
RESEARCH ARTICLE

Doubly Bayesian Analysis of Confidence in
Perceptual Decision-Making
Laurence Aitchison1☯*, Dan Bang2,3,4☯, Bahador Bahrami4,5, Peter E. Latham1

1Gatsby Computational Neuroscience Unit, University College London, London, United Kingdom,
2Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom, 3 Calleva
Research Centre for Evolution and Human Sciences, Magdalen College, University of Oxford, Oxford, United
Kingdom, 4 Interacting Minds Centre, Aarhus University, Aarhus, Denmark, 5 Institute of Cognitive
Neuroscience, University College London, London, United Kingdom

☯ These authors contributed equally to this work.
* laurence.aitchison@gmail.com

Abstract
Humans stand out from other animals in that they are able to explicitly report on the reliabil-

ity of their internal operations. This ability, which is known as metacognition, is typically

studied by asking people to report their confidence in the correctness of some decision.

However, the computations underlying confidence reports remain unclear. In this paper, we

present a fully Bayesian method for directly comparing models of confidence. Using a visual

two-interval forced-choice task, we tested whether confidence reports reflect heuristic com-

putations (e.g. the magnitude of sensory data) or Bayes optimal ones (i.e. how likely a deci-

sion is to be correct given the sensory data). In a standard design in which subjects were

first asked to make a decision, and only then gave their confidence, subjects were mostly

Bayes optimal. In contrast, in a less-commonly used design in which subjects indicated

their confidence and decision simultaneously, they were roughly equally likely to use the

Bayes optimal strategy or to use a heuristic but suboptimal strategy. Our results suggest

that, while people’s confidence reports can reflect Bayes optimal computations, even a

small unusual twist or additional element of complexity can prevent optimality.

Author Summary

Confidence plays a key role in group interactions: when people express an opinion, they
almost always communicate—either implicitly or explicitly—their confidence, and the
degree of confidence has a strong effect on listeners. Understanding both how confidence
is generated and how it is interpreted are therefore critical for understanding group inter-
actions. Here we ask: how do people generate their confidence? A priori, they could use a
heuristic strategy (e.g. their confidence could scale more or less with the magnitude of the
sensory data) or what we take to be an optimal strategy (i.e. their confidence is a function
of the probability that their opinion is correct). We found, using Bayesian model selection,
that confidence reports reflect probability correct, at least in more standard experimental

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004519 October 30, 2015 1 / 23

OPEN ACCESS

Citation: Aitchison L, Bang D, Bahrami B, Latham
PE (2015) Doubly Bayesian Analysis of Confidence
in Perceptual Decision-Making. PLoS Comput Biol
11(10): e1004519. doi:10.1371/journal.pcbi.1004519

Editor: Aldo A Faisal, Imperial College London,
UNITED KINGDOM

Received: October 17, 2014

Accepted: August 24, 2015

Published: October 30, 2015

Copyright: © 2015 Aitchison et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: LA and PEL are supported by the Gatsby
Charitable Foundation. BB is supported by the
European Research Council Starting Grant (http://erc.
europa.eu/starting-grants) NeuroCoDec #309865. DB
is supported by the Calleva Research Centre for
Evolution and Human Sciences. The funders had no
role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1004519&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://erc.europa.eu/starting-grants
http://erc.europa.eu/starting-grants


designs. If this result extends to other domains, it would provide a relatively simple inter-
pretation of confidence, and thus greatly extend our understanding of group interactions.

Introduction
Humans and other animals use estimates about the reliability of their sensory data to guide
behaviour (e.g. [1–3]). For instance, a monkey will wait until its sensory data is deemed suffi-
ciently reliable before taking a risky decision [3]. Humans can go further than other animals:
they can explicitly communicate estimates of the reliability of their sensory data, by saying, for
instance, “I’m sure”—an ability that is important for effective cooperation [4–6]. This ability to
report on the reliability of our internal operations is known as “metacognition”, and is typically
studied by asking people to report their confidence in the correctness of some decision [7].
However, the computations underlying confidence reports remain a matter of debate (see
Box 1 in [6], for a brief overview). For instance, in an orientation-discrimination task, reports
might—as a heuristic—reflect the perceived tilt of a bar. Alternatively, reports might reflect
more sophisticated computations, like Bayesian inference about the probability that a decision
is correct. An accurate understanding of confidence reports is important given their role in
high-risk domains, such as financial investment (e.g. [8]), medical diagnosis (e.g. [9]), jury ver-
dicts (e.g. [10]), and politics (e.g. [11]).

Here, we ask: how do people compute their confidence in a decision? We are particularly
interested in whether confidence reports reflect heuristic or Bayes optimal computations. The
latter would be consistent with a wide array of work showing that other aspects of perception
and decision making are Bayes optimal [12]. However, as far as we know, whether confidence
reports reflect Bayes optimal computations has not been directly tested. We use a standard psy-
chophysical task in which subjects receive sensory data, make a decision based on this data,
and report how confident they are that their decision is correct. Our goal is to determine how
subjects transform sensory data into a confidence report. In essence, we are asking: if we use x
to denote the sensory data (x can be multi-dimensional) and c to denote a confidence report,
what is the mapping from x to c? Alternatively, what is the function c(x)?

To answer this question, we follow an approach inspired by signal detection theory [13].
We hypothesize that subjects compute a continuous decision variable, zD(x), and compare this
variable to a single threshold to generate a decision, d. Likewise, we hypothesize that subjects
compute a continuous confidence variable, zC(x; d), an internal representation of the evidence
in favour of the chosen decision, d, and compare this variable to a set of thresholds to generate
a level of confidence, c (the evidence in favour of one decision is different from the evidence in
favour of the other decision, so the confidence variable must not only depend on the sensory
evidence, x, but also the decision, d). Within this framework, a heuristic computation is a rea-
sonable, but ultimately somewhat arbitrary, function of the sensory data. For instance, if the
task is to choose the larger of two signals, x1 or x2, a heuristic confidence variable might be the
difference between the two signals: zCDðx; d ¼ 2Þ ¼ x2 � x1 (the subscript Δ denotes difference).
The Bayes optimal confidence variable, on the other hand, is the probability that a correct deci-
sion has been made: zCB ðx; dÞ ¼ Pðcorrectjx; dÞ (the subscript B denotes Bayesian).

