A Derivation of Eq. (10)

To show that Eq. (10) does indeed follow from Eq. (8), we need to compute the mean and covariance of $\delta \mu_{i}$, and the derivatives of $S_{q}(\boldsymbol{\mu})$ with respect to μ_{i}. We start with the former. The mean of $\delta \mu_{i}$, which is given by (see Eq. (7) and (9))

$$
\begin{equation*}
\left\langle\delta \mu_{i}\right\rangle=\frac{1}{K} \sum_{k}\left\langle g_{i}\left(\mathbf{x}^{(k)}\right)\right\rangle_{p}-\left\langle g_{i}(\mathbf{x})\right\rangle_{p}=0 . \tag{A.1}
\end{equation*}
$$

The covariance can be computed by noting that $\delta \mu_{i}$ is the mean of K uncorrelated, zero mean random variables (see Eq. (9)), which implies that

$$
\begin{equation*}
\left\langle\delta g_{i} \delta g_{j}\right\rangle_{p}=\frac{1}{K}\left[\left\langle g_{i}(\mathbf{x}) g_{j}(\mathbf{x})\right\rangle_{p}-\left\langle g_{i}(\mathbf{x})\right\rangle_{p}\left\langle g_{j}(\mathbf{x})\right\rangle_{p}\right]=\frac{C_{i j}^{p}}{K} \tag{A.2}
\end{equation*}
$$

where the last equality follows from the definition given in Eq. (11a).
We next compute derivatives of the entropy with respect to the μ_{i}. Using Eq. (6) for the entropy, we have

$$
\begin{equation*}
\frac{\partial S_{q}(\boldsymbol{\mu})}{\partial \mu_{i}}=\frac{\partial \log Z(\boldsymbol{\mu})}{\partial \mu_{j}}-\lambda_{i}-\sum_{j} \mu_{j} \frac{\partial \lambda_{j}}{\partial \mu_{i}} . \tag{A.3}
\end{equation*}
$$

From the definition of $\log Z(\boldsymbol{\mu})$, Eq. (5), it is straightforward to show that

$$
\begin{equation*}
\frac{\partial \log Z(\boldsymbol{\mu})}{\partial \mu_{i}}=\sum_{j} \mu_{j} \frac{\partial \lambda_{j}}{\partial \mu_{i}} \tag{A.4}
\end{equation*}
$$

Inserting Eq. (A.4) into (A.3), the first and third terms cancel, and we are left with

$$
\begin{equation*}
\frac{\partial S_{q}(\boldsymbol{\mu})}{\partial \mu_{i}}=-\lambda_{i} \tag{A.5}
\end{equation*}
$$

The second derivative of the entropy is thus trivial,

$$
\begin{equation*}
\frac{\partial^{2} S_{q}(\boldsymbol{\mu})}{\partial \mu_{i} \partial \mu_{j}}=-\frac{\partial \lambda_{i}}{\partial \mu_{j}} \tag{A.6}
\end{equation*}
$$

This quantity is hard to compute, so instead we compute its inverse, $\partial \mu_{j} / \partial \lambda_{i}$. Using the definition of μ_{j},

$$
\begin{equation*}
\mu_{j}=\sum_{\mathbf{x}} g_{j}(\mathbf{x}) \frac{\exp \left[\sum_{i} \lambda_{i} g_{i}(\mathbf{x})\right]}{Z(\boldsymbol{\mu})} \tag{A.7}
\end{equation*}
$$

differentiating both sides with respect to λ_{i}, and applying Eq. (A.4), we find that

$$
\begin{equation*}
\frac{\partial \mu_{j}}{\partial \lambda_{i}}=\left\langle g_{i}(\mathbf{x}) g_{j}(\mathbf{x})\right\rangle_{q(\mathbf{x} \mid \boldsymbol{\mu})}-\left\langle g_{i}(\mathbf{x})\right\rangle_{q(\mathbf{x} \mid \boldsymbol{\mu})}\left\langle g_{j}(\mathbf{x})\right\rangle_{q(\mathbf{x} \mid \boldsymbol{\mu})}=C_{i j}^{q} \tag{A.8}
\end{equation*}
$$

