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We present a computational model to explain the results from experiments in which subjects estimate the
hidden probability parameter of a stepwise nonstationary Bernoulli process outcome by outcome. The
model captures the following results qualitatively and quantitatively, with only 2 free parameters: (a)
Subjects do not update their estimate after each outcome; they step from one estimate to another at
irregular intervals. (b) The joint distribution of step widths and heights cannot be explained on the
assumption that a threshold amount of change must be exceeded in order for them to indicate a change
in their perception. (c) The mapping of observed probability to the median perceived probability is the
identity function over the full range of probabilities. (d) Precision (how close estimates are to the best
possible estimate) is good and constant over the full range. (e) Subjects quickly detect substantial changes
in the hidden probability parameter. (f) The perceived probability sometimes changes dramatically from
one observation to the next. (g) Subjects sometimes have second thoughts about a previous change
perception, after observing further outcomes. (h) The frequency with which they perceive changes moves
in the direction of the true frequency over sessions. (Explaining this finding requires 2 additional
parametric assumptions.) The model treats the perception of the current probability as a by-product of the
construction of a compact encoding of the experienced sequence in terms of its change points. It
illustrates the why and the how of intermittent Bayesian belief updating and retrospective revision in
simple perception. It suggests a reinterpretation of findings in the recent literature on the neurobiology
of decision making.
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We live in a world of nonstationary stochastic processes. Dis-
crete events happen at some rate or with some probability. Most of
these stochastic processes are nonstationary; their parameters are
themselves stochastic variables; they change by unpredictable

amounts at unpredictable times. Under at least some circum-
stances, both human and nonhuman animals adapt their behavior to
doubly stochastic processes in approximately optimal ways and
with surprising quickness (Balci, Freestone, & Gallistel, 2009;
Balci et al., 2011; Kheifets & Gallistel, 2012; Krugel, Biele, Mohr,
Li, & Heekeren, 2009; Nassar et al., 2012; Nassar, Wilson, Heasly,
& Gold, 2010). These results imply that the brains of both human
and nonhuman animals have computational mechanisms that yield
reasonably accurate perceptions of simple probabilities, even when
those probabilities are not stationary.

The estimation of stepwise nonstationary stochastic parameters
in real time is a nontrivial computational problem. Its solution has
attracted recent interest from cognitive scientists and neuroscien-
tists (Adams & MacKay, 2006; Wilson, Nassar, & Gold, 2010), as
well as statisticians (Fearnhead & Liu, 2007; Polunchenko &
Tartakovsky, 2012; Turner, Saatci, & Rasmussen, 2009). The
computational complexity of the optimal (full Bayesian) solution
is linear in the run length (Adams & MacKay, 2006) and expo-
nential in the depth of the recursion (Wilson et al., 2010). This
growth in computational complexity has been viewed as implau-
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sible from a neurobiological standpoint, motivating a search for
algorithms that approximate the optimal computation with greatly
reduced computational load. Most of those algorithms—the algo-
rithms suggested as models for what brains are doing—use delta-
rule updating to generate the estimate (percept) of the current
probability (Brown & Steyvers, 2009; Krugel et al., 2009; Nassar
et al., 2010, 2012; Steyvers & Brown, 2006).

Delta-rule updating algorithms have a long history in psychol-
ogy, computer science, and neuroscience. The best known example
in psychology is the Rescorla–Wagner model of associative learn-
ing (Rescorla & Wagner, 1972). Delta-rule updating is also widely
used in reinforcement-learning algorithms in computer science
applications (Sutton & Barto, 1998).

A delta-rule updating algorithm computes for each new event
the discrepancy between the observed event and a prediction. The
prediction is variously interpreted as a parameter of a stochastic
process or as an associative strength or as the value of an act. An
event that is perceived to have a low probability is generally
predicted not to happen on any particular occasion. When it does
happen, the prediction error, the discrepancy between prediction
and occurrence, is large; when it does not happen, the error is
small. Whether the event occurs or not, the estimate of its proba-
bility (the percept or the associative strength or the value) is
adjusted by moving the preoccasion estimate toward the observed
outcome by an amount that is some fraction of the prediction error.
The fraction by which the estimate moves is the learning rate. The
higher the learning rate, the faster the process adapts to changes,
but the noisier and more inaccurate its estimates become. Put
another way, delta-rule updating processes generate estimates of
the current state of stochastic parameters by imposing a geomet-
rically decaying running average window on the outcomes ob-
served on previous occasions. The higher the learning rate, the
narrower this window.

Delta-rule algorithms are recursive; that is, the prediction made
on the next occasion is based on the updated estimate of the
stochastic parameter(s) made on the previous occasion. In addition
to their a long multidisciplinary popularity, delta-rule theories have
at least four further attractions for behavioral, cognitive, and
neuroscientists: (a) They are path independent, which means that
future adjustments depend only on the current estimate and the
next outcome. (b) Their computational complexity does not in-
crease with the extent of the relevant experience (the length of the
observed sequence). (c) They can be made to track stochastic
parameters fairly well. (d) They appear neurobiologically plausible
in the light of the discovery that dopamine neurons signal some-
thing like prediction errors (Dayan & Niv, 2008; Kakade & Dayan,
2002; Montague, Dayan, & Sejnowski, 1996; Niv, 2009; Schultz,
Dayan, & Montague, 1997).

In nonstationary environments, the choice of a learning rate
becomes an interesting problem. The problem is acute when these
models are applied to the simplest and most common stochastic
process, the Bernoulli process, whose parameter is p, the proba-
bility that on a discrete occasion one of two binary outcomes will
be observed. When outcomes are binary, the outcome on any one
occasion is always at one extreme or the other (0 or 1), but the
hidden (unobserved) underlying probability parameter, p, is gen-
erally intermediate between those extremes. Because the observ-
able outcomes are always at the extremes, delta-rule updating tugs
the estimate of the probability around rather violently. To get a

smooth and accurate estimate of p requires a slow learning rate, but
with a slow learning rate, the estimate adapts slowly to large step
changes in p.

Results from several recently published experiments show that
the apparent learning rate (i.e., the rapidity with which subjects’
adjust their estimates of stochastic parameters under nonstationary
conditions) varies over time (Brown & Steyvers, 2009; Nassar et
al., 2010, 2012). To explain this, modelers have added to their
algorithms processes for estimating volatility (Brown & Steyvers,
2009) or probability distributions on run lengths (Nassar et al.,
2010, 2012). These estimates are used to modulate the learning
rate in real time. In other words, subjects are assumed to learn
faster on some occasions than on other occasions.

The relation between objective relative frequency (probability)
and subjective probability is central to the enormous multidisci-
plinary literature on judgments and decisions. There is therefore a
large experimental literature that aims at determining this relation
(for reviews of the older literature, see Peterson & Beach, 1967;
Rapoport & Wallsten, 1972; Slovic, Fischhoff, & Lichtenstein,
1977; Wallsten & Budescu, 1983). There is, however, almost no
literature that is directly relevant to evaluating the adequacy of
delta-rule models in explaining the human perception of nonsta-
tionary Bernoulli p values.

To assess the applicability of these computational models, we
need experiments in which subjects estimate a stepwise nonsta-
tionary descriptive probability, not an inferred probability. This
distinction was made by Peterson and Beach (1967) in their
influential early review of the literature on probability estimation.
It corresponds to the distinction in Bayesian statistics between
parameter estimation and model selection.

In a descriptive-probability experiment, subjects are asked to
estimate the parameter of a distribution after viewing draws from
it. In the experimental literature, the to-be-estimated parameter is
almost always either the p (probability) parameter of the Bernoulli
distribution or the � (mean) of a normal distribution. These hidden
parameters are continuous variables analogous to, say, light inten-
sity. The task is similar to making brightness or loudness esti-
mates, except that the estimate must be based on a sequence of one
or more observations that are only stochastically related to the
hidden quantity being estimated. The observed stimulus differs
stochastically from the true parameter. There is, therefore, an issue
about how to define the observed stimulus, an issue we address. A
likely explanation for the dearth of experiments in which subjects
estimated a Bernoulli probability after every observation is the
difficulty of characterizing the objective stimulus to which the
subject is responding. We call this “stimulus” the observed prob-
ability, to distinguish it from the hidden true probability.

What Peterson and Beach (1967) called an inferred-probability
experiment might now be called a relative-likelihood experiment.
It requires the subject to explicitly or implicitly choose between a
small number of well separated possible source distributions, given
some observed outcomes. In the simplest and most common case,
there are only two possible source distributions. Subjects are told
the values of their parameters, see some data (outcomes), and must
then judge which distribution the data came from. Or, they may be
asked to state the “probability” that the data come from one source
or the other. Probability is in scare quotes because it is not the
usual simple descriptive probability; rather, it is what is variously
called the reverse, backward, or inverse probability—or most
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commonly in recent years, the relative likelihood. Relative likeli-
hood is an odds ratio; it ranges from 0 to infinity, unlike proba-
bility, which ranges from 0 to 1. A reverse probability is not the
probability parameter of a Bernoulli distribution. If it were, then,
as more and more outcomes are observed, estimates of it should
converge on a value between 0 and 1, and this value should be a
monotonically increasing function of the true p. By contrast, as
more and more outcomes are observed in a reverse probability
experiment, the relative likelihood should converge on 0 or infin-
ity, depending on which choice (which source distribution) the
odds favor. Put another way, when the true parameters of two
source distributions, X and Y, have different values, then as the
number of observed outcomes goes to infinity, the reverse proba-
bility that the source distribution is X goes to 0 or to 1, depending
on whether X is in fact the source. Provided that the p parameters
of the two distributions differ, then the reverse probability con-
verges on one or the other limit, because with enough data there is
always decisive evidence one way or the other.

Peterson and Beach observed that in descriptive probability
estimation experiments, accuracy is generally the measure of how
well a subject does, whereas in an inferred probability experiment
optimality is generally the measure. Accuracy has commonly been
measured simply by the degree to which subjects’ estimates match
the true value of the (hidden) p parameter. That approach, how-
ever, implicitly assumed that subjects could know that true value
from their observation of a limited number of outcomes, which,
obviously, they cannot. What we need to measure accuracy cor-
rectly is the ideal observer’s descriptive probability, the best esti-
mate that can be made given the observed outcomes. Optimality,
by contrast, is measured by the degree to which the subjects’
estimates conform to those of a statistical model of the inference
and decision process. Peterson and Beach called the model of the
ideal inferencer “statistical man.” Statistical man tells us the ideal
estimate of the reverse probability.

The distinction between a descriptive probability task and an
inferred probability (reverse probability) task is critical, because,
as Peterson and Beach (1967) pointed out, the two kinds of tasks
consistently give quite different results as regards the relation
between the objective probability and subjects’ estimates of it:

The most striking aspect of the results [from descriptive probability
experiments] is that the relation between mean estimates and sample
proportions is described well by an identity function. The deviations
from this function are small; the maximum deviation of the mean
estimate from the sample proportion is usually only .03–.05, and the
average deviations are very close to zero. (Peterson & Beach, 1967, p.
30)

Whereas they summarized the results from inference experi-
ments as follows (their summary further explicates the concept of
an inference experiment):

Imagine yourself in the following experiment. Two urns are filled
with a large number of poker chips. The first urn contains 70% red
chips and 30% blue. The second contains 70% blue chips and 30%
red. The experimenter flips a fair coin to select one of the two urns,
so the prior probability for each urn is .50. He then draws a succession
of chips from the selected urn. Suppose that the sample contains eight
red and four blue chips. What is your revised probability that the
selected urn is the predominantly red one? If your answer is greater
than .50, you favor the same urn that is favored by most subjects and

by statistical man. If your probability for the red urn is about .75, your
revision agrees with that given by most subjects. However, that
revised estimate is very conservative when compared to the statistical
man’s revised probability of .97. That is, when statistical man and
subjects start with the same prior probabilities for two population
proportions, subjects revise their probabilities in the same direction
but not as much as statistical man does (Edwards, Lindman, &
Phillips, 1965). (Peterson & Beach, 1967, p. 32)

In short, as early as 1967, it was clear that the function relating
a simple probability to subjects’ estimate of that probability is
approximately the identity function, whereas the function relating
an estimated reverse probability (inferred probability) to the true
reverse probability commonly departs substantially from the iden-
tity. In this work, we are concerned with the perceptual process by
which descriptive probabilities are formed, not the process by
which reverse probabilities are formed.

Another important methodological aspect of the kind of exper-
iment required to test delta-rule updating models is that subjects
report their estimate of the parameter rather than make a predic-
tion. Experiments asking for predictions are much more common
than experiments asking for parameter estimates. Experimenters
often attempt to infer the subjects’ parameter estimates from their
predictions. But doing so requires a theory about the relation
between those estimates and the predictions based on them. When
one asks for the estimates directly, no inference back to an estimate
is required, though there is, of course, an issue about the relation
between subjects’ behaviorally expressed estimate and their un-
derlying “true” estimate. This is a vexing issue in much of the
psychophysical literature (for example, the magnitude estimation
literature). However, it proves not to be a problem for direct
estimates of probability because, as noted above by Peterson and
Beach (1967), the function relating the behaviorally expressed
descriptive probability to objective probability usually approxi-
mates the identity.