The question of whether confidence reports reflect Bayes optimal (or simply Bayesian) com-
putations has important implications for inter-personal communication. In particular, proba-
bilities, as generated by Bayes optimal computations, can easily be compared across different
tasks (e.g. perception versus general knowledge), making them easier to map onto reports. In
contrast, heuristic computations typically lead to task-dependent internal representations, with
ranges and distributions that depend strongly on the task, making it difficult to map them onto
reports consistently, or compare them between different people.

Confidence Reflects Bayes Optimal Computations
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To our knowledge, it is impossible to determine directly the confidence variable, zC(x; d);
instead, we can consider several models, and ask which is most consistent with experimental
data. Choosing among different models for the confidence variable, zC(x; d), is straightforward
in principle, but there are some subtleties. The most important subtlety is that if the task is “too
simple”, it is impossible to distinguish one model from another. Here, “too simple”means that
the sensory data, x, consists of a single signal, which we write x to indicate that it is scalar. To see
why, let’s say we wanted to distinguish between some heuristic confidence variable, say
zCHðx; dÞ ¼ x, and the Bayes optimal confidence variable, zCB ðx; dÞ ¼ Pðcorrectjx; dÞ. Suppose we
found empirically that a subject reported low confidence when the heuristic variable, zCHðx; dÞ,
was less than 0.3 and high confidence when the heuristic variable was greater than 0.3. Clearly
there is a deterministic mapping from the heuristic variable to the confidence reports, but is it in
any way unique? The answer is no. For example, if the Bayesian variable is greater than 0.4
whenever the heuristic variable is greater than 0.3, then it is also true that our subject reported
low confidence when the Bayesian variable was less than 0.4 and high confidence when the
Bayesian variable was greater than 0.4. Thus, there is absolutely no way of knowing whether our
subjects’ confidence reports reflect the heuristic or the Bayesian confidence variable. In general,
there is no way to distinguish between any two functions of x that are monotonically related—
one can simply map the thresholds through the relevant function, as shown in Fig 1.

The situation is very different when x is a vector (i.e. two or more sensory signals). As in the
one-dimensional case, consider two models: a heuristic model, zCHðx; dÞ, and a Bayes optimal
model, zCB ðx; dÞ. In general, if x is a vector, it is not possible to get the same mapping from x to

Fig 1. For one-dimensional sensory data, x, any monotonic transformation, z(x), can give the same
mapping from x to c. The best we, as experimenters, can do is to determine the mapping from x to c, which,
for discrete mappings, corresponds to a set of thresholds (the vertical lines). We can, however, get the same
mapping from x to c by first transforming x to z (the curved black line), then thresholding z. The relevant
thresholds are simply given by passing the x-thresholds through z(x) (giving the horizontal lines). Therefore,
there is no way to determine the “right” z(x)—any z(x) will fit the data (as long as z(x) is a strictly monotonic
function of x).

doi:10.1371/journal.pcbi.1004519.g001

Confidence Reflects Bayes Optimal Computations

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004519 October 30, 2015 3 / 23



c using zCHðx; dÞ and zCB ðx; dÞ. In particular, when zCHðx; dÞ and zCB ðx; dÞ provide a different
ordering of the x’s—whenever we have zCHðx1; dÞ > zCHðx2; dÞ and simultaneously
zCB ðx1; dÞ < zCB ðx2; dÞ—then it is not possible to find pairs of thresholds that lead to the same
region in x-space. Thus, although we cannot say much about the confidence variable for one-
dimensional signals, we can draw strong conclusions for multi-dimensional signals.

This difference between one-dimensional and multi-dimensional sensory data is one of the
key differences between our work and most prior work. Previous models based on signal detec-
tion theory have typically assumed that the sensory data is one-dimensional (e.g. [14–16]),
leaving them susceptible to the problem described above. There is also a variety of “dynamic”
signal detection theory models in which sensory data is assumed to accumulate over time (see
Pleskac & Busemeyer (2010) [17], for an overview). Such models are able to explain the inter-
play between accuracy, confidence, and reaction time—something that we leave for future
work. However, in these models, the sensory data is also summarised by a single scalar value,
making it impossible to determine whether subjects’ confidence reports reflect heuristic or
Bayes optimal computations.

Here we considered multi-dimensional stimuli in a way that allows us to directly test
whether subjects’ confidence reports reflect heuristic or Bayes optimal computations. In our
study, subjects were asked to report their confidence in a visual two-interval forced-choice
task. This allowed us to model the sensory data as having two dimensions, with one dimension
coming from the first interval and the other from the second interval. We considered three
models for how subjects generated their confidence—all three models were different “static”
versions of the popular race model in which confidence reports are assumed to reflect the bal-
ance of evidence between two competing accumulators (originally proposed by Vickers (1979)
[18], and more recently used in studies such as Kepecs et al. (2008) [1], and de Martino et al.
(2013) [19]). The first model, the Difference model, assumed—in line with previous work—
that subjects’ confidence reports reflected the difference in magnitude between the sensory
data from each interval. The second model, the Max model, assumed that subjects’ confidence
reports reflected only the magnitude of the sensory data from the interval selected on a given
trial—thus implementing a “winner-take-all” dynamic [20]. The third model, the Bayes opti-
mal model, assumed that subjects’ confidence reports reflected the probability that their deci-
sion was correct given the sensory data from each interval. Furthermore, we tested two
different methods for eliciting confidence—both being used in research on metacognition [7].
In the standard two-response design, subjects first reported their decision, and only then, and
on a separate scale, reported their confidence. In the less-commonly used one-response design,
subjects reported their confidence and decision simultaneously on a single scale. We were
interested to see whether the more complex one-response design—in which subjects, in effect,
have to perform two tasks at the same time—affected the computations underlying confidence
reports as expected under theories of cognitive load (e.g. [21, 22]) and dual-task interference
(e.g. [23, 24]).

We used Bayesian model selection to assess how well the models fit our data; thus our analy-
sis was “doubly Bayesian” in that we used Bayesian model selection to test whether our sub-
jects’ behaviour was best explained by a Bayes optimal model [25]. We found that the
commonly used Difference model was the least probable model irrespective of task design. Sub-
jects’ confidence reports in the two-response design were far more likely to reflect the Bayes
optimal model rather than either heuristic model. In contrast, in the one-response design, the
confidence reports of roughly half of the subjects were in line with the Bayes optimal model,
and the confidence reports of the other half were in line with the Max model, indicating that,
perhaps, the increased cognitive load in the one-response paradigm caused subjects to behave
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suboptimally. In sum, our results indicate that while it is possible to generate confidence
reports using Bayes optimal computations, it is not automatic—and can be promoted by cer-
tain types of task.