The right hand side is the covariance matrix within the model class.
Combining Eq. (A.6) with (A.8) and noting that

$$
\begin{equation*}
\frac{\partial \lambda_{i}}{\partial \lambda_{i^{\prime}}}=\sum_{j} \frac{\partial \lambda_{i}}{\partial \mu_{j}} \frac{\partial \mu_{j}}{\partial \lambda_{i^{\prime}}}=\delta_{i i^{\prime}} \quad \Rightarrow \quad \frac{\partial \lambda_{i}}{\partial \mu_{j}}=C_{i j}^{q^{-1}} \tag{A.9}
\end{equation*}
$$

we have

$$
\begin{equation*}
\frac{\partial^{2} S_{q}(\boldsymbol{\mu})}{\partial \mu_{i} \partial \mu_{j}}=-C_{i j}^{q^{-1}} \tag{A.10}
\end{equation*}
$$

Inserting Eqs. (A.1), (A.1), (A.5) and (A.10) into (8), we arrive at Eq. (10).

B Alternative derivation of the within-model class bias

We present a brief alternative derivation of the within-class bias from classical results about the asymptotic distribution of maximum likelihood estimators. Suppose that $X_{K}=\left\{\mathbf{x}^{k}\right\}_{k=1, \ldots K}$ is a sample of size K from the model $q(\mathbf{x} \mid \boldsymbol{\lambda})$ with true parameter $\boldsymbol{\lambda}$, and that $L\left(\boldsymbol{\lambda}^{\prime}\right)=\sum_{k} \log q\left(\mathbf{x}^{k} \mid \boldsymbol{\lambda}^{\prime}\right)$ is the likelihood of some parameters $\boldsymbol{\lambda}^{\prime}$ given the data. Then, it can be shown that the asymptotic distribution of (twice) the difference between the true \log-likelihood $L(\boldsymbol{\lambda})$ and the log-likelihood of a maximum likelihood-estimate $\hat{\boldsymbol{\lambda}}=\operatorname{argmax}_{\lambda^{\prime}} L\left(\boldsymbol{\lambda}^{\prime}\right)$ has a Chi-square distribution with m degrees of freedom (where m is the number of parameters, the dimensionality of the vector $\boldsymbol{\lambda}$) [20],

$$
\begin{equation*}
2(L(\hat{\boldsymbol{\lambda}})-L(\boldsymbol{\lambda})) \sim \chi_{m}^{2} \tag{B.1}
\end{equation*}
$$

As the mean of a random variable with distribution χ_{m}^{2} is simply m, this implies that the bias in the estimate of the log-likelihood is $\left\langle(L(\hat{\boldsymbol{\lambda}})-L(\boldsymbol{\lambda})\rangle_{q(\mathbf{x} \mid \lambda}=\frac{1}{2} m\right.$. Using the duality between maximumentropy estimation and maximum likelihood estimation in exponential family models, we can now derive the entropy bias from the likelihood bias: maximizing the entropy subject to the empirically measured moments $\hat{\boldsymbol{\mu}}$ is equivalent to maximizing the likelihood of model (4).
This means that maximum entropy model $q(\mathbf{x} \mid \boldsymbol{\mu})$, which matches the empirical means $\hat{\boldsymbol{\mu}}$ in the dataset, is the same model whose parameters $\hat{\boldsymbol{\lambda}}$ maximize the likelihood $L\left(\boldsymbol{\lambda}^{\prime}\right)$, and here therefore we slightly abuse notation to use $\hat{\boldsymbol{\lambda}}$ and $\hat{\boldsymbol{\mu}}$ interchangeably,

$$
\begin{align*}
\frac{1}{2} m & =\langle L(\hat{\boldsymbol{\lambda}})-L(\boldsymbol{\lambda})\rangle_{q} \\
& =\left\langle\sum_{k} \log q\left(\mathbf{x}_{k} \mid \hat{\boldsymbol{\lambda}}\right)\right\rangle_{q}-K \sum_{x} q(\mathbf{x} \mid \boldsymbol{\lambda}) \log q(\mathbf{x} \mid \boldsymbol{\lambda}) \\
& =K S_{q}(\boldsymbol{\lambda})+\left\langle\sum_{k} \hat{\boldsymbol{\lambda}}^{\top} g\left(\mathbf{x}_{k}\right)-\log (Z(\hat{\boldsymbol{\lambda}})\rangle_{q}\right. \tag{B.2}\\
& =K S_{q}(\boldsymbol{\lambda})-K\left\langle\log \left(Z(\hat{\boldsymbol{\lambda}})-\hat{\boldsymbol{\lambda}}^{\top} \hat{\boldsymbol{\mu}}\right\rangle_{q}\right. \\
& =K\left\langle S_{q}(\boldsymbol{\lambda})-S_{q}(\hat{\boldsymbol{\lambda}})\right\rangle_{q}
\end{align*}
$$

Rearranging terms, we recover our result that $\operatorname{Bias}[S]=-m / 2 K$.