Recent work by Brown and Steyvers (2009) illustrates the
distinction between descriptive and inferred probability and the
methodological difference between asking for a description of
the perceived probability versus for a prediction based on it. Their
subjects viewed stepwise nonstationary sequences in which the
source of the sequentially observed data changed on occasion.
Subjects were asked on every trial both to predict the next obser-
vation and to say which source they believed the most recent
observation came from. Subjects were told the two distributions’
parameter values at the outset, and these values did not change
during the experiment. What changed stochastically was the source
distribution. Subjects had to decide which was the more likely
source distribution for the currently observed data and make a
prediction based on that decision. Like Brown and Steyvers, we
would assume that their decision was based on a computation of an
approximation to the Bayesian relative likelihood, aka the reverse
probability.

In summary, the results we seek to model must come from
descriptive probability experiments in which the true probability is
stepwise nonstationary and subjects make known their estimate
observation by observation. Only under these conditions can we
observe the transient responses of the perceptual system to abrupt
changes in the input. These transient responses are critical for what
an engineer would call system identification.
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Despite helpful suggestions from many sources, we have found
only one published experiment of the kind needed to assess the
applicability of delta-rule models to the perception of stepwise
nonstationary simple Bernoulli probability (Robinson, 1964). The
results pose deep difficulties for any kind of trial-by-trial updating
model, including a fortiori, delta-rule models. Trial-by-trial updat-
ing models cannot explain the statistics of the step-like pattern of
estimates seen in all subjects: Subjects’ behaviorally expressed
trial-by-trial estimates often stay constant for many trials (wide
step widths). Of importance, the estimates sometimes jump by
very large amounts from one trial to the next (large step heights).
However, equally important is the fact that steps of all sizes are
common and that the smallest steps are the most commonly
observed. We argue that the joint distribution of step widths and
step heights is not consistent with a trial-by-trial updating model.

We have replicated and extended Robinson’s results. These
results motivate our new and quite different computational model
for the process that mediates the perception of a descriptive prob-
ability. This model also suggests a reinterpretation of the results
from recent neuroimaging experiments.

Robinson reported results from 4 “regular” subjects and 4 pilot
subjects. We report comparable results from 10 more subjects.
Robinson’s experiment and ours were done in the psychophysical
tradition, in which each subject is a statistical universe. In a
psychophysical experiment, one runs enough trials on each sub-
ject—10,000 in our case—to be able to say with confidence what
the truth is in that subject. One runs additional subjects not to
obtain enough data to make good estimates based on cross-subject
averages but rather to determine whether the results obtained from
one subject may be replicated with another. The experimental
results that challenge delta-rule models and motivate our model
were obtained from each of Robinson’s 8 subjects and from each
of our 10 subjects. In other words, these results have been repli-
cated 18 times in 18 different subjects, in two different labs, almost
50 years apart, with methods that differed in many of their details.
These results are sufficiently secure to place strong constraints on
computational models of the process by which the typical human
brain computes a hidden Bernoulli probability.

Robinson’s Experiment

Robinson’s subjects used a lever controlling a dial to indicate a
continuous estimate of the hidden parameter, p, of the stepwise
nonstationary Bernoulli process that controlled the flashing of the
two lights above the indicator dial (see Figure 1). The probability
that a flash would be on the right was p; the probability that it
would be on the left was (1 � p). The lever and associated
mechanisms contained only enough coulomb friction to retain a
setting without constant force. Neither springs nor viscous frictions
were used.

Five flash rates were used, ranging from .5 to 8 flashes per
second in octave steps. The probability, p, changed in discrete
steps at irregular intervals. There were 8 different heights for these
steps. They were arranged in two separate problem sets (blocks
of steps), a large-step problem set and a small-step problem set. In
the large-step problems, the absolute values for step size |pa – pb|,
where pa is the probability after the step and pb the probability
before the step, were .16, .32, .48, or .64. In the small-step
problems, they were .06, .12, .18, or .24. Step widths—the number

of flashes between changes in p—ranged from 34 to 89 flashes.
Seventeen values of p were used. The large-step problems used
values of .02, .18, .34, .5 .66, .82, and .98. The small-step problems
used values of .08, .14, .26, .32, .44, .5, .56, .68, .74, .86, and .92.

Flash rates and small- and large-step problem sets were exhaus-
tively combined in a random order. In each experimental session,
a subject saw two or three problem sets, presented in blocks, each
with a particular rate and step range. There were 4 pilot subjects
and 4 “full-scale” subjects. Each of the latter performed the task in
15 sessions of about an hour each. They were paid at a fixed rate
minus their accumulated squared error. In other words, the more
accurately they performed, the more they earned. They were
instructed in detail on the concept of time-varying probability and
the estimation requirements of the task but were not told that the
changes would be step changes nor how big or how frequent these
would be. They were told that the frequency of the changes would
vary. They got 45 minutes of practice before the regular sessions
began. Pilot work showed that the response form changed little
after 30 minutes practice and that subjects failed to recognize or
improve their performance with the repetition of identical prob-
lems.

Robinson summarized his results as follows:

The general response form shown in Figure 2 was found in 80 to 90
per cent of the 3440 step responses that were analyzed. The response
was characterized by rapid changes separated by period of little or no
change in the estimate. This response form suggests that the task
behavior might be described in terms of a series of decisions con-
cerning possible changes in the probability. (Robinson, 1964, p. 11)

Figure 1. Robinson’s apparatus for real-time tracking of a stepwise
nonstationary Bernoulli process governing the flashing of the two lights
above the dial that indicated the lever position. The subjects kept their hand
on the lever at all times, adjusting its position (hence also the needle on the
dial) to indicate their current perception of the hidden parameter that
governed the relative frequency with which the two lights flashed. Lever
position was recorded digitally (on punch cards; this was the early 1960s)
and on a chart recorder. From “Continuous Estimation of Time-Varying
Probability,” by G. H. Robinson, 1964, Ergonomics, 7, p. 9. Copyright
1964 by Taylor & Francis. Reprinted with permission.
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He also noted that “no qualitative differences appeared between
the eight subjects observed in the main and pilot studies” (p. 12).

Robinson measured the Detection latencies, the Convergence
latencies (see Figure 2), the accuracy (mean error), and the preci-
sion (root mean square error) after convergence. The accuracy
measure showed the mapping from true probability to average
reported probability to be the identity function: “No significant
mean error was measured at any probability level with any com-
bination of flash rate, step size . . . or subject. The largest error
observed was smaller than the least scale division on the subject’s
response indicator (0.02)” (Robinson, 1964, p. 15). The precision,
as measured by the root mean square error, was approximately
what one would expect from a running average of the last 17
flashes.

Detection latencies were short. How short depended, as one
would expect, both on the size of the step—big steps were detected
faster than small ones—and on the flash rate: at higher rates more
flashes occurred between a step change and its detection (i.e., the
answering change in lever position). At the slower rates, one flash
every 1 or 2 seconds (which is the self-paced presentation rate
chosen by the subjects in our replication of this experiment), a step
of .1 was detected after 10–15 flashes, whereas a step of .6 was
detected after 4 to 5 flashes.

Of importance, detection latencies also depended on the prob-
lem set during which a step of a given size occurred:

In the region of overlapping step size (0.16 to 0.24) the small step
problem yields detections of from one to six flashes higher than the
large step problem at all rates. The subjects were evidently modifying
their tracking method according to the type of problem being pre-

sented. The subjects had no prior indication, of course, that there were
two problem types. The subjects appear to have made larger, more
decisive, response changes on the large step than on the small step
problem. This change to a more responsive behavior is appropriate in
quickly reducing the large errors following the larger step changes.
(Robinson, 1964, p. 13)

In other words, Robinson’s subjects appeared to form problem-
set-specific priors on step size, even though they initially did not
know that the steps were grouped on the basis of size into two
distinct problem sets (a small-step set and a large-step set) and
even though the sets were randomly intermixed, with no signal at
the boundary between sets. This finding implies that people do not
simply track current probability; rather, they extract from experi-
enced sequences a representation of the size of the steps they have
experienced.

That subjects encode and remember the steps they experience is
the central idea in the model of probability perception that we
propose. In our model, the current perception of the hidden p is a
by-product of a process that constructs a compact encoding of
experienced sequences, encoding them by their change points. The
size and frequency of the experienced changes are trivially extract-
able from such a record. Extracting this information provides an
informative prior for the processing of current input.

Robinson prefaced his presentation of a descriptive model as
follows:

The general response form suggests that the subject was making a
series of decisions concerning possible changes in the probability.
These decisions in turn led to fairly sudden response adjustments. This
mode of behavior is undoubtedly partially derived from the step
function nature of the input. It was also observed, however, in an
informal experiment using a slow, continuously changing probability.

A descriptive model for this task must account for three phenomena:
the static estimation is performed about as well as a simple 17 sample
averaging model; there is a minimum change, or perhaps rate of
change, in the probability that can be detected; and when the subject
decides that a change has occurred his response is essentially discon-
tinuous. (Robinson, 1964, p. 16)

We drew the same conclusions from our replication of his
experiment. At the time we ran the experiment and drew these
conclusions, we were unaware of Robinson’s experiment. These
conclusions motivated our own model.

Our Replication

In our realization of the experiment, subjects view on a com-
puter monitor the display shown in cartoon form in Figure 3, and
they use a mouse to click on the Next button to draw rings from the
“box of RINGS.” They are asked to use the mouse to adjust the
slider beneath the box to indicate their draw-by-draw estimate of
pg, which denotes the proportion of green circles in the box. Thus,
they are not estimating the observed proportion but rather the
unobserved proportion of circles in the box. Of course, their
estimate of the hidden proportion must be based on the observed
proportion, but it may depart from it quite markedly when the
number of observed circles is very small; as, for example, at the
beginning of a session.

Moving the slider varies the proportion of green and red circles
in the large box at the right of the screen, which contains 1,000
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Figure 2. Lever setting as a function of time and flash number during a
typical change in probability, p. Note the steplike (discountinuous) nature
of the adjustment, both when a change is detected and when subsequent
adjustments are made to bring the new estimate into register with the new
value of p. The model we propose reproduces this behavior, whereas
delta-rule updating models cannot be made to reproduce it (see Figure 12).
Convergence is the point at which the lever setting crossed the dashed
limits of “acceptable accuracy” around the true value. Detection is the first
move of the lever in the correct direction following a change in the true p.
Reprinted from “Continuous Estimation of Time-Varying Probability,” by
G. H. Robinson, 1964, Ergonomics, 7, p. 11. Copyright 1964 by Taylor &
Francis. Reprinted with permission.
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circles. The function mapping from slider position to the propor-
tion of green circles in this box is the identity. This visual feedback
may initially be helpful, but most subjects report that they pay little
or no attention to it once they get into the task. Subjects are told
that the box of RINGS may sometimes be silently replaced by a
box with a different proportion of green circles. They are asked to
report a perceived change in pg by clicking on the “I think the box
has changed” button. When debriefed, the first 5 subjects sponta-
neously reported having second thoughts about some of their
change reports: After seeing more circles, they sometimes felt that
there had not, after all, been a change. Because we believe this
reveals an important aspect of the process that mediates the per-
ception of probability, we added the “I take that back!” button. We
told the last 5 subjects to click on it to report a second thought.

Our subjects were allowed to practice the task until they felt
comfortable with it, which took about 10 minutes. Each of our 10
subjects then completed 10 sessions, with 1,000 trials (draws from
the box of RINGS) per session, working at their own pace. The
instructions we gave them and their demographics are in Appendix
A. They were paid $10 per session. The quality of their perfor-
mance had no effect on their remuneration, whereas Robinson’s
subjects were penalized on the basis of their root mean square
error.

Sessions lasted approximately half an hour (M � 25.6 min;
standard deviation � 6.1), which means that subjects chose to
draw from the box at a rate of about 1 circle every 1.2 to 1.8
seconds (the slow end of Robinson’s flash rates). The programmed
values for the proportion of green circles in the box were roughly
evenly distributed between 0 and 1 (see Figure 4A). The size and
direction of a change in this hidden parameter were determined by
a random choice of the next value from a uniform distribution
between 0 and 1, subject to the restriction that the resulting change
in the odds, pg/(1–pg), be no less than fourfold. The sizes of the
experienced changes in pg were roughly evenly distributed within
the intervals –.85 to –.2 and .2 to .85 (see Figure 4B).

Further details of our method are in Appendix A. The MATLAB
code for our implementation of the experiment is in the online
supplemental material.

Robinson’s version and our version of the experiment were run
in different laboratories almost 50 years apart. We were unaware
of his experiment when we ran ours. The results of theoretical
importance were obtained from all 8 of Robinson’s subjects and
from all 10 of ours. Given the difference in apparatus, the differ-
ence in the method of indicating perceived probability, the fact that
Robinson’s subjects’ remuneration depended on the accuracy of
their performance, whereas ours did not, and the many differences
in the details of the procedures, it appears that the results from this
very simple experiment are robust to variation in particulars of the
method. Robinson (1964) remarked in this regard, “The speed of
response to the changes in probability was also faster than had
been anticipated as was the consistency among the subjects. The
consistency is particularly surprising considering the lack of in-
struction on the dynamic form and the ambiguity of a task requir-
ing both detection and smoothing or averaging” (p. 19).

The probability that a change in pg would occur after any given
trial, denoted pc, was constant at .005. Thus, the number of trials
between changes was geometrically distributed, with an expecta-
tion of 200 trials between changes. Sometimes there were very few
trials between changes (as few as 1) and sometimes as many as
several hundred. In Robinson’s experiment, on the other hand, the
number of flashes between changes varied over a rather narrow
range, from 34 to 89 flashes.