Methods

Participants
Participants were undergraduate and graduate students at the University of Oxford. 26 partici-
pants aged 18–30 took part in the study. All participants had normal or corrected-to-normal
vision. The local ethics committee approved the study, and all participants provided written
informed consent.

Experimental details
Display parameters and response mode. Participants viewed an LED screen (ViewSonic

VG2236wm-LED, resolution = 800 × 600) at a distance of 57 cm. The background luminance
of the screen was 62.5 cd/m2. The screen was connected to a personal laptop (Toshiba Satellite
Pro C660-29W) via a VGA splitter (Startech 2 Port VGA Video Splitter) and controlled by the
Cogent toolbox (http://www.vislab.ucl.ac.uk/cogent.php/) for MATLAB (Mathworks Inc). Par-
ticipants responded using a standard keyboard.

Design and procedure. Participants performed a two-interval forced-choice contrast dis-
crimination task. On each trial, a central black fixation cross (width: 0.75 degrees of visual
angle) appeared for a variable period, drawn uniformly from the range 500–1000 milliseconds.
Two viewing intervals were then presented, separated by a blank display lasting 1000 millisec-
onds. Each interval lasted* 83 milliseconds. In each interval, there were six vertically oriented
Gabor patches (SD of the Gaussian envelope: 0.45 degrees of visual angle; spatial frequency: 1.5
cycles/degree of visual angle; baseline contrast: 0.10) organised around an imaginary circle
(radius: 8 degrees of visual angle) at equal distances from each other.

In either the first or the second interval, one of the six Gabor patches (the visual target) had
a slightly higher level of contrast than the others. The interval and location of the visual target
were randomized across trials. The visual target was produced by adding one of 4 possible val-
ues (0.015, 0.035, 0.07, 0.15) to the baseline contrast (0.10) of the respective Gabor patch.

After the second interval there was a blank display, which lasted 500 milliseconds, and a
response display. The response display prompted participants to indicate which interval they
thought contained the visual target and how confident they felt about their decision. Partici-
pants were split into two groups. Each group performed a slightly different version of the task.
The difference lay only in how decisions and confidence were indicated; the stimuli seen by the
two groups were identical.

For the first group, which had 15 participants, the response display consisted of a central
black horizontal line with a fixed midpoint (Fig 2A). The region to the left of the midpoint rep-
resented the first interval; the region to the right represented the second interval. A vertical
white marker was displayed on top of the midpoint. Participants were asked to indicate which
interval they thought contained the visual target by moving the vertical marker to the left (first
interval) or to the right (second interval) of the midpoint. The marker could be moved along
the line by up to six steps on either side, with each step indicating higher confidence (1: “uncer-
tain”; 6: “certain”). Participants pressed “N” or “M” to move the marker left or right, respec-
tively, and locked the marker by pressing “B”.

For the second group, which had 11 participants, initially the response display consisted of a
central black question mark (Fig 2B). Participants indicated which interval they thought con-
tained the visual target, pressing “N” for the first interval and “M” for the second interval. After
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having indicated their decision, the response display switched to a central black horizontal line.
A vertical white marker was displayed at the left extreme of the horizontal line. Participants
indicated how confident they felt about their decision by moving the vertical marker along the
line by up to six steps, with each step towards the right indicating higher confidence (1: “uncer-
tain”; 6: “certain”). Participants pressed “N” or “M” to move the marker left or right, respec-
tively, and locked the marker by pressing “B”.

After having made their response(s), participants were presented with central black text
with either “correct” if their decision about the target interval was correct or “wrong” if it it was
incorrect. The feedback display lasted 2000 milliseconds. Participants were then presented with
central white text saying “next trial” before continuing to the next trial. Participants completed
16 practice trials followed by 480 experimental trials. The two groups were analysed separately.
We refer to the two groups as “one-response” and “two-response”, respectively.

Confidence models
To model responses, we assumed the following: On each trial, subjects receive a pair of sen-
sory signals, x. Subjects transform those sensory signals into a continuous decision variable,
zD(x), and then compare this variable to a single threshold to make a decision, d. Finally, sub-
jects transform the sensory signals and the decision into a continuous confidence variable,
zC(x; d), and then compare this variable to a set of thresholds to obtain a confidence report, c.
This section starts by describing our assumptions about the sensory signals, x, then moves on
to the models for how subjects might compute their decision and confidence variables.

Fig 2. Schematic of experimental design and task. AOne-response design. Participants indicated their decision and their confidence simultaneously.B
Two-response design. Participants indicated their decision and their confidence sequentially. The displays have been edited for ease of illustration (e.g.
Gabor patches are shown as dots, with the visual target being the darker dot). All timings are shown in milliseconds. See text for details.

doi:10.1371/journal.pcbi.1004519.g002
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Finally, we describe the Bayesian inference technique used to fit the parameters and find the
most probable model.

Sensory signals. We assumed that subjects on each trial receive two sensory signals, x =
(x1, x2), drawn from two different Gaussian distributions, with x1 giving information about
interval 1 and x2 giving information about interval 2. If the target is in interval 1, then

Pðx1js; i ¼ 1; sÞ ¼ N ðx1; s; s2=2Þ ð1aÞ

Pðx2js; i ¼ 1; sÞ ¼ N ðx2; 0; s2=2Þ; ð1bÞ

whereas if the visual target is in interval 2, then

Pðx1js; i ¼ 2; sÞ ¼ N ðx1; 0; s2=2Þ ð2aÞ

Pðx2js; i ¼ 2; sÞ ¼ N ðx2; s; s2=2Þ: ð2bÞ

Here s specifies the contrast added to the visual target, s 2 {0.015, 0.035, 0.07, 0.15} as
described in Design and Procedure, i 2 {1, 2} denotes the target interval, and σ characterizes the
level of noise in the subject’s perceptual system. The variance of each sensory signal is σ2/2,
which means that the variance of x2 − x1 is σ

2 as commonly assumed by psychophysical models.
Decision and confidence variables. We considered three models for how subjects com-

pute their decision variable, zD(x), and their confidence variable, zC(x; d). We refer to these
models as the Difference model (Δ), the Max model (M), and the Bayesian model (B). The Dif-
ference model proposes that the decision and the confidence variable reflect the difference
between the two sensory signals,

zDDðxÞ ¼ x2 � x1 ð3Þ

zCDðx; dÞ ¼
x1 � x2 for d ¼ 1

x2 � x1 for d ¼ 2 :
ð4Þ

(

In the next section we discuss how the decision, d (which is 1 for interval 1 and 2 for interval 2)
is made.