C Calculating $b^{\prime}(0)$

Here we compute $b^{\prime}(0)$ (as in the main text, primes denote derivatives with respect to β). Recalling that $b(\beta)=\langle B(\mathbf{x})\rangle_{p(\mathbf{x} \mid \boldsymbol{\mu}, \beta)}$, using the definition of $p(\mathbf{x} \mid \boldsymbol{\mu}, \beta)$ given in Eq. (18), and making use of the relationship $\log Z^{\prime}(\boldsymbol{\mu}, \beta)=b+\sum_{i} \mu_{i} \lambda_{i}^{\prime}(\boldsymbol{\mu}, \beta)$, we have

$$
\begin{equation*}
b^{\prime}(\beta)=\operatorname{Var}[B]_{p(\mathbf{x} \mid \boldsymbol{\mu}, \beta)}+\sum_{i-1}^{m}\left\langle B(\mathbf{x}) \delta g_{i}(\mathbf{x})\right\rangle_{p(\mathbf{x} \mid \boldsymbol{\mu}, \beta)} \lambda_{i}^{\prime}(\boldsymbol{\mu}, \beta) \tag{C.1}
\end{equation*}
$$

where $\lambda_{i}^{\prime}(\boldsymbol{\mu}, \beta)$ denotes a derivative with respect to β.
To compute $\lambda_{i}^{\prime}(\boldsymbol{\mu}, \beta)$, we use the fact that $\left.\left\langle g_{i}(\mathbf{x})\right\rangle_{p(\mathbf{x} \mid \boldsymbol{\mu}, \beta)}\right)$ is independent of β, which implies that

$$
\begin{equation*}
0=\frac{d\left\langle g_{i}(\mathbf{x})\right\rangle_{p(\mathbf{x} \mid \boldsymbol{\mu}, \beta)}}{d \beta}=\left\langle\delta g_{i}(\mathbf{x}) B(\mathbf{x})\right\rangle_{p(\mathbf{x} \mid \boldsymbol{\mu}, \beta)}+\sum_{j}\left\langle\delta g_{i}(\mathbf{x}) \delta g_{j}(\mathbf{x})\right\rangle_{p(\mathbf{x} \mid \boldsymbol{\mu}, \beta)} \lambda_{j}^{\prime}(\beta) \tag{C.2}
\end{equation*}
$$

While we can't invert the matrix $\left\langle\delta g_{i}(\mathbf{x}) \delta g_{j}(\mathbf{x})\right\rangle_{p(\mathbf{x} \mid \boldsymbol{\mu}, \beta)}$ for arbitrary β, we can invert it when $\beta=0$, since $\left\langle\delta g_{i}(\mathbf{x}) \delta g_{j}(\mathbf{x})\right\rangle_{\beta=0}=C_{i j}^{q}$. Setting β to 0 in Eq. (C.2), we have

$$
\begin{equation*}
\lambda_{i}^{\prime}(\boldsymbol{\mu}, 0)=-\sum_{j} C_{i j}^{q^{-1}}\left\langle\delta g_{j}(\mathbf{x}) B(\mathbf{x})\right\rangle_{q(\mathbf{x} \mid \boldsymbol{\mu})} \tag{C.3}
\end{equation*}
$$

where we used the fact that $p(\mathbf{x} \mid \boldsymbol{\mu}, 0)=q(\mathbf{x} \mid \boldsymbol{\mu})$. Inserting this expression into Eq. (C.1), setting β to zero, and replacing $p(\mathbf{x} \mid \boldsymbol{\mu}, 0)$ with $q(\mathbf{x} \mid \boldsymbol{\mu})$, we recover Eq. (23).