Results From Our Experiment

Stepped updating. Robinson’s subjects held a low-friction
lever to move a dial, whereas ours used a mouse to move a slider
on a computer screen. Nonetheless, we observed in all 10 of our
subjects the same pattern that Robinson observed in all 8 of his
(see Figure 5).

Box of RINGS

NEXT

I think the box has changed

0%
NO GREEN

100%
ALL GREEN

MY CURRENT ESTIMATE OF GREEN RINGS

I take that back!

Figure 3. Cartoon of the screen seen by the subjects. In the feedback box at the right, red circles are black and
green circles are gray. Clicking on the NEXT button caused another circle to emerge from the box of RINGS and
then evaporate. Subjects reported a perceived change in pg (the probability of a green circle emerging) by
clicking on the “I think the box has changed” button. They reported second thoughts about their most recent
change report by clicking on the “I take that back!” button. The subject’s perception of pg on each trial was taken
to be the slider position recorded on that trial.
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Mapping is the identity function. Like Robinson and in
accord with the Peterson and Beach summary of the relevant
literature up to 1967, we find that the mapping from true proba-
bility to median reported probability is the identity. The median
trial-by-trial slider settings track closely the hidden true probabil-
ities (see Figure 6). This is consistent with Robinson’s finding that
there was no significant mean error at any value of the probability.

Precision. The precision with which subjects estimate the
probability is the measure of their average trial-by-trial error.
However, the appropriate measure of error requires some discus-
sion, because, as noted in our introduction, in measuring precision,
one should use the “observed” probability, not the hidden, unob-
served true probability. To anticipate, when appropriately mea-
sured, subjects’ precision of estimation is the same at all values of
the observed probability, except the most extreme (see Figure 18).

Rapid detection of changes. Like Robinson’s subjects, our
subjects detected changes quickly (see Figure 7). Our measure of
the change-detection latency in slider setting is the number of trials
between a true change and the first appropriately signed step in the
slider setting thereafter. This is the same as Robinson’s measure.
Our measure of the expressed change latency is the number of
trials between a true change and the first click on the “I think the
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Figure 4. A: The cumulative distribution of pg across subjects and
sessions. B: The cumulative distribution of the signed magnitude of the
step changes in pg across subjects and sessions.
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Figure 5. The trial-by-trial true probability of a green circle (denoted pg, dashed line) and the trial-by-trial
slider setting (denoted p̂g, solid line) for Subject 4, Session 8. Note the step-hold pattern of slider adjustment.
This pattern is seen in every session from every subject. The resemblance to Robinson’s example (Figure 2) is
striking.
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Figure 6. Median slider setting (open circles) and interquartile intervals
(vertical lines) plotted against the bin centers (.025, .075, etc.), after
binning of the data at intervals of 0.05.
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box has changed” button. Figure 7 also contains predictions of our
model; these are described in detail later.

High hit rates and low false alarm rates. Robinson did not
compute hit and false alarm rates, but we did (see Figure 8). We
take the hit rate to be the number of intervals between two true
changes in which the subject clicked “I think the box has changed”
at least once divided by the number of true changes. (Some true

changes were in principle undetectable because they lasted only
one or two trials.) We take the false alarm rate to be the number of
extra times the subject clicked “I think the box has changed” (i.e.,
the number of clicks after the first correct click and before the next
change) divided by the number of trials on which a change call
would have been scored as a false alarm. Thus, if subjects called
a change after every trial, their false alarm rates would be 1; if they
called a change at most once in any span between two true
changes, their false alarm rate would be 0. Obviously, there are
many more opportunities to make false alarms than to make hits.
This is inherent in change detection. Nine of the ten subjects had
mean hit rates in the range .77–1 and mean false alarm rates in the
range .0004–.02 (dashed box in Figure 8).

Second thoughts. Subjects sometimes have second thoughts
about their most recent perception of a change. After observing
more outcomes, they decide that their most recent previous deci-
sion that there had been a further change is no longer justified (see
Figure 9).

Results Summary

The results from Robinson’s experiment and our replication of
it place the following constraints on the computation that generates
the percept of the probability, p, of a hidden and nonstationary
Bernoulli process:

• It delivers reasonably accurate estimates of probability over
the full range of its possible values, not systematically over or
underestimating anywhere in this range. See Figure 6 above.

• It explicitly detects changes (as opposed to simply adapting to
them). See Figure 7 above.

False Alarm Rate (log scale)

H
it

 R
at

e 
(lo

g
 s

ca
le

)

1.0

.9

.8

.7

.6
.0001 .001 .01 .1 1.0

Figure 8. Mean hit rates versus mean false-alarm rates for subjects (black
symbols) and for the model’s simulation of each subject (the red and green
symbols) in double-logarithmic coordinates. The symbols from the mod-
el’s simulation have the same form as the corresponding subject symbol;
the red symbol of a given form approximately minimizes the simulated
false alarm rate for that subject, and the green one approximately mini-
mizes the simulated hit rate. The light dashed square encompasses all but
one subject. Note that the model symbols fall in and around this square. See
later text for details on the estimation of the model parameters, T1 and T2.
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Figure 7. Cumulative distributions of the quartiles of the distributions of
subjects’ change-detection latencies. Top panel: The thin dashed line is the
distribution across the 10 subjects of each subject’s first quartile latency to
make a slider adjustment in the appropriate direction in response to an
objective change in pg. Only adjustments made before the next change are
tabulated. The thin solid line gives the distribution of the subjects’ median
latencies, and the heavy solid line gives it for the third quartile of their
latencies. The median latency of the median subject was about 10 trials.
Median slider adjustment latency is the same measure as Robinson’s
measure of Detection Latency, and it gives similar values. Largish changes
are detected very quickly. Bottom panel: The distribution of latencies to
report a change (latency to click on the “I think the box has changed”
button). These were slightly longer than the latencies to respond with an
appropriate slider adjustment. This may be in part or entirely an artifact of
the fact that “false alarm” slider adjustments were more frequent than
“false alarm” reports. The vertical lines labeled Q1, Median, and Q3 are the
median quartiles predicted by the change-point model (described in detail
below) when its decision criteria were set to T1 � .82 and T2 � 2. That is,
the thin vertical dashed line is the model’s median first quartile across the
10 subjects, the heavier vertical black line is the model’s median across the
10 subjects, and the heavy black vertical is the model’s median third
quartile across the 10 subjects.
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• It quickly detects substantial changes in probability, with a
high hit rate and a low false-alarm rate. See Figure 8 above.

• It can make large discontinuous changes in the estimate be-
tween one observation and the next. See Figures 2 and 5 above and
Figure 11 below.

• It can maintain a single, unvarying estimate for many trials.
See Figure 5 above and Figure 11 below.

• It explicitly distinguishes between, on the one hand, errors in
the estimate of p that become apparent as more data accumulate
since the last change and, on the other hand, errors that arise
because the underlying probability of the Bernoulli process has
changed again. This is required by the fact that subjects often
change the slider position without reporting a change.

• It modifies its estimate of how frequent true changes are
(volatility), and this affects the rate at which it detects changes. See
Figure 16 below.

• It has second thoughts regarding the validity of a previously
perceived change; that is, it sometimes decides later that there was
not in fact a change. See Figure 9 above.

Theoretical Development

Our theoretical developments proceed as follows: We show first
the pattern of trial-by-trial estimates produced by delta-rule mod-
els. It differs strikingly from the pattern subjects generate. We then
consider whether a delta-rule model—or any trial-by-trial updat-
ing model—can be made to generate patterns like those generated
by subjects if we assume that there is an output threshold. We
conclude that they cannot be made to do so. There does not seem
to be a way to get a trial-by-trial updating model to reproduce even
approximately the joint distribution of step widths and step heights
produced by subjects. We then develop our model, which is a
Bayesian change-point estimation model with evidence triggered
updating. We explain why the model is computationally efficient.
We describe how we determine values for its parameters. We
compare its performance to the performance of our subjects, and
we conclude by discussing the implications of our model and the
features of it that are of more general interest.

The two basic ideas behind the model are simple: First, the brain
does not update its estimate of probability trial by trial; it updates
only when there is evidence that its current estimate is unsatisfac-
tory. Second, when it decides that the current estimate is unsatis-
factory, it does Bayesian model comparison to decide between
three different explanations: (a) the current estimate was based on
a misleading set of observations, (b) there has been a change in the
true value of p, or (c) the last change point added to the represen-
tation of the experienced sequence was unjustified in the light of
later observations.

In this model, the perception of the current p is a by-product of
the construction of a compact representation of the observed
sequence in terms of its change points. When there is a problem
with the current estimate, a new one is made. The observations on
which the new estimate is based vary depending on which of these
three explanations for the problem is most likely. Generating a
compact model of the sequenced experienced so far provides a
basis for anticipating and interpreting subsequent experience in the
same context.

The Problem for Trial-By-Trial Updating Models

If the step-hold pattern of slide adjustments accurately tracks the
underlying percept, then that percept is not generated by the kind
of trial-by-trial delta-rule updating process that has been widely
assumed in the modeling literature. Figure 10 shows the behavior
of the model proposed by Behrens, Woolrich, Walton, and Rush-
worth (2007) for the estimation of Bernoulli probability. (They
modeled the process but did not obtain estimates of descriptive
probabilities from their subjects.) This is representative of a pop-
ular class of models of the process by which the brain estimates
nonstationary stochastic parameters (Cohen, McClure, & Yu,
2007; Corrado, Sugrue, Seung, & Newsome, 2005; Glimcher,
2003a, 2003b, 2009). In these models, the current estimate of the
probability and, in some models, the current estimate of the vol-
atility (the variance in the hidden probability parameter) are up-
dated trial-by-trial. The volatility estimate modulates the
probability-learning rate, which is the rate at which the estimate of
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the model (right panel; parameter estimation described later in text); 95% of the subjects’ second thought
latencies were fewer than 50 trials, but there was a very long tail; inset shows the complete distribution.
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the probability adjusts to a change. Kalman filters are an example
of and, often, an inspiration for such models. They are widely used
in engineering to track nonstationary dynamic systems with noisy
outputs or measurements thereof.

Adding an Output Threshold Does Not
Solve the Problem

Because trial-by-trial updating is a natural and pervasive first
assumption, we investigated whether it is possible to explain the
observed pattern of lever or slider settings on the assumption that
the underlying percept really is updated trial by trial but subjects
only reposition the lever or the slider when their percept differs by
a greater-than-threshold amount from the current position. In other
words, the step-hold pattern is seen because subjects are reluctant
to make small changes in the observable output. This is the
assumption that Robinson made in his descriptive model, but he
did not test it against appropriate statistics computed from his
records of lever position.

We considered a running average model, much like that pro-
posed by Behrens et al. (2007) but with a difference threshold on
the output. In this model, on each trial the current observable
estimate (the slider setting), p̂g, is compared to an (unobserved)
running average, denoted pra. If the absolute difference, |p̂g � pra|,

exceeds a threshold, then p̂g is set to pra; otherwise, it is not
changed.

A fixed threshold suppresses all steps whose height is less than
the threshold. This eliminates small step heights and makes the
distribution of signed step heights bimodal. The data, however,
show essentially opposite features: Small step heights are the most
common, and the distribution of step heights is unimodal (see
Figure 11). To try to remedy this, we used a variable (stochastic)
threshold: on each trial, the threshold was drawn from a Gaussian
distribution with mean �� and coefficient of variation, cv� (�.33).
If on any trial |p̂g � pra| � �(��, cv���), p̂g was automatically
updated. (�(��, cv���) denotes a random draw from a normal
distribution with mean �� and standard deviation cv���.)

For the simplest running average model, pra is updated using a
single exponentially decaying kernel,

pra(t) � (1 � �)pra(t � 1) � �x(t),

where t denotes trial, x(t) � 1 if there is a green circle on trial t and
0 if there is a red one, and � controls how far into the past the
average extends, with smaller �s corresponding to longer memo-
ries (and thus slower updating).

The main advantage of this model is its simplicity. However, it
is really appropriate only when the true probability of a green
circle, pg, changes slowly, since in that case the decay rate, �, can
be matched to the rate at which pg changes. It is not surprising,
therefore, that this model was not a good match to the data. In
particular, it could not produce the numerous large steps that one
sees in the marginal distribution of subjects’ step heights in Figure
11.

To remedy this, and to explicitly take into account the sudden
changes in pg, we considered a more complex, two-kernel model.
This model kept track of two running averages: pra,fast, which had
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Figure 11. The joint distribution of subjects’ step widths (x-axis, log
scale) and step heights (y-axis, linear scale) together with the marginal
distributions. As may be seen from the marginal distribution of step
heights, more than 50% of step heights fall in a narrow range around 0. In
other words, the smallest possible movements of the slider are the most
common, which they cannot be if there is a difference threshold on the
output that suppresses small steps.