The Max model proposes that the decision variable reflects the difference between the two
sensory signals and the confidence variable reflects only the sensory signal received from the
selected interval,

zDMðxÞ ¼ x2 � x1; ð5Þ

zCMðx; dÞ ¼ xd: ð6Þ

Finally, the Bayesian model proposes that the decision variable reflects the probability that
interval 2 contained the visual target, and that the confidence variable reflects the probability
that the decision about the target interval is correct,

zDB ðxÞ ¼ Pði ¼ 2jx1; x2; sÞ ð7Þ

zCB ðx; dÞ ¼ Pði ¼ djx1; x2; sÞ; ð8Þ

Confidence Reflects Bayes Optimal Computations
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where

Pði ¼ djx1; x2; sÞ ¼
X

s
Pðx1js; i ¼ d; sÞPðx2js; i ¼ d; sÞX

s;i0
Pðx1js; i ¼ i0; sÞPðx2js; i ¼ i0; sÞ : ð9Þ

To derive this expression, we used Bayes0 theorem and assumed that the two conditions have
equal prior probability (P(i = 1) = P(i = 2) = 1/2). The three models make different predictions
about how the sensory signals contribute to the confidence variable, zC(x; d), and therefore give
rise to different confidence reports.

Choosing decisions and confidence reports. To make a decision, the subject compares
the decision variable to a single threshold, and chooses interval 2 if the variable is larger than
the threshold, and interval 1 otherwise,

dðxÞ ¼ 2 if zDðxÞ > yD

1 otherwise:
ð10Þ

(

Likewise, to choose a confidence level, the subject compares their confidence variable to a
set of thresholds, and the confidence level is then determined by the pair of thresholds that the
confidence variable lies between. More specifically, the mapping from a confidence variable,
zC(x; d), to a confidence report, c, is determined implicitly by,

yCd;c�1 < zCðx; dÞ � yCd;c: ð11Þ

Valid confidence values, c, run from 1 to 6; to ensure that the whole range of zC(x; d) is covered,
we set θd, 0 = −1 and θd, 6 = +1.

Finally, we assumed that with some small probability b, subjects lapsed—they made a ran-
dom decision and chose a random confidence level. Inclusion of this so-called lapse rate
accounts for trials in which subjects made an otherwise low-probability response; e.g. they
chose the first interval when there was strong evidence for the second. Such trials are probably
due to some error (e.g. motor error or confusion of the two intervals), and if we did not include
a lapse rate to explain these trials, they could have a strong effect on model selection.

Model comparison
We wish to compute the probability of the various models given our data. The required proba-
bility is, via Bayes’ theorem,

PðmjdataÞ / PðmÞPðdatajmÞ ð12Þ

wherem is either Δ (Difference model), M (Max model) or B (Bayesian model). The data from
subject l consists of two experimenter-defined variables: the target intervals, il, and the target
contrasts, sl, and two subject-defined variables: the subject’s decisions, dl, and the subject’s con-
fidence reports, cl. Here, the bold symbols denote a vector, listing the value of that variable on
every trial; for instance the interval on the kth trial is ilk. We fit different parameters to every
subject, so the full likelihood, P(datajm), is given by a product of single-subject likelihoods,

PðdatajmÞ ¼
Y

l

Pðdl; cl; il; sljmÞ: ð13Þ

Confidence Reflects Bayes Optimal Computations
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Because il and sl are independent of the model,m, we may write

PðdatajmÞ /
Y

l

Pðdl; cljil; sl;mÞ: ð14Þ

To compute the single-subject likelihood we cannot simply choose one setting for the
parameters, because the data does not pin down the exact value of the parameters. Instead we
integrate over possible parameter settings,

Pðdl; cljil; sl;mÞ ¼
Z

Pðdl; cljil; sl;m; θl; sl; blÞPðθlÞPðslÞPðblÞdθldsldbl; ð15Þ

where θl collects that subject’s decision and confidence thresholds. This integral is large if the
best fitting parameters explain the data well (i.e. if P(dl,cljil,sl,m, θl, σl, bl) is large for the best fit-
ting parameters), as one might expect. However, this integral also takes into account a second
important factor, the robustness of the model. In particular, a good model is not overly sensi-
tive to the exact settings of the parameters—so you can perturb the parameters away from the
best values, and still fit the data reasonably well. This integral optimally combines these two
contributions: how well the best fitting model explains the data, and the model’s robustness.
For a single subject (dropping the subject index, l, for simplicity, but still fitting different
parameters for each subject), the probability of d and c given that subject’s parameters is the
product of terms from each trial,

Pðd; cji; s;m; θ; s; bÞ ¼
Y
k

Pðdk; ckjik; sk;m; θ; s; bÞ ; ð16Þ

We therefore need to compute the probability of a subject making a decision, dk, and choosing
a confidence level, ck, given the subject’s parameters, the target interval, ik, and target contrast,
sk. We do this numerically, by sampling: given a set of parameters, θ, σ and b we generate an x
from either Eqs (1) or (2) (depending on whether ik is 1 or 2). We compute zD(x) from either
Eqs (3), (5) or (7) (depending on the model), and threshold zD(x) to get a decision, d. Next, we
combine x and d to compute zC(x; d) from either Eqs (4), (6) or (8) (again, depending on the
model), and threshold zC(x; d) to get a confidence report, c. We do this many times (105 in
our simulations); P(dk, ckjik, sk,m, θ, σ, b) is proportion of times the above procedure yields d
= dk and c = ck.

To perform the integral in Eq (15), we must specify prior distributions over the parameters
σ, b and θ. While it is straightforward to write down sensible priors over two of these parame-
ters, σ and b, it is much more difficult to write down a sensible prior for the thresholds, θ. This
difficulty arises because the thresholds depend on zD(x) and zC(x; d), which change drastically
from model to model. To get around this difficulty, we reparametrise the thresholds, as
described in the next section.

