likelihood estimators. Suppose that XK = {xk}k=1,...K is a
sample of size K from the model q(x|λ) with true parameter λ, and that L(λ�) =

�
k log q(x

k|λ�)
is the likelihood of some parameters λ� given the data. Then, it can be shown that the asymptotic
distribution of (twice) the difference between the true log-likelihood L(λ) and the log-likelihood of
a maximum likelihood-estimate λ̂ = argmaxλ�L(λ�) has a Chi-square distribution with m degrees
of freedom (where m is the number of parameters, the dimensionality of the vector λ) [20],

2
�
L(λ̂)− L(λ)

�
∼ χ2

m. (B.1)

As the mean of a random variable with distribution χ2
m is simply m, this implies that the bias in the

estimate of the log-likelihood is �(L(λ̂)−L(λ)�q(x|λ = 1
2m. Using the duality between maximum-

entropy estimation and maximum likelihood estimation in exponential family models, we can now
derive the entropy bias from the likelihood bias: maximizing the entropy subject to the empirically
measured moments µ̂ is equivalent to maximizing the likelihood of model (4).

This means that maximum entropy model q(x|µ), which matches the empirical means µ̂ in the data-
set, is the same model whose parameters λ̂ maximize the likelihood L(λ�), and here therefore we
slightly abuse notation to use λ̂ and µ̂ interchangeably,

1

2
m =

�
L(λ̂)− L(λ)

�

q

=

�
�

k

log q(xk|λ̂)
�

q

−K
�

x

q(x|λ) log q(x|λ)

= KSq(λ) +

�
�

k

λ̂�g(xk)− log(Z(λ̂)

�

q

(B.2)

= KSq(λ)−K
�
log(Z(λ̂)− λ̂�µ̂

�

q

= K�Sq(λ)− Sq(λ̂)�q
Rearranging terms, we recover our result that Bias[S] = −m/2K.

C Calculating b�(0)

Here we compute b�(0) (as in the main text, primes denote derivatives with respect to β). Recalling
that b(β) = �B(x)�p(x|µ,β), using the definition of p(x|µ,β) given in Eq. (18), and making use of
the relationship logZ �(µ,β) = b+

�
i µiλ�

i(µ,β), we have

b�(β) = Var[B]p(x|µ,β) +
m�

i−1

�B(x)δgi(x)�p(x|µ,β)λ
�
i(µ,β) (C.1)

where λ�
i(µ,β) denotes a derivative with respect to β.

To compute λ�
i(µ,β), we use the fact that �gi(x)�p(x|µ,β)) is independent of β, which implies that

0 =
d�gi(x)�p(x|µ,β)

dβ
= �δgi(x)B(x)�p(x|µ,β) +

�

j

�δgi(x)δgj(x)�p(x|µ,β)λ
�
j(β) . (C.2)

While we can’t invert the matrix �δgi(x)δgj(x)�p(x|µ,β) for arbitrary β, we can invert it when β = 0,
since �δgi(x)δgj(x)�β=0 = Cq

ij . Setting β to 0 in Eq. (C.2), we have

λ�
i(µ, 0) = −

�

j

Cq−1

ij �δgj(x)B(x)�q(x|µ) (C.3)

where we used the fact that p(x|µ, 0) = q(x|µ). Inserting this expression into Eq. (C.1), setting β
to zero, and replacing p(x|µ, 0) with q(x|µ), we recover Eq. (23).
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