Figure 10. The behavior of the model proposed by Behrens et al. (2007)
for the process by which the brain estimates rates of reward in their
probability tracking task. The upper panel shows the model’s trial-by-trial
estimate of the probability that choosing a blue square will be rewarded (in
a binary choice task with differential reward). The estimate of this prob-
ability is updated on every trial. The estimate never remains the same from
trial to trial, because it is a running average of the recent outcomes and
those outcomes are binary. Because it is a running average, it adjusts
relatively smoothly to changes in the probability that it is estimating. The
rate at which it adjusts (the learning rate) is governed by the model’s
estimate of the volatility (lower panel). The higher this estimate, the faster
a new probability is learned. The estimate of volatility is also adjusted
trial-by-trial. From “Learning the Value of Information in an Uncertain
World,” by T. E. J. Behrens, M. W. Woolrich, M. E. Walton, and M. F. S.
Rushworth, 2007, Nature Neuroscience, 10, p. 1215. Copyright 2007 by
Nature Publishing Group. Reprinted with permission.
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a short memory (large �), and pra,slow, which had a long memory
(small �). The idea is that when there is a sudden change in pg, the
short memory running average will react much more quickly than
the long memory average and that will signal a change. We thus
introduced a second threshold, denoted �c. On each trial we
computed |pra,slow � pra,fast|. If this was below �c, pra was set to
pra,slow; if it was above �c, pra was set to pra,fast. Updating of p̂g

was the same as in the simple, one-kernel model: it was updated if
|p̂g � pra| exceeded a (stochastic) threshold; otherwise it wasn’t.

The two-kernel model adds two free parameters (a second decay
rate and �c, the threshold that causes a switch from the slow to the
fast running average), making a total of five free parameters.
However, none of these additions to the complexity of the trial-
by-trial updating model appreciably diminish the bimodality in the
distribution of step heights. In fact, at every parameter combina-
tion we have tried, there were two well-separated modes in the
distribution of step heights (see Figure 12).

We conclude that a model that updates trial by trial cannot
approximate the distribution of step widths and heights that sub-
jects produce. Thus, the joint distribution of step widths and step
heights in Figure 11 is a strong constraint on viable models.
Moreover, even if a running average model could reproduce the
distribution of step widths and heights, it cannot have second
thoughts, because it does not construct a representation of the
experienced sequence, and it never reconsiders earlier decisions.
We take the occurrence of second thoughts to imply retrospection;
that is, a reconsideration of earlier decisions about change points in
the light of later observations. We take the requirement that a
model produce second thoughts to be another strong constraint on
viable models.

A Bayesian Change-Point Model With
Evidence-Triggered Updating

We propose that the perception of Bernoulli probability is a
by-product of the real-time construction of a compact encoding of
the evolving sequence by means of change points, the points where
the value of the hidden parameter is perceived to have changed.
Our model has affinities with recent models of other perceptual
processes that use Bayesian computation to construct an approxi-
mation to a minimum-description length representation (Feldman,
2009). Our model finds an approximation to the smallest sequence
of change points that adequately describes the observed sequence,
a description that is as simple as possible but not too simple.

Estimating the current probability would be easy if the subjects
knew where the last change point was. Given the last change point,
the estimate is simple Bayesian parameter estimation, using only
the observations made since that change. We propose, therefore, a
model in which subjects keep track of the change points, some-
times adding a new one, sometimes moving the most recent one a
bit, and sometimes expunging the most recent one, as they see
more data. Their current perception of probability is always based
only on the data observed since the last change point in their
representation of the sequence.

Figure 13 diagrams the flow of computation and Table 1 intro-
duces our notation: pg is the hidden parameter of the Bernoulli
process and p̂g is the corresponding subjective probability (i.e., the
subject’s current estimate of pg); pc is the probability of a change

in pg after any given trial (fixed at .005) and p̂c is the subject’s
perception of that change probability.

Beginning with a slider setting, p̂g, the computation proceeds in
two steps. First, it decides whether the current estimate needs
changing; if so, it then decides on why the estimate needs chang-
ing. Does it need to be changed because it was a misestimate based
on too small a sample? Or does it need to be changed because there
has been a (further) change in the hidden parameter? Or, does the
problem arise because the most recently decided on change point
should be taken back in the light of observations made subsequent
to that most recent decision? This last possibility gives rise to
second thoughts.

First stage: Is it broke? The first decision—whether there is
a problem with the current percept—is based on the extent to
which the number of green circles observed since the last change
point deviates from the number predicted by the current percept.
The expected number is np̂g, where n is the total number of circles
seen since the last change point (or since the start of the session),

with standard deviation �np̂g�1�p̂g�. If the actual number is too
far from np̂g, with “too far” measured relative to the standard
deviation, the current percept is no longer consistent with what has
been observed since that estimate was made. The process by which
the first stage decides whether the current estimate is no longer
viable is equivalent to a conventional null hypothesis significance
test, with, of course, a decision criterion (alpha level). This first
stage implements the principle that “if it ain’t broke, don’t fix it.”
That principle explains subjects’ intermittent slider adjustments:
Most of the time their percept isn’t broke, so they don’t fix it.

The decision on whether the current estimate is broke must be
based on a measure of the strength of the evidence that there is a
problem. We denote this measure by E. We suggest that it is the
product of the number of observations made since the most re-
cently estimated change point (n�C) and the extent to which the
proportion observed since that change point (po) diverges from the
p̂g made when that change point was added. As shown in Appendix
B, the extent of the divergence is measured by the Kullback–
Leibler divergence,

E � n�C D(po � p̂g), (1)

where

D(po � p̂g) � po log
po

p̂g
� (1 � po) log

1 � po

1 � p̂g
(2)

and logs are natural logarithms. The Kullback–Leibler divergence
measures the directed distance from one distribution to another; in
this case, from Bernoulli (po) to Benroulli (p̂g). It is the
information-theoretic measure of how far one distribution diverges
from another. It is the rate at which the odds that the observed
distribution differs from the assumed distribution increases as one
samples from the observed distribution. Thus, the product of the
divergence and the number of draws measures the strength of the
evidence for a discrepancy. An appeal of this measure is its
computational simplicity. Because p̂g does not change from one
observation to the next, the only quantity that is updated is po. Its
new value depends only on n and ng. On any observation, n
increases by 1 and ng by 1 or 0.

On the great majority of trials, E is less than any plausible
decision criterion, which means that the estimate of the hidden
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Figure 12. Joint and marginal distributions of step widths and step heights produced by a complex 5-parameter,
2-kernel, running-average model with a stochastic difference threshold on the output. In the upper panel, the
rapid decay rate is relatively fast (� � .15), whereas in the lower it is slow (� � .05). In both cases the slow
decay rate is four times smaller (� � .0375 and 0.0125, respectively). The threshold difference required to switch
the underlying estimate from the slow-decay estimate to the fast-decay estimate, �c, was 0.3. The difference
thresholds on the output were drawn observation by observation from a normal distribution with a mean, ��, of
.05 and standard deviation, 	� � cv��� � .33 
 .05 � .0165. The online supplemental materials contain a
custom MATLAB function, which may be used to run the model with parameter values of one’s choosing.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

107THE PERCEPTION OF PROBABILITY



parameter is not broken. In that case, there is no further compu-
tation. This is one of the features that make the model computa-
tionally efficient. Another efficient feature of this measure is that
it has a fixed distribution. We show in Appendix B that E is
distributed as �(.5,1). Thus, the first-stage decision (“Is it broke?”)
employs a fixed decision criterion, unlike the decision criteria in
most null hypothesis significance tests, which depend on the
degrees of freedom. The decision criterion on E is T1, the first of
the two free parameters in our model.

Second stage: Why is it broke? When a new estimate for p̂g

becomes necessary—when p̂g is broke—choices must be made in
determining what the new percept should be. The appropriate fix
depends on the answer to the question, What’s wrong? The prob-
lem may arise from small-sample estimation error. Initial estimates
and estimates made when a change has just been detected are
based on small numbers of observations, so they are often some-
what off. However, the problem may be that there has been a
change in the true probability of a green circle. Or, the last change
point may have been erroneous and should be expunged.

Multiple changes since the last change point are also a possi-
bility, but, for reasons we discuss below, we assume they can be
ignored. That leaves only two possibilities beyond small-sample
estimation error: one additional change point or one expunged
change point. In deciding between these possibilities, the process
decides between two encodings of the sequence since the last
change point: a simple one that uses only a single p̂g or a more
complex one that uses a change point and two p̂gs, one before and
one after the change point.

The decision between encodings with and without a change
point is based on the posterior odds favoring one change some-
where in that sequence being considered versus no change. The
posterior odds are the Bayes factor in favor of a change multiplied
by the prior odds of a change,

PostOdds � BF � PriorOdds �
MML (M1�D, 	(
�M1))

MML (M0�D, 	(
�M0))
�

p(M1)

p(M0)
,

where MML denotes the marginal (that is, integrated) likelihood of
a model for the data (see Equations 3 and 4 below).

The Bayes factor is the relative likelihood of the two contrasting
encodings (models), given the data, D, and the prior distributions
on the parameters, �, which for us consists of three quantities: � �
(pg

b, pg
a, t), where pg

b and pg
a are, respectively, the probability of a

green circle before the change and the probability after the change,
and t is the trial after which the change is estimated to have
occurred. The one-change description uses all three parameters.
The no-change description uses only one of them because under
that description pg

b � pg
a and t � n; that is, the change occurs

notionally after the end of the sequence.
The Bayes factor depends on the distribution of the green circles

within the sequence: Do they cluster toward one end or the other,
or are they more or less evenly sprinkled throughout the sequence?
The prior odds do not depend on this pattern; they depend only on
the length of the sequence and on p̂c, the current estimate of how
often changes occur.

yes yes

yes

no

Has there been a further change in p
g
?

D
>C

D
>C-1

no

Add a new change
point to the encoding
of the sequence; estimate
post-change p

g
; update p

c

Re-estimate p
g
 using D

>C

Expunge previous change point;
re-estimate p

g
 using D

>C-1
;  update p

c

First Stage
Is there a problem?

Second Stage
What’s causing the problem?

Action

update p
c

Post Odds > T
2
?

Post Odds > T
2
?

nD
KL

(p
o
||p

g
) > T

1
?

^

^

^

^

Figure 13. Flow of the computations in the proposed model. D�c is the sequence observed since the most
recent change point (or the start of the session); po � ng/n is the observed probability since the last change point
(number of green circles divided by total number of circles); p̂g is the current estimate of pg, which is the current
true probability of a green circle. The posterior odds (PostOdds) are those in favor of an encoding of a binary
sequence D that inserts a change point somewhere in it, as opposed to an encoding that does not (the no-change
encoding). The input to the lower decision diamond, D�c�1, is the sequence observed since the penultimate
change point. T1 and T2 are the free parameters of the model (the decision thresholds). See Figure 14 for an
illustration of the compactness and precision of the encodings generated by the model.
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p(M1)

p(M0)
�

np̂c

1 � p̂c
.

The one-change description is more complex (lengthier) but also
more flexible; it allows two probabilities of a green circle, one
before and one after the change point, and it allows the change to
happen at any point in the sequence. The no-change description is
less complex (shorter) but less flexible; it allows only one proba-
bility to describe the whole sequence (that is, pg

b � pg
a) and change

point (that is, t � n).
The maximally likely one-change description is always better

than the best no-change description. However, the inherent ability
of a more complex and flexible model to represent data more
minutely than a less complex and less flexible one is offset by
the fact that (�|M1), the prior probability distribution of the
one-change model, is more diffuse than (�|M0), the prior for the
no-change model: The former occupies a three-dimensional space,
whereas the latter occupies only a one-dimensional space; both
have, of course, a unit mass of total prior probability distributed in
the space they occupy. The Bayes factor adjudicates the trade-off
between the descriptive adequacy and the complexity of the com-
peting descriptions; that is, between the minuteness of a descrip-
tion and its lengthiness. It implements Einstein’s razor, favoring

the description that is as simple as possible but no simpler (Gal-
listel, 2009; MacKay, 2003).

The prior odds take into the account a different consideration:
When the sequence is short and the probability of change is low,
the sequence probably does not contain a change, regardless of
what the pattern of green circles within it may suggest. When, on
the other hand, the sequence is much longer than the expected
interval between changes (1/p̂c), the a priori probability that there
has been a change is high, even if the pattern of green circles
within the sequence gives only weak support for this description.
To correctly estimate the odds that there has been a change, the
computation must take account of both the Bayes factor and the
prior odds.

The probability of a change after any given trial, pc, is always
small relative to its complement (1�pc); therefore, the odds of a
second change within the rather short sequences of trials required
for an earlier change to become evident are low. That is why the
process does not have to decide between one-change descriptions
and descriptions with more changes. When the changes are small,
they are hard to detect—it takes many trials—so there may well be
other changes, but then the descriptive adequacy of the simpler
descriptions suffers very little by neglecting those changes.

Table 1
Notation

Symbol or expression Refers to

pg The true proportion of the green circles in the box at any one time; the true value of the hidden parameter
of the Bernoulli process.

p̂g The subject’s current estimate of pg, as taken from the subject’s current slider setting.
pc The probability that pg changes after any given trial. In our experiment, pc � .005.
p(pc) The subject’s posterior probability distribution on pc.
p̂c The expectation of p(pc); the subject’s current estimate of the probability of a change in pg.
D A sequence of red and green circles (a binary data vector).
C The index number of the latest change point in the subject’s encoding of D; tC is the trial number of the

last change point.
D�C The data (circles observed) since the latest change point.
D�C�1 The data since the penultimate change point.
ng, nr, and n Number of green circles, number of red circles, and number of circles, respectively, in a subsequence of

trials.
po � ng/n The observed proportion of green circles in a subsequence.
p(pg) The Bayes-optimal real-time posterior distribution on pg after any given trial.
p�g The expectation of p(pg). We use this as the trial-by-trial “observed” pg, the standard against which we

measure the accuracy and precision of p̂g, the subjects’ trial-by-trial slider settings.
DKL(po � p̂g) The Kullback–Leibler divergence of p̂g (the slider setting) from po; a measure of how far the subject’s

perception diverges from the observed proportion. See Equation 2.
nd The expected number of trials an observer would need to find evidence of error. The smaller the error in

the subject’s estimate, the more trials are on average required to reveal it. nd is inversely proportional
to the Kullback–Leibler divergence (the magnitude of the error); see Equation 5.