Representation of thresholds. We reparametrise the decision and confidence thresholds
in essentially the same way, but it is helpful to start with the decision threshold, as it is simpler.
We exploit the fact that for a given model, there is a one to one relationship between the thresh-
old, θD, and the probability that the subject chooses interval 1,

pd¼1 � Pðd ¼ 1jm; θ; s; bÞ ¼
Z yD

�1
PðzDjm; s; bÞdzD : ð17Þ

Therefore, if we specify the threshold, we specify pd = 1. Importantly, the converse is also true:
if we specify pd = 1, we specify the threshold. Thus, we can use pd = 1 to parametrise the thresh-
old. To compute the threshold from pd = 1, we represent P(z

Djm, σ, b) using samples of zD,

Confidence Reflects Bayes Optimal Computations
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which we can compute as described at the end of the previous section. To find the threshold,
we sweep across possible values for the threshold, until the right proportion of samples are
below the threshold (pd = 1), and the right proportion of samples are above the threshold
(pd = 2).

The situation is exactly the same for confidence reports: if we specify the thresholds, we
specify the distribution over confidence reports, pcjd,

pcjd � Pðcjd;m; θ; s; bÞ ¼
Z yd;c

yd;c�1

PðzCjd;m; s; bÞdzC : ð18Þ

Combining decision and confidence thresholds, we obtain the joint distribution over decisions
and confidence reports, p, whose elements are

pd;c � Pðd; cjm; y; s; bÞ; ð19Þ

Fig 3. Schematic diagram of our method for mapping thresholds to confidence probabilities. The
lower panel displays the (fixed) distribution over zC, P(zCjd,m, σ, b) (which does not depend on the
thresholds). The left panel displays the distribution over confidence reports, determined by p. The large
central panel displays the fitted function mapping from zC to c, which consists of a set of jumps, with each
jump corresponding to a threshold. The thresholds are chosen so that the total probability density in P(zCjd,
m, σ, b) between jumps is exactly equal to the probability of the corresponding confidence level (see colours).

doi:10.1371/journal.pcbi.1004519.g003
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Thus, specifying the confidence and decision threshold specifies the joint distribution over
decisions and confidence reports, p. Importantly, the reverse is also true: specifying p specifies
the confidence and decision thresholds.

To find the confidence thresholds given p, we take the same strategy as for decisions—we
represent P(zCjd,m, σ, b) using samples of zC, then sweep across all possible values for the
thresholds, until we get c = 1 the right fraction of the time (i.e. pc = 1jd), and c = 2 the right frac-
tion of the time (i.e. pc = 2jd) etc. (see Fig 3 for a schematic diagram of this method). Note that,
to condition on a particular decision, we simply throw away those values of zC associated with
the wrong decision.

Performing the integral in Eq (15). Changing the representation from thresholds, θ, to
probabilities, p, gives a new single-subject likelihood,

Pðd; cji; s;mÞ ¼
Z

Pðd; cji; s;m;p; s; bÞPðpÞPðsÞPðbÞdpdsdb: ð20Þ

To perform the integral, we need to specify prior distributions over the parameters, σ, b, and p.
For σ, we use

PðsÞ ¼ Gammað2; 0:05Þ / se�s=0:05 ð21Þ

as this broadly covered the range of plausible values of σ. We chose a very broad range of values
for b—evenly distributed in log space between 10−3 and 10−1,

Pðlog10bÞ ¼ Uniformð�3;�1Þ: ð22Þ

Finally, we chose an uninformative, uniform prior distribution over p,

PðpÞ ¼ Dirichletðp;1Þ; ð23Þ

where 1 is a matrix whose elements are all 1.
The most straightforward way to compute the single-subject likelihood in Eq (20) is to find

the average (expected) value of P(d,cji,s,m,p, σ, b) when we sample values of p, σ and b from
the prior,

PðdatajmÞ ¼ EPðpÞPðsÞPðbÞ½Pðd; cji; s;m;p; s; bÞ�: ð24Þ

However, the likelihood, P(d,cji,s,m,p, σ, b), is very sharply peaked; being very high in a very
small region around the subject’s true parameters, and very low elsewhere. The estimated value
of the integral is therefore dominated by the few samples that are close to the true parameters,
and as there are only a few such samples, the sample-based estimate of P(d,cji,s,m,p, σ, b) has
high variance.

Instead, we use a technique called importance sampling. The aim is to find an equivalent
expectation, in which the quantity to be averaged does not vary much, allowing the distribution
to be estimated using a smaller number of samples—in fact, if the term inside the expectation
is constant, then the expectation can be estimated using only one sample. Importance sampling
uses

Pðd; cji; s;mÞ ¼ EQðpÞPðsÞPðbÞ
Pðd; cji; s;m;p; s; bÞPðpÞ

QðpÞ
� �

: ð25Þ

The integral form for this expectation is,

Pðd; cji; s;mÞ ¼
Z

Pðd; cji; s;p; s; bÞPðpÞ
QðpÞ QðpÞPðsÞPðbÞdpdsdb; ð26Þ
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which is trivially equal to Eq (20). To ensure that the term inside the expectation in Eq (25)
does not vary much, we need to choose the denominator, Q(p), so it is approximately propor-
tional to the numerator, P(d,cji,s,m,p, σ, b)P(p). To do so, we exploit the fact that the numera-
tor is proportional to a posterior distribution over p (considering only dependence on p),

Pðd; cji; s;m;p; s; bÞPðpÞ / Pðpjd; c; i; s;m; s; bÞ: ð27Þ
Remembering that pd, c is just the probability of a particular decision and confidence value,
aggregating across all trial types, it is straightforward to construct a good approximation to the
posterior over p. In particular, we ignore the influence of i, s,m, σ and b, so the only remaining
information is the decisions and the confidence reports, d and c, irrespective of trial-type.
These variables can be summarised by n, where nd, c, is the number of times that a subject
chose decision d and confidence level c. The resulting distribution over p can be written,

QðpÞ ¼ Pðpjd; cÞ ¼ Dirichletðp;1þ nÞ; ð28Þ
which turns out to be a good proposal distribution for our importance sampler.