L(� | D, M) The likelihood function in Bayes’s rule. M is a model of the generative process; � is the set of parameters
whose values are estimated from the data when using that model to describe the data. The likelihood
function specifies the uncertainty about these values given the information in the data.

(� | M) The prior distribution on � in Bayes’s rule. This distribution specifies the uncertainty about the values of
these parameters before looking at the data.

MML(M | D, (� | M)) Bayesian marginal model likelihood of an encoding or description of the data; the integral of the product
of the likelihood function and the prior distribution. The ratio of two marginal model likelihoods is the
Bayes factor.

�g and �g The (hyper)parameters of the subject’s beta distribution prior on pg.
�c and �c The (hyper)parameters of the subject’s beta distribution prior on pc.

Beta��, �� �
1

B��, ��
x��1�1 � x���1

The beta distribution, which is the conjugate prior for the Bernoulli distribution. B is the beta function
(not to be confused with the beta distribution).

T1 and T2 Respectively, the threshold (decision criterion) on E (the evidence of a problem) and the threshold on
posterior odds of a change.
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When the posterior odds in favor of a change exceed a decision
criterion (T2 in Figure 13), the perceptual process adds a change
point at the most likely point in the sequence seen since the last
change. In doing so, it lengthens its change-point description of the
overall sequence.

When the algorithm decides that an additional change point is
not needed to describe the sequence since the last change point, it
then decides whether the previous change point should be ex-
punged. To do this, it provisionally expunges the last change point,
then proceeds to decide, as above, whether the sequence since the
penultimate change point is better described with or without a
change point. When the decision is in favor of a change point, the
expunged change point is restored but not always at precisely the
same point in the sequence; otherwise, it is not restored, and what
was the penultimate change point becomes the most recent one.
That is, the model has a second thought.

When all has been decided, the new percept is the relative
frequency of the green circles since what has now been decided to
be the latest change point, slightly modified by the prior distribu-
tion on pg: p̂g � (ng � �g)/(n � �g � �g). Because changes are
often detected quickly, when a new change point is added, n is
generally small. Consequently, those new estimates are often in-
accurate. When the last change point has been expunged, on the
other hand, n is generally large, so these percepts are generally
accurate. The construction of the encoding of the overall sequence
is iterative (that is, tail recursive): The new estimate is now
checked after each new circle to see if it is broke; when it is broke,
fixing it proceeds as above.

Figure 14 illustrates the descriptive adequacy and the compact-
ness of the encodings produced by this model. There, we plot the
cumulative records of the green circles seen by the first six
subjects in their first session (thin black solid, somewhat wiggly
lines). On these records, we superimpose the change points by
which the model represents each sequence. These change points
are connected by thick dashed gray smooth lines, which are the
cumulative records recoverable from the encoding. The point slope
of a cumulative record is the relative frequency (probability) of
green circles in the vicinity of that trial. The slopes of the thick
gray dashed lines are everywhere extremely close to the slopes of
the thin black wiggly lines, indicating that the representations are
descriptively adequate, yet the change-point encodings in Figure
14 have only 3–6 change points per sequence of 1,000 stimuli.
(The circle at the origin of a plot is not counted, because its
coordinates are always 0,0.) The coordinates of a change point
form a two-dimensional vector; thus, 8–12 numbers suffice to
describe (summarize) a binary sequence of 1,000 stimuli, a reduc-
tion by two orders of magnitude in the number of symbols em-
ployed.

Computational efficiency. On the relatively rare occasions
when the algorithm enters the second stage, it first updates its
estimate of the probability of a change. We assume a conjugate
(Beta) prior on pc, so the updating computation is trivial,

p̂c �
nc � �c

n � �c � �c
,

where
nc � number of changes so far perceived, across all sessions.
n � the total number of trials, across all sessions.

�c and �c � the parameters of the Beta prior on pc.
For most modeling purposes, �c and �c can be set to .5 (the

Jeffreys prior). The estimated probability of a change, p̂c, deter-
mines the prior odds of a change in a sequence of any given length.
The prior odds of a change play an important role in the decision
as to the proper explanation for the problem, because the posterior
odds in favor of a change are the product of the Bayes factor and
the prior odds.

The Bayes factor is the ratio of the marginal likelihoods of two
competing descriptions of the sequence observed since the last
change. We use a conjugate prior, Beta(�,�), on the possible
values of the probability before and after a putative change. With
this prior, the computation of parameter estimates and marginal
likelihoods is simple and efficient. The marginal model likelihood
(MML) of the one-change encoding is

MML�M1�D, 	�
|M1�� � �� dpg
bdpg

aL�pg
b, pg

a, t � D�	1�pg
b, pg

a, t�,

(3)

where L(pg
b, pg

a, t | D), the likelihood of the parameter values given
the before and after change probabilities, is given by

L�pg
b, pg

a, t � D� � �pg
b�ng

�t

�1 � pg
b�nr

�t

�pg
a�ng

�t

�1 � pg
a�nr

�t
.

Here, t is the trial index, ng
�t and nr

�t are the numbers of green and red
circles observed on Trials 1 to t, and ng

�t and nr
�t are the numbers of

green and red circles observed after t. The prior, 1(pg
b, pg

a, t), is a
product of beta distributions, plus a factor of 1/n indicating that there
is an equal probability of a change on every trial,

	1�pg
b, pg

a, t� �
�pg

b��g�1�1 � pg
b��g�1

B(�g, �g)

�pg
a��g�1�1 � pg

a��g�1

B(�g, �g)

1

n
,

where B(�, �), the beta function, is the usual normalizer for the beta
distribution. The integrals in Equation 3 are straightforward, and we
have

MML�M1�D, 	(
|M1)�

�
1

n�t�1

n B�ng
�t � �g, nr

�t � �g�
B(�g, �g)

B�ng
�t � �g, nr

�t � �g�
B(�g, �g)

.

For the no-change model, pg
b � pg

a and t � n, in which case the
marginal likelihood simplifies to

MML(M0�D, 	(
|M0)) � � dpL(p | D)	0(p), (4)

where

L(p�D) � png(1 � p)nr

and

	0(p) �
p�g�1(1 � p)�g�1

B (�g, �g)
.

The integral in Equation 4 is also straightforward, and so, for the
no change model,

MML(M0�D, 	(
|M0)) �
B(ng � �g)B(nr � �g)

B(�g, �g)
.
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The posterior odds are, then, given by

PostOdds �
np̂c

1 � p̂c

MML�M1�D, 	�
|M1��
MML�M0�D, 	�
|M0��

.

When the posterior odds exceed a decision criterion, the value of
t at which the likelihood function peaks is taken to be the trial after
which pg changed. This new change point is added to the encoding
of the sequence, and the data after it are used to compute the new
p̂g.

All the computations are in closed form; no integration, numer-
ical or stochastic, is required. The model is fully implemented by
a custom MATLAB function, ChangePointModel.m, which is
provided in the supplemental materials.

Estimating parameter values. Our model has only two free
parameters: T1, the decision criterion on the evidence for a prob-
lem with the current percept, and T2, the decision criterion on the
posterior odds in favor of a change description. The model gen-
erates simulated results for many different aspects of subjects’
performance: number of steps, step widths, step heights, hit and
false alarm rates for change detection, detection latencies, number
of second thoughts, and second thought latencies, among others. It
is not possible to search the two-dimensional space of model
parameters for the values that do the best job, because the output
space (the dependent variables) is for the most part mutually
incommensurable. There is no obvious way to weight misestimates
of the number of steps produced relative to misestimates of the
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Figure 14. The model’s change-point representation of the stimulus sequences seen during their first session
by the first six subjects (circles connected by thick dashed gray lines) superimposed on the cumulative records
of the green circles seen during those sequences (thin solid black lines). The point slopes on these cumulative
records are the “observed” pgs; that is, the relative frequency of the green circles in the vicinity of a given trial.
Note how closely the observed sequences may be represented by a few change points. These representations
were computed with the optimal decision criterion on the posterior odds of a change.
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false alarm rate or misestimates of the distribution of change-
detection latencies.

Given this, we chose to adjust T1 and T2 to match as closely as
possible the number of slider steps the subjects made and their hit
and false alarm rate. We did this in two steps. The first was to
choose T1. To do that, for each subject-specific set of 10 stimulus
sequences (each consisting of 1000 trials), we found the lowest
value for T1 such that the model produced very nearly the same
number of steps as did the subject (within 5%) at five values of T2:
1, 2, 4, 8, and 16. This was not possible for one subject; in that
case, we used the value of T1 that, when T2 � 1, produced the same
number of (simulated) steps as did the subject. The second step
was to choose T2. We chose for each subject two values for it to
match, as closely as possible, the subjects’ actual hit and false
alarm rates. For the one errant subject, we set T2 to 1. Referring
back to Figure 8, one sees that with T1 fixed at values that give
close approximations to each subject’s number of slider steps,
there are in most cases values of T2 that give simulated hit rates
(green forms in Figure 8) and false alarm rates (red forms in Figure
8) reasonably close to those produced by each subject.

We then asked whether the joint distribution of step widths and
step heights that the model generated with the same parameters
was a reasonable approximation to the subjects’ distribution. As
may be seen in Figure 15 (on the right), the answer is again at least
a qualified yes. There is, though, room for improvement. The
model’s marginal distribution of step heights is more sharply
peaked than the subjects’; that is, the model makes many more
very small adjustments. The model’s distribution of step widths
declines almost monotonically, whereas the subjects’ peaks at a
width of a little less than 10. The size of the model’s adjustments
tapers off as step widths get longer, whereas the size of the
subjects’ adjustments does not. In any event, the approximation to
the joint distribution is much better than the best we could obtain
from a complex running-average model with three more free
parameters.

Finally, we asked whether, within the same range of parameter
combinations, there exists a combination that produces reasonable
approximations to the distributions of change-detection latencies
and second thought latencies. To answer that we set the parameters
at T1 � .82 and T2 � 2 (approximately the centroid of the range
of values used for the results in Figure 8) to obtain the model
results shown in Figure 7 (change-detection latencies) and Figure
9 (second thought latencies). As one sees in those two figures,
here, too, the distributions of detection latencies and second-
thought latencies generated by the model are reasonable approxi-
mations to the distributions generated by the subjects.

Choice of priors. In discussing the results so far, we have not
treated the parameters of the prior distributions as free parameters.
We have used so-called objective parameters for our beta distri-
bution priors on pg and pc. The parameter values generally con-
sidered to make the beta distribution an objective prior are
Beta(0,0), the Haldane prior; Beta(.5, .5), the Jeffreys prior; and
Beta(1,1), the Bayes–Laplace prior.

The Haldane prior does not bias the posterior distribution at all,
which means, for example, that if the first two observations are
both 1 (“heads” or “successes”), then the posterior distribution,
Beta(2,0) asserts that 1 is the only value for p that has nonzero
probability. Thus, the expectation at that point is that the sequence
of 1s will continue uninterrupted indefinitely. Most users find this

unreasonable, and so do we. Also, with this prior, there is no a
priori estimate of the average probability of a green circle, because
Beta (0,0) is not normalizable.

The Jeffreys prior and the Bayes–Laplace prior both bias the
estimate of p, the Jeffreys prior less so than the Bayes–Laplace
prior. They deliver the same a priori estimate of the average
probability of a green circle (namely, .5), which is in accord with
our subjects’ expressed estimate (we asked subjects to set the
slider even before they saw the first circle, and they all set it close
to .5).

The Bayes–Laplace prior accords with one’s intuition about a
neutral prior in that it is uniform; it asserts that all values of p are
equally probable a priori. The Jeffreys prior strongly violates this
intuition in that it is cup shaped; it treats values of p at the extremes
as much more probable a priori than values in the middle. How-
ever, it does have two advantages: It is less informative than the
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Figure 15. Joint and marginal distributions of step widths and step
heights from subjects (top panel, reproduced from Figure 11) and from the
change-point model (bottom panel) when the decision thresholds have been
adjusted for each subject to simulate that subject’s approximate number of
steps and approximate false alarm and hit rates in detecting changes.
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Bayes–Laplace prior, and, unlike the Haldane prior, it is normal-
izable.

As already noted, the Haldane prior gives what is generally
regarded as an unacceptable posterior distribution when the first
two or three observations are the same, as they often are. It is
interesting to note what the alternative objective priors do in this
regard. The estimated number of trials to a failure using the
Bayes–Laplace prior after n successive initial successes is n � 2,
so the sequence already experienced is always within 2 of the
expectation. Using the Jeffreys prior, the expected number of trials
to a failure is 2n � 2, so the already experienced sequence is
always slightly less than half the expectation.

In the modeling so far described, we used the Jeffreys prior on
pc, because we think it the most reasonable objective prior, and the
Bayes–Laplace prior on pg, because the first author was under the
mistaken impression that the closed-form solution for the posterior
marginal likelihoods was not valid for the Jeffreys prior. When this
impression was corrected, he ran the model again with a Jeffreys
prior on both pg and pc. The results, although not identical, were so
similar that we have not changed the figures.