Results

Model selection
To compare models, we look at the posterior probability of each of our models given the data,
P(mjdata). As, a-priori, we have no reason to prefer one model over another, we use a uniform
prior, P(m) = 1/3, so, assuming that every subject uses the same model, then the posterior is
proportional to P(datajm), which we showed how to compute in the Model Comparison Sec-
tion. The Bayesian model is better by a factor of around 104 for the one-response data and
around 1025 for the two-response data (Fig 4).

For the above model comparison, we assumed that all subjects used the same model to gen-
erate their confidence reports. It is quite possible, however, that different subjects use different
models to generate their confidence reports. In particular, we might expect that there is some
probability with which a random subject uses each model, P(ml) (where l is the subject index,
soml is the model chosen by subject l). Under this assumption, we can analyse how well the
models fit the data by inferring the probability with which subjects choose to use each model,
P(ml), using a variational Bayesian method presented by [26]. In agreement with the previous
analysis, we find that for the two-response dataset, the probability of any subject using the
Bayesian model is high: subjects are significantly more likely to use the Bayesian model than
either the Max or Difference models (p< 0.006; exceedence probability [26]; Fig 5B). For the
one-response dataset, on the other hand, subjects use the Bayesian model only slightly more
than the Max model (Fig 5A). The log-likelihood differences for individual subjects are plotted
in Fig 5C and 5D, with uncertainty given by the size of the crosses. Again, for the two-response
dataset, but not for the one-response dataset, the difference between each subject’s log-likeli-
hood for the Bayesian and Max models is larger than 0 (two-response: t(10) = 3.47, p< .006;
one-response: t(14) = 0.954, p� .35; two-sided one-sample t-test).

Model fits
While the model evidence is the right way to compare models, it is important to check that the
inferred models and parameter settings (for inferred parameters for each subject see S1 and S2
Tables) are plausible. We therefore plotted the raw data—the number of times a participant
reported a particular decision and confidence level for a particular target interval and target
contrast—along with the predictions from the Bayesian model. In particular, in Fig 6, we plot
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fitted and empirical distributions over confidence reports given a target interval and contrast
from an example participant (for all subjects and all models see S1 and S2 Figs). To make this
comparison, we defined “signed confidence”, whose absolute value gives the confidence level,
and whose sign gives the decision,

Signed confidence ¼
�c for d ¼ 1

c for d ¼ 2:

(
ð29Þ

These plots show that our model is, at least, plausible, and highlights the fact that our model

Fig 4. The probability of the three models given the data. AB The log-likelihood differences between the models, using the Difference model as a
baseline. Note the small error bars, representing two standard-errors, given by running the algorithm 10 times, and each time using 1000 samples to estimate
the model evidence (Eq (25)). CD The posterior probability of the models, assuming a uniform prior. Left column, one response. Right column, two
responses.

doi:10.1371/journal.pcbi.1004519.g004
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selection procedure is able to find extremely subtle differences between models. Plotting psy-
chometric curves (Fig 7) gave similar results. Again, to plot psychometric curves, we defined
“signed contrast”, whose absolute value gives the contrast, and whose sign gives the target
interval,

Signed contrast ¼
�s for i ¼ 1

s for i ¼ 2:

(
ð30Þ

Fig 5. Single-subject analysis. AB Subjects are assumed to use each model with some probability. The coloured regions represent plausible settings for
these probabilities. For the one-response dataset, we see that subjects are roughly equally likely to use the Max and Bayesian models. For the two-
responses dataset, we see that subjects are far more likely to use the Bayesian model. To read these plots, follow the grid lines in the same direction as axis
ticks and labels, so for instance, lines of equal probability for the Max model run horizontally, and lines of equal probability for the Bayesian model run up and
to the right. CD The difference in log-likelihood between the Bayesian model and the Difference model (on the y-axis) against the difference in log-likelihood
between the Max model and Difference model (on the x-axis). The size of the crosses represents the uncertainty (two standard errors) along each axis
(based on the 10 runs of the model selection procedure, mentioned in Fig 4).

doi:10.1371/journal.pcbi.1004519.g005
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Fig 6. Simulated (Bayesianmodel) and actual confidence distributions for one subject (one
response), and each target interval and contrast. The plots on the left are for targets in interval 1 (i.e. i = 1),
whereas the plots on the right are for targets in interval 2 (i.e. i = 2). We use signed confidence on the
horizontal axis (the sign indicates the decision, and the absolute value indicates the confidence level). The
blue line is the empirically measured confidence distribution. The red line is Bayesian model’s fitted
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Differences between models
For model selection to actually work, there need to be differences between the predictions
made by the three models. Here, we show that the models do indeed make different predictions
under representative settings for the parameters.

To understand which predictions are most relevant, we have to think about exactly what
form our data takes. In our experiment, we present subjects with a target in one of the two
intervals, i, with one of four contrast levels, s, then observe their decision, d and confidence
report, c. Overall, we therefore obtain an empirical estimate of each subject’s distribution over
decision and confidence reports (or equivalently signed confidence, see previous section),
given a target interval and contrast. This suggests that we should examine the predictions that
each model makes about each subject’s distribution over decisions and confidence reports,
given the target interval, i, and contrast, s. While these distributions are superficially very simi-
lar (Fig 8), closer examination reveals two interesting, albeit small, differences. Importantly,
these plots display theoretical, and hence noise-free results, so even small differences are mean-
ingful, and are not fluctuations due to noise.

First, the Max model differs from the other two models at intermediate contrast levels, espe-
cially s = 0.07, where the Max model displays bimodality in the confidence distribution. In par-
ticular, and unexpectedly, an error with confidence level 1 is less likely than an error with
confidence levels 2 to 4. In contrast, the other models display smooth, unimodal behaviour
across the different confidence levels. This pattern arises because the Max model uses only one
of the two sensory signals. For example, when s = 0.07 and i = 2 (so the target is fairly easy to
see, and is in interval 2), then x2 is usually large. Therefore, for x1 to be larger than x2, prompt-
ing an error, x1 must also be large. Under the Max model, x1 being large implies high confi-
dence, and, in this case, a high confidence error.