The Perception of Volatility and the Prior on pc

A result we have not so far mentioned is that 9 of the 10 subjects
showed a higher rate of change detection in the first two sessions
than in the last two sessions (see Figure 16, left panel). This
suggests that subjects began the experiment with some belief about
how frequently they would encounter changes, that these initial
beliefs were on the high side, and that subjects revised them
downward toward the true value as they gained experience. This
conclusion accords with the conclusion from other recent experi-
ments and with models cited in our introduction (e.g., Behrens et
al., 2007), which have assumed that subjects estimate volatility and
that their estimates of volatility affect their rapidity of their re-
sponse to changes (something that Robinson also observed).

We capture this phenomenon with a nonobjective prior on pc,
which of course introduces two additional free parameters;
namely, the parameters of the beta distribution on pc. The choice
of these parameters reflects two assumed degrees of freedom in a

subject’s initial (not necessarily conscious) belief about the prob-
ability of a change in p. The ratio �c/(�c � �c) captures what the
subject thinks that probability is likely to be, and �c�c/[(�c �
�c)

2(�c�c � 1) is the variance of that belief. As may be seen from
the right panel in Figure 16, giving the model such a prior does
indeed produce a downward drift similar to that observed in the
subjects’ data.

In summary, our model implements the kind of model Robinson
believed was necessary—a model based on a sequence of deci-
sions—using (for all but one purpose) only two free parameters,
the decision criteria, T1 and T2. There are no learning-rate param-
eters; that is, no parameters that determine the range of past data
over which an average is taken or upon which a Bayesian estimate
is based. And, except when we attempt to account for subjects’
slowly decreasing frequency of change detection, there are no
volatility parameters, parameters that affect estimates of the fre-
quency of change. When we use the objective Jeffreys prior on pc,
(or the Bayes–Laplace prior), the model captures the effect of
varying objective volatility without positing a free parameter for
that purpose. It does so because it estimates pc from the data (with
a slight bias from an objective prior). Its estimate (p̂c) determines
the prior odds of a change in a sequence of any given length, and
varying the prior odds varies the sensitivity to within-sequence
evidence of a change. Thus, subjects encountering high volatility
will be more likely to detect changes in a sequence of any given
length than will subjects encountering low volatility. We adjust the
parameters of the prior on pc only when we attempt to capture the
slow adjustment to observed volatility actually shown by our
subjects. For that purpose, the Jeffreys prior and the Bayes–
Laplace prior are too weak; they are overcome by the data too fast.

The Precision of Subjects’ Estimates

We have deferred discussion of this seemingly purely empirical
question because discussing it required two theoretical develop-
ments, an algorithm for computing the ideal observer’s estimate of
probability on a trial-by-trial basis and an appropriate measure of
the error (i.e., the difference between a subject’s slider setting on
a given trial and the estimate of the ideal observer of the sequence
seen by the subject up to that trial). By “error” we do not mean
how far the slider setting was from the true probability of a green
circle, pg. Instead, we mean how far it was from what we call the
observed pg, denoted p̄g, which is the posterior mean of a Bayes-
optimal probability tracking algorithm that is closely related to that
published by Adams and Mackay (2006). The mathematical details
are in Appendix C. The importance of using a measure based on
what subjects have actually observed, as opposed to the true but
hidden pg, which they have not observed, is shown in Figure 17.
There we plot, for each subject, the root mean square error be-
tween the slider setting and the true pg and that between the slider
setting and the “observed” probability, as defined by the Bayes-
optimal probability tracking algorithm. Robinson’s measure of
precision corresponded to the former (subject’s pg vs. true pg), but
in every case, the latter (subject’s pg vs. observed pg) is smaller, as
one would expect.

For the second question, the measure of precision, we use the
inverse of the Kullback–Leibler divergence from the Bernoulli
distribution with p � p̄g to the Bernoulli distribution with p � p̂g

(the slider setting). The inverse of the Kullback–Leibler diver-
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Figure 16. Downward drift in the frequency of change detection. Left
panel: Individual subjects (thin lines) and the overall session-by-session
mean across the subjects (heavy line). Right panel: Model with prior
parameters of the beta distribution on pc set to �c � 4 and �c � 200,
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gence is the expected number of trials an ideal observer would take
to detect that the slider setting is wrong (taking the ideal observer
to be ground truth; see Appendix B). Given a conventional deci-
sion criterion (alpha level) of .05, the expected number of trials to
discover the error in a slider setting is

nd �
1.92

DKL�p�g � p̂g�
. (5)

To address the question of whether nd varied as a function of p̄g,
we created five bins for the p̄g values—[.4–.6], [.3–.4 and .6–.7],
[.2–.3 and .7–.8], [.1–.2 and .8–.9], and [0–.1 and .9–1]—and
computed the cumulative distributions of nd within each bin
(across the 10 subjects). The five cumulative distributions of nd are
superposed in Figure 18. When p̄g is between 0.1 and 0.9 (all but
the thinnest line), the distributions are virtually identical. For p̄g

below 0.1 or above 0.9 (the thinnest line), the number of trials to
disconfirmation is slightly higher, meaning subjects do slightly
better. Again, this probably reflects the fact that subjects occasion-
ally set the slider to 0 or 1 (see figure caption).

Our model’s estimates are more precise than are even the best
subject’s, but we believe this is plausibly explained by the fact that
the model computes with exact counts. Weber’s law is known to
apply to subjects’ representations of the results of nonverbal count-
ing (Cordes, Gallistel, Gelman, & Latham, 2007; Cordes, Gelman,
Gallistel, & Whalen, 2001; Gallistel & Gelman, 2005). The im-
precision in the brain’s encoding of the counts must contribute to
imprecision in its estimates of the ratios between counts.

Discussion

A Simple, Computationally Efficient Model

A model with two free parameters reproduces a wide range of
results from a simple experiment in which subjects indicate, out-
come by outcome, their perception of the current value of a
stepwise nonstationary Bernoulli probability. Like the subjects, the

model delivers reasonably accurate estimates of probability over
the full range of its possible values, not systematically over- or
underestimating anywhere in this range. It explicitly detects
changes (as opposed to simply adapting to them). It quickly detects
substantial changes in probability, with a high hit rate and a low
false-alarm rate. It often makes large discontinuous changes in the
estimate of probability between one observation and the next, but
it also often maintains a single, unvarying estimate for many trials.
It explicitly distinguishes between, on the one hand, errors in
the percept that become apparent as more data accumulate since
the last change and, on the other hand, errors that arise because the
hidden probability has changed again.

As experience accumulates, the model updates its estimate of
the probability of a change in the Bernoulli probability. This
estimate strongly affects the future probability of detecting a
(putative) change. Thus, the model is sensitive to volatility (change
probability), as are the subjects in our experiment and in other
experiments (Behrens et al., 2007; Nassar et al., 2010, 2012;
Robinson, 1964; Wilson et al., 2010). Finally, it has second
thoughts about some previous change perceptions, as did our
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Figure 18. Cumulative distributions of the errors (deviations of the slider
settings from the ideal observer’s setting, the latter taken to be ground
truth), as measured by trials to discovery. Dashed lines indicate the quar-
tiles. The median trial-by-trial discrepancy between a subject’s estimate
and the estimate of the ideal real-time observer was such that it would
require approximately 100 trials worth of data to detect the error (Q2

arrow). The distributions from different bins superpose, which means that
the magnitudes of subjects’ errors are independent of the objective prob-
ability, when error is measured in this way. The only notable failure of
superposition is for the thin curve that meets the ordinate at about .27. This
curve is for the data in the most extreme bin (0–.1 and .9–1). The flat
bottom of this curve arises from cases in which the slider (the subject’s
estimate) was at 0 or 1 on trials where the ideal observer’s estimate was not
quite that extreme. In such cases the divergence of the subject’s estimate
from the observed value is infinite no matter how small the discrepancy in
the two probabilities. The divergence is infinite because the first occur-
rence of an unexpected circle gives unbounded confidence that the sub-
ject’s extreme estimate is wrong. Thus, in a finite number of trials one will
attain infinite confidence that the estimate is wrong, so the rate at which
confidence grows must itself be infinite, and the Kullback–Leibler diver-
gence is the measure of that rate.
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subjects. The latencies with which these second thoughts occur are
approximately the same as those of the subjects. On all of these
measures, the performance of the model is in qualitative and, to a
first approximation, quantitative accord with the performance of
subjects. Moreover, varying its two decision criteria within a
plausible range of values captures much of the between-subject
variation in these measures of performance.

The model is computationally efficient for two reasons. A
simple first-stage computation that determines whether there is a
problem with the current percept (current estimate of p) is all that
is required on most trials, because there seldom is a problem.
When there is a problem, the model decides among three possible
explanations for it, using basic, closed-form Bayesian model se-
lection computations. There is no numerical integration and no
need for particle filters or other stochastic approximations to
Bayesian integrals.

The Representation of Continuous Change

The question arises how well a discrete-change model of the
kind we propose can represent a process of continuous change.
Estes (1984) had subjects choose which of two options was likely
to pay off under circumstances where the probability that one
would pay off stayed constant at .5, while the probability that the
other would pay off varied from 0 to 1 in accord with a sine
function with a period of 80 trials. For half the subjects, after 4
cycles, the option with the heretofore variable probability took on
a constant probability of .6. The subjects’ probability of choosing
the variable-probability option fluctuated with approximately the
same period as the variable probability, as predicted by Estes’
delta-rule updating model. However, on the fifth cycle, the half of
the subjects whose variable-probability option no longer varied
varied their choice probability in a pattern very similar to the
pattern exhibited by the subjects for whom this option continued to
vary. This was not what the delta-rule updating model did; it
converged fairly rapidly on a steady probability estimate. Estes
concluded that people not only track probabilities; they construct a
model of how those probabilities are likely to change in the future.
This conclusion is in line with our model’s emphasis on the

explicit representation of the changes in the hidden stochastic
parameter.

Estes’s plots show smooth variation, but the smoothness may be
a consequence of the averaging that he had to do. (His subjects did
not overtly estimate the hidden parameter; they made binary
choices that were presumably based on estimates of those proba-
bilities or some function of them. Thus, to get trial-by-trial esti-
mates of his subjects’ hidden choice probabilities, Estes had to
resort to averaging, across trials, across subjects, or both.) It will
clearly be important to run our experiment with continuously
varying probabilities to see if we can confirm Robinson’s informal
report that subjects showed the step-hold pattern of probability
estimates (lever-dial positions) even when the probabilities they
were tracking varied continuously.

The fact that there is no simple a priori form for the represen-
tation of continuous variation is relevant in thinking about how the
brain might solve the problem. As Estes (1984) remarked, “There
is little theory available to indicate what features or aspects of the
temporally varying reward function might have been encoded in
memory” (p. 264). An attraction of the change-point approach to
the representation of variation in the hidden parameter is that it
makes no commitment to the form of the variation, while laying
the foundation for the extraction of parameters that characterize
that variation. Figure 19 shows a simulation of the condition in
which the true probability of a green circle varies as a sine function
with a period of 80 trials (black curve). The simulated occurrences
of green circles are plotted as asterisks at the top, and the simulated
occurrences of red circles are plotted as asterisks at the bottom.
The red “curve” is the trial-by-trial slider setting generated by our
model when given this stimulus, with its decision thresholds set to
those representative of the subjects’ (nDKL threshold � .82;
threshold on posterior odds of a change � 1). The green “curve”
is our model’s retrospective representation of the stimulus, the
unobserved representation that has benefited from second
thoughts.

The change-point representation facilitates the recognition of
the periodic structure of the variation. That recognition makes for
a still more compact encoding of this sequence. That the changes

0 80 160 240 320
0

0.5

1

Trial

p

Figure 19. Simulation of sine-curve variation in the true Bernoulli probability as in Estes (1984). The black
curve is the true hidden probability. The asterisks show the Bernoulli outcomes (green circle outcomes on top,
red on bottom). The red step-curve is the slider setting that the model predicts a subject would produce given
this continuously varying stimulus. The green step-curve is the model’s prediction of the subject’s retrospective
representation of the sequence, the representation after second thoughts. It remains to be established whether
subjects’ slider settings will in fact look like the red curve.
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occur periodically rather than randomly might be indicated by any
of several simple tests on the intervals between the retrospectively
revised change-point encoding (the one plotted in green in Figure
19). For example, the lower end of the 95% confidence interval on
the shape parameter of the gamma distribution that best described
the distribution of these intervals is 2.9. This lower limit is well
above the value of 1, which is what the estimate of the shape
parameter would approximate if the distribution of these change
points were exponential. This simple test on the model’s encoding
of this sequence would conclude in favor of a nonrandom structure
in the stimulus. Moreover, the average interval between reversals
in the sign of the changes is 40.4, which is a good estimate of the
half period of this stimulus.

In short, the change-point representation can represent fairly
well stochastic parameters that change either discretely or contin-
uously. In either case, it lays the foundation for the recognition and
parameterization of whatever further structure there may be. The
recognition of further structure makes possible a still more com-
pact encoding. This still more compact encoding controls subse-
quent behavior insofar as subjects anticipate the continuation of
that structure.

Neuroscientific Implications

The linking of behavioral phenomena and cognitive mecha-
nisms to neurobiological loci and neurobiological mechanisms
depends on a computational theory (Carandini, 2012; Marr, 1982).
We have here described a computational theory that differs in its
fundamental assumptions from those that have been used to inter-
pret recent neuroscientific findings.