Second, the three models exist on a continuum, with the Max model using the narrowest
range of confidence levels, the Bayesian model using an intermediate range, and the Difference
model using the broadest range. These trends are particularly evident at the lowest and highest

confidence distribution. The red area is the region around the fitted mean confidence distribution that we
expect the data to lie within. We computed the error bars by sampling settings for the model parameters, then
sampling datasets conditioned on those parameters. The error bars represent two standard deviations of
those samples. This plot demonstrates that the Bayesian model is, at least, plausible.

doi:10.1371/journal.pcbi.1004519.g006

Fig 7. Simulated (Bayesianmodel) and actual psychometric curves for two subjects. The horizontal
axis displays signed contrast (the sign gives the target interval, and the absolute value gives the contrast
level). Colour code is the same as in Fig 6: the blue line is the empirically measured psychometric curve; the
red line is the Bayesian model’s fitted mean psychometric curve; and the red area represents Bayesian error
bars.AOne subject from the one-response design.BOne subject from the two-response design. As with Fig
6, this plot demonstrates the plausibility of the Bayesian model.

doi:10.1371/journal.pcbi.1004519.g007
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Fig 8. Different models lead to different distributions over confidence. Same as Fig 6, but displaying
theoretical distributions induced by the three different models. The parameters were not fit to data; instead,
they were set to fixed (but reasonable) values: σ = 0.07, b = 0 and pd, c = 1/12.

doi:10.1371/journal.pcbi.1004519.g008
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contrast levels. At the lowest contrast level, s = 0.015, the distribution for the Max model is
more peaked, whereas the distribution for the Difference model is lower and broader, and the
Bayesian model lies somewhere between them. At the highest contrast level, s = 0.15, the Max
model decays most rapidly, followed by the Bayesian model, and then the Difference model.

To understand this apparent continuum, we need to look at how the models map sensory
data, defined by x1 and x2, onto confidence reports. We therefore plotted black contours divid-
ing the regions of sensory-space (i.e. (x1, x2)-space) that map to different confidence levels (Fig
9). These plots highlight striking differences between the models. In particular, the Difference
model has diagonal contours, whereas the Max model has contours that run horizontally, verti-
cally or along the central diagonal at x1 = x2. In further contrast, the Bayesian model has curved
contours with a shape somewhere between the Difference and Max models. In particular, for
large values of x1 and x2, the contours are almost diagonal, as in the Difference model whereas
for small values of x1 and x2, the contours are more horizontally or vertically aligned, as in the
Max model.

To see how differences in the mapping from sensory-space to confidence reports translate
into differences in the probability distribution over confidence reports, we consider the red
dots, representing different target intervals and contrasts. For instance, a high-contrast target
in interval 2 (s = 0.15), is represented by the uppermost red dot in each subplot. Importantly,
red dots representing stimuli lie along the horizontal and vertical axes (green). The angle at
which the contours cross these axes therefore becomes critically important. In particular, for
the Difference model the contours pass diagonally through the axes, and therefore close to
many red dots (representing stimuli), giving a relatively broad range of confidence levels for
each stimulus type. In contrast, for the Max model, the contours pass perpendicularly through
the axes, minimizing the number of red dots (representing stimuli) that each contour passes
close to, giving a narrower range of confidence levels for each stimulus type. The contours of
the Bayesian model pass through the axes at an angle between the extremes of the Difference
and Max models—as expected, giving rise to a range of confidence levels between the extremes
of the Difference and the Max model.

In principle, these differences might allow us to choose between models based only on visual
inspection of P(d, cji, s,m, params). However, in practice, the distribution over decision and
confidence reports, averaging over trial type, pd, c, is not constant, as we assumed above, but is
far more complicated. This additional complexity makes it impossible to find the correct
model by simple visual inspection. More powerful methods, like Bayesian model selection, are
needed to pick out these differences.

Fig 9. Themapping from stimulus-space to confidence induced by different models. The axes represent the two stimulus dimensions (cf. interval 1 and
2). The red dots represent the mean values of x1 and x2 for each stimulus. The black lines separate regions in stimulus space that map to a given confidence
level.A Difference model. BMax model.C Bayesian model. The model parameters are the same as in Fig 8.

doi:10.1371/journal.pcbi.1004519.g009
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Discussion
We tested whether subjects’ confidence reports in a visual two-interval forced-choice task
reflect heuristic or Bayes optimal computations. We assumed that subjects receive a two-
dimensional sensory signal, x, and, based on that signal, make a decision (about which interval
a target is in), and report their confidence in that decision. We also assumed that this process is
mediated by intermediate variables: subjects transform those sensory signals into a continuous
decision variable, zD(x), compare this variable to a single threshold to make a decision, d, trans-
form the sensory signals and the decision into a continuous confidence variable, zC(x; d), and
compare this variable to a set of thresholds to obtain a confidence level, c. We compared three
possible ways of computing the confidence variable, zC(x; d): the Difference model, which com-
putes the difference between the sensory signals; the Max model, which uses only the sensory
signal from the selected interval; and the Bayesian model, which computes the probability that
a correct decision has been made. We used Bayesian model selection to directly compare these
models. For the more standard, and perhaps more natural, design in which subjects first make
a decision, and only then give a confidence rating (i.e. the two-response design), the Bayesian
model emerged as the clear winner. However, for the less standard design, in which subjects
make a decision and give a confidence rating simultaneously (i.e. the one-response design), the
results were more ambiguous—our data indicated that around half of the subjects favoured the
Bayesian model while the other half favoured the Max model.

One possible reason for the difference is that, in the one-response design, the computations
underlying confidence reports were simplified so as not to interfere with the computation of
the decision, as expected under theories of cognitive load (e.g. [21, 22]) and dual-task interfer-
ence (e.g. [23, 24]). Alternatively, despite the instructions being the same, the two types of task
design might simply promote qualitatively different computations, with the one-response
design promoting a “first-order” judgement about the stimulus intensity, whereas the two-
response design promotes a “second-order” judgement about the correctness of a decision
which—perhaps critically—has already been made. Surprisingly, the commonly used Differ-
ence model was by far the least probable model in both task designs.

A caveat in any Bayesian model selection is that we cannot test all possible heuristic computa-
tions. However, given the results in Figs 8 and 9, it seems our three models range across the con-
tinuum of sensible models—though it is certainly possible that, perhaps, the best model (at least
for the one-response data) sits somewhere between the Bayesian and the Max models. More gen-
erally, our results indicate that very subtle changes in a task can lead to large changes in the com-
putations performed, and in particular whether subjects use Bayes optimal computations.