Contemporary neuroscientific theorizing about the neurobiology
of decision making under uncertainty is dominated by delta-rule
updating models for the estimation of stochastic parameters (Beh-
rens et al., 2007; Brown & Steyvers, 2009; Corrado et al., 2005;
Courville, Daw, Gordon, & Touretzky, 2004; Courville, Daw, &
Touretzky, 2006; Dayan & Daw, 2008; Glimcher, 2003a, 2003b,
2009; Montague et al., 1996; Nassar & Gold, 2013; Nassar et al.,
2010, 2012; Seymour et al., 2004; Steyvers & Brown, 2006;
Sugrue, Corrado, & Newsome, 2005; Wilson et al., 2010). They
have a long history (Estes, 1957; Rescorla & Wagner, 1972). At
their heart, there is a learning rate. The learning rate is the constant
of proportionality in the delta rule; it relates the magnitude of the
error to the magnitude of the adjustment in the estimate of the
stochastic parameter.

Our model has no learning rate. It “learns” a new estimate only
when it perceives a discrepancy between its current estimate and
its recent experience. It bases its new estimate only on observa-
tions judged to have come from the stationary portion of its recent
experience, the portion after the most recent change. More often
than not, the new estimate is based on an entirely different set of
observations from the set on which the old estimate was based.
Thus, there often is no compromise struck between the testimonies
of older and newer data.

Older theories with delta-rule updating assumed a constant
learning rate. More recent work has attempted to measure the
learning rate during periods of stability and instability (Behrens et
al., 2007; Krugel et al., 2009; Mathys, Daunizeau, Friston, &
Stephan, 2011; Nassar et al., 2010; Preuschoff & Bossaerts, 2007;
Wilson et al., 2010; Yu & Dayan, 2005). This work has led to the

conclusion that the learning rate is itself modulated by a trial-by-
trial updating process that estimates the volatility. During some
stretches, subjects appear to learn slowly, which is good in that
doing so yields more precise and stable estimates; whereas during
other stretches, the same subjects appear to learn rapidly, which is
good in that it enables rapid adaptation to a new state of the
stochastic process.

The experimental results that inspired our model make it clear
that if the underlying neurobiological mechanism or process really
does operate in accord with the delta rule, then its learning rate
must indeed be modulated by experience. Trial-by-trial records
show long stretches in which the estimate changes not at all or only
by very small amounts. These stretches can be explained by a
delta-rule model only if the learning rate is assumed to be very
small during those stretches. However, the same records show
large step changes, changes from one trial to the next that span
most of the possible range. These large steps can be explained by
a delta-rule model only if the learning rate is assumed to be very
high. In fact, empirical estimates of the rate have ranged as high as
1 (Nassar et al., 2010). When the learning rate is 1, the delta-rule
estimate is based entirely on the most recent observation.

Our model calls into question the assumption that the underlying
neurobiological mechanism or process operates in accord with the
delta rule or, more generally, that it operates in accord with any
rule in which the estimate after each observation is a compromise
between the value suggested by that observation alone and the
value suggested by a weighted average over preceding observa-
tions. Our model shows that a process operating in accord with
quite different computational principles produces both the long
stretches with only small changes and the large steps.

Our model implies the existence of a mechanism that detects
prediction error. Thus, it is consistent with the fact that the dopa-
mine neurons signal prediction errors (Fiorillo, Tobler, & Schultz,
2003; Schultz et al., 1997; Schultz & Dickinson, 2000), a finding
that has inspired temporal difference models (Rangel, Camerer, &
Montague, 2008; Schultz, 2006). However, in our model this
signal does not enter into a delta-rule update; rather it initiates a
Bayesian model selection process that decides what has caused the
error. The update that follows depends on how this decision plays
out. Thus, our model offers an alternative interpretation for the
function of the dopaminergic error signal.

Our model implies the existence of a second mechanism that
must be, on average, more active when volatility is high (i.e., when
changes occur frequently). Problems with a current estimate occur
more often when there has been a change in the stochastic param-
eter than when there has not been. A change is detected only by the
second stage computation. When it is detected, the new estimate is
generally based on a small sample of recent observations. This
means that the new estimate is often in substantial error, and so a
problem with it is soon detected. There is neuroscientific evidence
for a mechanism that becomes more active when volatility is high
(Cohen et al., 2007; Yu & Dayan, 2005). Our model offers an
alternative interpretation of the function of that mechanism: It
mediates Bayesian model selection, rather than modulating a learn-
ing rate.

Our model estimates volatility, because it estimates pc, the
probability of a change in the value of the Bernoulli probability.
This estimate affects its sensitivity to changes, because the esti-
mate of pc determines the prior odds of a change in a sequence of
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any given length. When pc is high, the prior odds of a change in
any given sequence are higher; therefore, a Bayesian decision-
making algorithm is more likely to decide that the sequence
contains a change. The estimate of pc is updated whenever the first
stage detects a problem, before the second stage decides whether
there has or has not been a change. The estimate of pc exerts its
effect on the sensitivity to change not by modulating a learning
rate but rather by biasing the decision as to whether there has or
has not been a change.

Relevance to General Issues in Perception

Our model brings into prominence several general issues in
perception. One of these is the effect of subsequent experience on
the representation of previous experience. The trial-by-trial esti-
mation experiment that inspired the model shows that future ex-
perience will alter the representation of past experience. Our model
explains why this should be so: Information from observations not
yet made is relevant to the question of whether another change
point is justified. Therefore, the only way to build an accurate
change-point description of the experienced sequence is to revise
the description retrospectively as more information comes in. Our
change-point model illustrates the kind of computational process
that may underlie these retrospective alterations.

It is quite generally the case that the information in observations
not yet made is relevant in deciding on the best description of what
has already happened. Thus, generally speaking, if the brain is
attempting to construct a compact description of its experience, on
the implicit assumption that the information preserved in this
description may prove useful in the future, revision of a previous
representation in the light of later experience will frequently be
observed.

When one revises a description that is constructed as experience
unfolds, the issue of descriptive complexity cannot be avoided.
Unless minimizing complexity (aka maximizing compactness or
simplicity) is given its due, there is no reason not to represent pg

as having been 1 on every trial on which a green circle was
observed and 0 on every trial on which a red circle was observed.
In fact, this would be the correct description of the sequences in
our experiment, because random number generation by a computer
is a deterministic process. This very fact serves to emphasize the
point that descriptive adequacy is more important than truth.
Descriptive adequacy can only be achieved by applying Einstein’s
razor in adjudicating between adequacy and simplicity. A descrip-
tion should as simple as possible but not simpler. The comparison
of marginal model likelihoods—Bayesian model selection—is a
solution to this very general problem, as was first clearly realized
by Jeffreys (1931).

We further suggest that representing the history of behaviorally
important environmental parameters by perceived change points is
a principle of broad application for information-theoretic reasons.
Habituation to the steady state is observed everywhere in sensory
signaling. It is seen even in the interoceptors that monitor homeo-
static variables that change rarely. In his reviews of the literature
on interoception, Dworkin (1993, 2007) called attention to a seem-
ing paradox: Regulatory responses, both behavioral and physio-
logical, appear to be based on the state of the variables being
regulated, but the interoceptors sensitive to these variables signal
only changes in state, not the states themselves. How, Dworkin

asked, does the brain know the steady state when it gets no steady
signal indicative of it? The answer to this would appear obvious to
a communications engineer: The information is in the changes; it
is a waste of signal energy and channel capacity to steadily signal
a steady state. Provided that the receiver has an updatable memory,
signals specifying the magnitude and direction of changes are all it
needs to maintain in memory a representation of the current state.
Our model for how the brain represents an experienced Bernoulli
sequence is an example of what we suggest is a more general
principle governing the brain’s representation of behaviorally im-
portant parameters of the experienced world: What the brain notes
and remembers are the changes; from the coordinates of the
change points, the current or any earlier state may be computed
whenever it is needed. Moreover, summary statistics on change
itself—its frequency and the distribution of change magnitudes—
may be as readily computed.

A signature of representation by change points is the disconti-
nuity in perception that our subjects show in their trial-to-trial
perception of pg. This discontinuity manifests itself behaviorally in
the fact that subjects’ perception of pg sometimes changes by large
amounts from one trial to the next. Large, maximally abrupt
changes are not unique to this paradigm, nor to the behavior of
human subjects. Similarly abrupt changes are observed in the
free-operant matching behavior of rats and mice (Gallistel et al.,
2007; Gallistel, Mark, King, & Latham, 2001). In the free-operant
matching paradigm, the stochastic parameters on which behavior
depends are the parameters of two concurrent Poisson processes.
An abrupt (one-trial) adjustment to a change in Bernoulli proba-
bility is also seen in the distribution of switch latencies in a timing
paradigm in which the target latency for a switch from one option
to another depends on the relative frequency of the options (Balci
et al., 2009; Kheifets & Gallistel, 2012). We take these large
maximally abrupt changes to reflect the perception of a change in
the stochastic parameter(s) and the consequent reestimation of
their values, using only the data after the point in the past at which
the change is estimated to have occurred.

Maximally large and abrupt behavioral changes cannot occur
when the process that estimates the stochastic parameters govern-
ing behavior updates its estimates trial by trial. In all such models,
the estimate on any given trial averages over some number of
preceding outcomes. When there is a step change, the range of
preceding outcomes entering into the estimate necessarily strad-
dles the step. The straddle limits the maximum change that can
occur from one trial to the next. By contrast, there is no limit on
step height in the kind of model we propose, because the parameter
estimates before and after an estimated change point are often
based on nonoverlapping data sets.

Adjudicating between competing representations is inherently
computationally demanding. For that reason, we suggest that the
principle “If it ain’t broke, don’t fix it” has broad application. A
less casual statement of this principle is that if there is no reason
to doubt the current representation, do not trouble to decide among
the alternatives to it. Deciding on an alternative is only undertaken
when the current representation appears incompatible with recent
observations, because it is easier to detect a fault in the current
representation than to decide on an appropriate alternative to it.

Our model also illustrates the representation of different kinds
of uncertainties, which has been the focus of recent theoretical
work (Cohen et al., 2007; Yu & Dayan 2005). This recent work
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distinguishes between “expected” uncertainties and “unexpected”
uncertainties. To illustrate this distinction, Cohen et al. (2007)
referred to the conditions of our experiment; namely, observing a
nonstationary Bernoulli sequence. What they called the expected
uncertainty is the uncertainty about whether the next circle will be
green or red, given the current estimate of pg. The closer pg is to
.5, the greater this uncertainty, because the entropy of a Bernoulli
distribution is maximal when p � .5. Cohen et al. called this the
expected uncertainty because they assume that subjects understand
the extent to which the color of the next circle is unpredictable.
What they called the unexpected uncertainty is the uncertainty that
arises from nonstationarity, the possibility that pg may change.
They called this the unexpected uncertainty, because they implic-
itly assumed that subjects do not expect nonstationarity in stochas-
tic parameters. Whether their assumption is true or not is debat-
able—at least some subjects may believe that nothing is certain but
death and taxes—but it does not really matter. In Robinson’s
experiment and ours, subjects expected that pg might change,
because we told them it might. The important point is that uncer-
tainty about pc must be distinguished from uncertainty about pg. In
our model, this distinction is realized in the distinction between
the distribution on pg and the distribution on pc. The entropy of the
first is the subject’s “expected” uncertainty; the entropy of the
second is the subject’s “unexpected” uncertainty.

To our knowledge, our model is the first model of change
detection in the psychological literature to take account of the
growth of the prior odds of a change as the length of a sequence
increases. The assumption that the computational process mediat-
ing the perception of probability takes account of this analytic truth
may shed light on the gambler’s fallacy (cf. Brown & Steyvers,
2007). The gambler’s fallacy is that the longer a streak of bad luck
grows, the more likely the streak is to come to an end. We suggest
that this fallacy may arise from a strong a priori conviction that
stochastic processes are stepwise nonstationary, together with a
failure to appreciate the subtle difference between “more likely to
come to an end” and “more likely to have come to an end.”

If a stochastic parameter is nonstationary, if it ever changes,
then it is an analytic truth that the longer the sequence one has
observed the more likely it is to contain a change. However, that
change may not yet be manifest. That is, if one has had a long
streak of bad cards and if the underlying stochastic process is
nonstationary, the odds that the streak has already come to an end
do increase as the streak gets longer. Thus, the streak may already
have ended but that may not yet have become apparent. Part of the
fascination of the problem of detecting a change in a hidden
Markov parameter is that a change can in principle only be
detected some number of observations after it has occurred. This
makes the distinction between “more likely to have come to an
end” and “more likely to come to an end” subtle. The probability
that the change has already occurred but has not yet become
apparent does increase with sequence length. What does not
change—assuming that pc is itself stationary—is the probability
that the change will occur before the next observation.

Because our model assumes that the computation by which the
brain estimates current probabilities and detects changes in prob-
ability has incorporated in it the analytic fact that the prior odds of
a change increase with sequence length, it provides a psycholog-
ical foundation for an explanation of the gambler’s fallacy. In
typical examples of the gambler’s fallacy, the underlying stochas-

tic process is stationary, but those who fall prey to the fallacy may
not represent it as such. They may deeply believe in changes in
luck (or in transient changes in athletic prowess). For the general
run of stochastic processes, this belief may be well founded; that
is, it may be that most behaviorally important stochastic processes
are nonstationary. For an alternative approach to modeling the
origins of the gambler’s fallacy, see Brown and Steyvers (2009).