Relation to other studies
Barthelmé &Mamassian (2009) [27] went part-way towards realizing the potential of using
multidimensional stimuli. Subjects were asked to indicate which of two Gabor patches they
would prefer to make an orientation judgement about. Interestingly, and in contrast to our
results, they found that subjects were more likely to use a heuristic strategy (similar to the Max
model) than a Bayes optimal strategy. However, there were three aspects of their study that
make it potentially less relevant to the question of whether confidence reports reflects Bayes
optimal computations. First, our model selection procedure is fully Bayesian, and therefore
takes account of uncertainty in model predictions, whereas their procedure was not. In particu-
lar, under some circumstances a model will make strong predictions (e.g. “the subject must
make this decision”), whereas under other circumstances, the model might make weaker pre-
dictions (e.g. “the subject is most likely to make this decision, but I’m not sure—they could also
do other things”). Bayesian model selection takes into account the strength or weakness of a
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prediction. Second, in real life (and in our study), people tend to report confidence using verbal
(e.g. “not sure” to “very” sure) or numerical (e.g. 1 to 10) scales. In contrast, in Barthelmé &
Mamassian (2009) [27], subjects simply made a forced choice between two stimuli. Third, in
their study, the Difference model made exactly the same predictions as the Bayes optimal
model, making it impossible to distinguish these computations.

There are, of course, other approaches for addressing the question of whether the confi-
dence variable is Bayes optimal. Barthelmé &Mamassian (2010) [28] showed that subject’s
confidence variable can take into account two factors (contrast and crowding) that might lead
to uncertainty—as opposed to using only one factor. Similarly, de Gardelle & Mamassian
(2014) [29] showed that subjects were able to accurately compare the confidence variable
across different classes of stimuli (in this case orientation discrimination versus spatial fre-
quency discrimination). These studies provide some, albeit indirect, evidence that confidence
reports might indeed reflect probability correct, in agreement with our work.

Variability in confidence
Confidence reports have been observed to vary with a range of factors that we did not consider
here. For example, people have been shown to be overconfident about the accuracy of their
knowledge-based judgements, but underconfident about the accuracy of their perceptual
judgements (see [30] for a review). People’s general level of confidence may also vary with
social context. When groups of people resolve disagreement, the opinions expressed with
higher confidence tend to carry more weight (e.g. [31]), so group members tend to increase
their confidence to maximize their influence on the group decision [32, 33]. They may also
adjust their confidence reports to indicate submission or dominance, or cut their losses if they
should turn out to be wrong (e.g. [34]). Lastly, people’s confidence reports may vary with more
general social factors such as profession, gender and culture: finance professionals are more
confident than the average population (e.g. [8]); men are more confident than women (e.g.
[35]); and people fromWestern cultures are more confident than people from East Asian cul-
tures (e.g. [36]).

Our method allows us to think about the variability in confidence reports as having two
dimensions. The first (perhaps more superficial) dimension relates to the average confidence
level, or confidence distribution. We might imagine that this dimension is primarily modulated
by social context, as described above. The second (perhaps deeper) dimension relates to the
computations underlying confidence reports. In our data, there do indeed appear to be individ-
ual differences in how people generate their confidence reports, and very subtle changes to the
task appear to affect this process. We might therefore expect shifts in how people generate their
confidence reports for tasks of different complexity. For example, it is not straightforward to
solve general-knowledge questions, such as “What is the capital of Brazil?”, using Bayesian
inference. While one could in principle compute the probability that one’s answer is correct,
the computational load may be so high that people resort to heuristic computations (e.g. using
the population size of the reported city). Future research should seek to identify how confi-
dence reports change between task domains and social contexts—in particular, whether such
changes are mostly due to changes in the computation used to generate the confidence variable
(cf., zC(x; d)), or due to changes in the mapping of this variable onto some confidence scale.

Two types of optimality
Many studies have asked whether confidence reports, and hence metacognitive ability, are opti-
mal (see [37], for a review of measures of metacognitive ability). However, our work suggests
that there are (at least) two kinds of optimality. First, the transformation of incoming data into
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an internal confidence variable (i.e. zC(x; d)) could be optimal—that is, computed using Bayes-
ian inference. Second, the mapping of the confidence variable onto some external scale of con-
fidence could be optimal (i.e. c(zC(x; d))), but this depends entirely on the details of the task at
hand. For instance, without some incentive structure, there is no reason why subjects should
opt for any particular mapping, as long as their mapping is monotonic (i.e. reported confidence
increases strictly with their confidence variable). Importantly, it does not seem that subjects
use an optimal mapping, as evidenced by the large amount of research on “poor calibration”—
that is, the extent to which the reported probability of being correct matches the objective prob-
ability of being correct for a given decision problem (e.g. [30, 38]). Even when there is an incen-
tive structure, subjects only improve their calibration and never reach perfection (e.g. [34, 39]).
Future research should seek to identify why poor calibration arises, and how it can be
corrected.

Conclusions
We asked how people generate their confidence reports. Do they take a heuristic approach, and
compute some reasonable, but ultimately arbitrary, function of the sensory input, or do they
take a more principled approach, and compute the probability that they are correct using
Bayesian inference? When subjects first made a decision and then reported their confidence in
that decision, we found that their confidence reports overwhelmingly reflected the Bayesian
strategy. However, when subjects simultaneously made a decision and reported confidence, we
found the confidence reports of around half of the subjects were better explained by the Bayes-
ian strategy, while the confidence reports of the other half of the subjects were better explained
by a heuristic strategy.

Supporting Information
S1 Table. The best fitting parameters for the one-responses dataset. The first variable, σ, rep-
resents the subject’s noise level, and the second variable, b, represents their lapse rate. These
parameters are sensible: σ is of the order of values used to generate a target Gabor patch, which
ranges up to 0.15, and b is typically lower than 1%.
(PDF)

S2 Table. As S1 Table, but for the two-responses dataset.
(PDF)

S1 Fig. The empirical and fitted distributions over signed confidence given the signed con-
trast for the one-response dataset. The lines show the fitted models, and the points show the
data. Each row gives the complete responses for one subject. Each column gives the responses
for a particular signed contrast value. The axis has been square-root transformed, in order to
emphasize differences in low probabilities.
(EPS)

S2 Fig. As S1 Fig, but for the two-responses dataset.
(EPS)
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