Finally, Robinson found, and we find, that under our experi-
mental conditions neither the accuracy nor the precision of sub-
jects’ estimates of the experienced probability varies as a function
of the observed probability, over the full range of probabilities.
Our finding accords with a number of reports going back more
than 60 years (Fox & Hadar, 2006; Peterson & Beach, 1967;
Ungemach, Chater, & Stewart, 2009), but it runs contrary to some
other reports (for reviews, see Gonzalez & Wu, 1999; Luce, 2000).
Attneave (1953), for example, had people estimate the frequencies
of English letters. His subjects overestimated the frequency of rare
letters and underestimated the frequency of common letters, quite
dramatically.

The assumption that subjective probability is an ogival or in-
verse ogival function of objective probability has played a prom-
inent role in the judgment and decisions literature ever since the
seminal work of Kahneman and Tversky (1979). It has been
suggested that the distortion is only seen when people are working
from described (or single-event) probabilities, not experienced
probabilities (Gigerenzer, 1994; Hertwig, Barron, Weber, & Erev,
2004), but there are reasons to doubt that this can be a general
explanation (Hadar & Fox, 2009). For one thing, Attneave’s sub-
jects were presumably judging letter frequencies from extensive
experience.

In considering how to reconcile wildly discrepant findings on
the form of the function relating subjective probability to objective
probability, it is important to bear in mind that different partici-
pants in the same experiment may show functions with different
forms (Gonzalez & Wu, 1999; Luce, 2000). Thus, functions based
on cross-subject averages may have little meaning (Estes, 1956,
2002; Estes & Maddox, 2005). Even more important is the finding
that the same subjects produce different functions in different tasks
(Brooke & MacRae, 1977; Wu, Delgado, & Maloney, 2009).
These findings would seem to require that we distinguish between
the perception of the probability and task-specific transformations
of the percept. Zhang and Maloney (2012) showed that across a
wide variety of tasks, performance is well described by the as-
sumption that it is based on a linear function of the log of the odds,
with task-specific slope and intercept parameters. This suggestion
brings coherence to an otherwise puzzling array of seemingly
contradictory findings. Their suggestion would be consistent with
the assumption that there is a veridical mapping from observed
probability to perceived probability and that it is this perceived
probability that is the argument of the task-specific linear-logit
transformation that subjects apply in a variety of tasks.

In considering the relation between our finding that the percep-
tion of sequentially experienced nonstationary Bernoulli probabil-
ity is veridical over the full range and the many demonstrations of
radically suboptimal reasoning about and utilization of probabili-
ties, it is important to distinguish between the ideal observer and
the ideal agent. An observer is ideal insofar as it constructs a
representation of some aspect of the world that is as veridical as is
in principle possible, given the information that the observer has
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been given. An ideal agent, given a representation with a specified
degree of uncertainty about the state of the world, applies a
strategy based on that representation that optimizes some function,
such as the percent correct. The agent is ideal insofar as the
strategy it deploys is the best strategy given that representation and
that goal.

There are cases in which subjects appear to be approximately
ideal observers but are far from ideal agents. One striking case is
the discrete-trials probability matching paradigms in which sub-
jects attempt to predict the next outcome of a Bernoulli process.
Subjects tend to match the frequency with which they predict an
outcome to the frequency with which it occurs (Maddox, 2004;
Myers, 1976; Vulkan, 2000). Insofar as their prediction probability
matches the probability estimate of the ideal observer, they are
ideal observers. That is, they appear to correctly estimate the
probability of a given outcome. However, on the assumption that
they are trying to maximize the number of correct predictions,
subjects who probability match are not ideal agents. The ideal
agent, when assigned the task of maximizing correct predictions,
would predict the more probable outcome on every trial. If subjects
were ideal agents in a probability matching protocol, one would
not be able to judge from their behavior the extent to which they
were ideal observers. This somewhat paradoxical fact serves to
emphasize the importance of making this distinction. The distinc-
tion is relevant to the question of whether and under what condi-
tions psychological processes are optimal (Bowers & Davis,
2012).
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Appendix A

Experimental Method

Ten subjects were recruited from a diverse population of under-
graduate seniors, graduate students, and postgraduates, between 20
and 30 years of age, from a variety of disciplines such as computer
science, psychology, and business. They included native speakers
of English, Russian, Chinese, and Bulgarian. Female and male
subjects were equal in number. They were paid $10 per session.
They sat in front of a 21-in. Macintosh monitor. A cartoon of the
screen is shown in Figure 3 of the main text. The following
instructions appeared on the screen in the practice version of the
experiment:

On the following slide you will see a box labeled “RINGS.”
This box contains an unknown number of red and green rings.

Your task is to estimate the percentage of GREEN rings in this
box based on a small sample of rings shown to you, one at a time.

From time to time, without warning, the box of rings will be
replaced with a NEW box. You will not be told that a change has
occurred.

If you believe the box has been changed you should indicate that
a change has occurred and then continue estimating the percentage
of GREEN rings in the new box.

PROCEDURE

1. Begin with a guess. Adjust the position of the slider to
indicate your estimate. Click the button labeled
“NEXT” for the next trial.

2. Thereafter, on each trial you will be shown a single ring
chosen randomly from the box of RINGS.

3. You may then change your estimate of the percentage of
GREEN rings in the box or you may leave your estimate
unchanged. Again, click “NEXT.”

4. Once you adjust the slider to your liking and click
“NEXT, the ring will be RETURNED to its box.

5. This process will be repeated on each trial.

6. If you think the box has been changed click the button
labeled “I think the box has changed.”

7. This will commence the next trial and you will continue
as before.

FOR YOUR CONVENIENCE: Your current estimate of the
percentage of GREEN rings will be reflected in the distribution of
RED and GREEN circles shown on the right-hand side of the
screen. This will enable you to “see” your chosen percentage of
GREEN rings.

NOTE: Since the ring is always returned to its box, a particular
ring may be drawn from the box on more than one trial.

Click “BEGIN” to start your practice session.
When we discovered from debriefing the first five subjects, and

from running ourselves as subjects, that subjects generally had
second thoughts, we added the following instructions, which were
seen by the last 5 subjects:

8. If after a few trials you decide to take back your asser-
tion of a change, click on the button labeled “I take that
back!”

9. This will commence the next trial and you may continue
as before.

The rectangle at upper right of the screen contained 1,000
circles, some red, some green. The proportion of green circles
varied linearly from 0 to 1 in accord with the position to which the
subject set the slider. This visual feedback may initially have been
helpful to subjects, but many subjects indicated at the conclusion
of the experiment that they paid little attention to it.

(Appendices continue)
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Appendix B

Determing Whether the Current Estimate of pg (the Slider Setting) Needs to Be Changed

The first decision—and after most trials, the only decision—is
whether the number of green circles observed since the last change
point, denoted ng, is consistent with the current estimate of the
hidden probability, denoted p̂g. Here, consistent with means “not
too far out on the tails of the probability distribution on ng green
circles.” Thus, we need to compute that probability distribution,
which is binomial,

p(ng � p̂g, n) � p̂g
ng(1 � p̂g)

n�ng
n!

ng ! (n � ng)!
, (B1)

where n is the total number of circles observed since the last
change point.

We treat ng/n as a continuous variable and write down an
approximate expression for it. Our starting point is to use Ster-
ling’s formula to approximate the factorials, yielding, after a small
amount of algebra,

P(ng � p̂g, n)  exp(�nDKL(po � p̂g)), (B2)

where DKL(po � p̂g) is the Kullback–Leibler divergence defined in
Equation 2 of the main text, and po � ng/n is the fraction of green
circles observed since the last change point. We have replaced the
discrete variable, ng, with the continuous one on the left-hand side
of Equation B1.

Equation B2 is still nontrivial, but if we make the approximation
that n is reasonably large, the right-hand side of Equation 5 is
nonnegligible only when po is close to p̂g, and we can Taylor
expand DKL(po � p̂g) around p0 � p̂g. When we do that, p(ng | p̂g,
n) becomes Gaussian in the difference po� p̂g, and, therefore,

2nDKL(po � p̂g) becomes chi-squared with one degree of freedom;
therefore, because the chi square distribution is the �(v/2,2) dis-
tribution with v � degrees of freedom, nDKL is distributed
�(0.5,1).

This analysis can be used to determine whether a set of obser-
vations is consistent with an estimate of the probability of a green
circle. It can also be used to estimate how long we would have to
wait to determine that a particular estimate is wrong: We simply
replace po with the true probability of a green circle. In the main
text, we make that replacement, except that we use the posterior
mean of a Bayes optimal probability tracking algorithm in place of
the true probability.

Finally, we show how to explicitly convert Kullback–Leibler
divergences to conventional p values. Using the fact that �(0.5,1)
is closely related to the Gaussian, we have, after straightforward
algebra,

P(2nDKL � z) � 2 �
z1⁄2

� e�x2⁄2

(2	)1⁄2 � 2�1 � �(z1⁄2)�,

where �(z) is the cumulative normal function. Alternatively we
may write

P(nDKL � z) � 2[1 � �((2z)1⁄2)].

The right-hand side is just alpha in a conventional test. For two
common alphas used in the main text, 0.05 and 0.5 (the latter
corresponding to even odds), the above expression tells us that z �
1.92 and 0.22, respectively.

(Appendices continue)
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Appendix C

Bayes Optimal Probability Tracking

The behavioral experiment described in the main text can be
cast as a hidden Markov model: There is an unobserved true
probability of a green circle, pg, which may change on any trial.
We observe green and red circles, and we want to infer the
probability distribution over pg. In other words, we want to infer
Pt(pg|x1, x1, . . . , xt) where t labels trial and xi tells us the color of
the circle on trial i. For convenience, we use a convention in which
xi � 1 if there is a green circle on trial i and xi � 0 if there is a red
circle.

The probability that pg changes on any trial is pc, which is
unknown. We thus have to average over it, and so we have

P(pg�x1, x2, . . ., xt) � � dpcPt�pc, pg�x1, x2, . . ., xt�, (C1)

where Pt(pc, pg | x1, x1, . . . , xt) is the probability distribution over
both pc and pg given the observations up to time t. This expression
suggests that we should compute Pt(pc, pg | x1, x1, . . . , xt) and,
once we know that, integrate over pc to find Pt(pg | x1, x1, . . . , xt).

The formalism for doing this is standard. To simplify our
equations we adopt the notation

x1:t 	 x1, x2, . . . , xt.

Then, using the Bayes theorem, we have

Pt(pc, pg�x1:t)  P�xt�pc, pg, x1:t�1�Pt�pc, pg�x1:t�1�. (C2)

The probability of observing a green circle depends only on the
underlying probability, pg, so the first term simplifies to P(xt | pg).
For the second, we use

Pt(pc, pg�x1:t�1 � � dpc
′dpg

′ Pt�pc, pg�pc
′, pg

′�Pt�1(pc
′, p′�x1:t�1),

(C3)

where P(pc, pg | pc= , pg=) is the probability distribution over pc and
pg on trial t, given that we know pc= and pg= on trial t � 1, and we
haven’t observed any new data.

In our experiments, pc doesn’t change from trial to trial, so the
pc-dependent piece of the conditional probability is just a Dirac
delta function, �(pc � pc=). For the pg-dependent piece, we use the
fact that with probability 1 � pc, pg doesn’t change, and with
probability pc, it is drawn from the prior. We thus have

P(pc, pg�pc
′, pg

′) � �(pc � pc
′)[(1 � pc)�(pg � pg

′) � pcP(pg)],

where P(pg) is the prior probability distribution over pg. Inserting
this into Equation C3, inserting the resulting expression into Equa-
tion C2, and using the fact that P(xt | pc, pg, x{1:t�1}) � P(xt | pg),
we have

Pt(pc, pg�x1:t)  P(xt�pg)�(1 � pc)Pt�1(pc, pg�x1:t�1) � pcP(pg)�.

Finally, we note that P(xt | pg) is Bernoulli,

P(xtpg) � pg
xt(1 � pg)

1�xt.

This leads to the expression

Pt(pc, pg�x1:t�1) �

pg
xt(1 � pg)

1�xt�(1 � pc)Pt�1(pc, pg�x1:t�1) � pcP(pg)Pt�1(pc, pg�x1:t�1)�
� dpcdpgpg

xt(1 � pg)
1�xt�(1 � pc)Pt�1(pc, pg�x1:t�1) � pcP(pg)�

,

(C4)

where we have explicitly included the normalization.
To solve Equation C4 (which must be done numerically), we

need to specify a prior distribution over pc and pg. For simplicity—
and because we found it didn’t make much difference—we assume
the prior over pc is a delta function centered on the true change
probability, denoted pc0,

P(pc) � �(pc � pc0).

For the prior over pg we use, as in the main text, a Beta distribu-
tion,

P(pg) �
pg

��1(1 � pg)
��1

B(�, �)
,

where B(�,�) � �(�)�(�)/�(� � �) is the Beta function. Because
of the delta function prior on pc, Equation C4 simplifies to

Pt(pg�x1:t�1)

�
pg

xt(1 � pg)
1�xt�(1 � pc0)Pt�1(pg�x1:t�1) � pc0P(pg)�

� dpgpg
xt(1 � pg)

1�xt�(1 � pc0)Pt�1(pg�x1:t�1) � pc0P(pg)�
.

(C5)

Note also that we no longer need to do the integral in Equation C2;
instead, we just set pc to pc0. Equation C5 is what we used in the
main text to compute the posterior mean of the Bayes-optimal
probability tracking algorithm. C-code implementing the compu-
tation is given in the supplemental material.
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