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Gibbon (1995) elaborated an ingenious model of matching, a feedforward model
that is consistent with Heyman’s (1982) suggestion that matching behavior does
not depend on selection by consequences. Most models (for example, Herrnstein &
Vaughan, 1980) have been feedback models, built on the law of effect. Measure-
ments of how rapidly rats adjust to changes in the relative rates of brain stimulation
reward on concurrent random interval schedules imply a feedforward process. The
adjustments are, however, too fast to be consistent with Gibbon’s model.  2002
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John Gibbon pioneered the psychophysical study of interval timing and
the application of information-processing models to our understanding of
conditioned behavior. Among his many, highly original contributions was a
model of matching behavior (Gibbon, 1995), which differed in a fundamental
way from previous models. The difference has potentially far reaching impli-
cations for our understanding of instrumentally conditioned behavior. Unlike
most previous models, Gibbon’s model does not assume that the conse-
quences of previous responses feed back to affect the relative strengths of
competing behaviors (for a review of models of this type, see Lea & Dow,
1984). Gibbon’s model is a purely feedforward model. The experience of
different intervals between rewards elicits stay durations inversely propor-
tionate to the ratio of those intervals, without regard to the effect that the
animal’s behavior has on those intervals.

The law of effect ought to apply with exceptional directness when subjects
are given a matching protocol. Thorndike (1911, p. 244) wrote ‘‘The Law
of Effect is that: Of several responses made to the same situation, those

46
0023-9690/02 $35.00
 2002 Elsevier Science (USA)
All rights reserved.



TEST OF GIBBON’S MODEL 47

which are accompanied or closely followed by satisfaction to the animal
will, other things being equal, be more firmly connected with the situation,
so that when it recurs, they will be more likely to recur . . .’’ A more contem-
porary statement of the law comes from Schmajuk (1997, p. 149): ‘‘During
operant conditioning, animals learn by trial and error from feedback that
evaluates their behavior but does not indicate the correct response.’’ In the
matching protocol, the subject is offered two response options—most typi-
cally, two different manipulanda at two different locations. Responses on
the two manipulanda are reinforced on concurrent random interval (RI)
schedules. A RI schedule makes the next reward available at exponentially
distributed latencies (schedule intervals) following the harvesting (collec-
tion) of the previous reward. Once scheduled, a reward remains available
until it is harvested by the first subsequent response on the given manipulan-
dum. The parameter of a RI schedule is the expected (average) interval be-
tween the harvesting of a reward and the scheduling of the next. Typically,
this is shorter for one option than for the other. The shorter this expected
interval is, the sooner, on average, responding on that manipulandum will
be rewarded. Thus, in a matching experiment, the subject has two response
options, and—other things being equal—one of them is rewarded sooner
and more frequently than the other.

As Thorndike’s formulation predicts, the response rewarded at shorter in-
tervals emerges as the stronger of the two responses in that it occurs more
frequently. The question is, does this come about through a process that
makes responses more or less firmly connected to situations according as
they are more or less likely to yield satisfaction? Or, is this the result of a
decision process that translates the experienced temporal distribution of re-
wards into expected stay durations without regard to the relation between
the animal’s behavior and reward? On the first view, the animal acts in the
world and observes the consequences of its acting in order to choose in the
future those actions that yield the greatest satisfaction. On the second view,
the animal observes the distribution of rewards in space and time, then
chooses its actions without regard to the satisfactions or lack thereof that its
previous actions have produced.

MELIORATION: A REPRESENTATIVE LAW-OF-EFFECT MODEL

Herrnstein’s melioration model (Herrnstein, 1982; Herrnstein & Prelec,
1991; Herrnstein & Vaughan, 1980) is representative of models that take the
law of effect as their point of departure in explaining matching behavior. In
this model, the subject is assumed to monitor the average time or number
of responses that it invests in each option for each reward earned. If the
number of responses required to earn a reward from one option is on average
fewer than the number required to earn a reward from the other, more re-
sponses are allotted to the first option and fewer to the second. Thus, for
example, if, a pigeon makes on average 15 pecks to a green key between
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one reward and the next and spends on average 20 s pecking at that key
between rewards, its investment per reward, when measured in responses,
is 15 responses/per reward; measured in time, it is 20 s per reward. The
reciprocals of these numbers—amount of reward/response or amount of
reward/unit time invested—are what economists call returns. The meliora-
tion model assumes that when two response options yield different returns,
the response that yields the higher return gets stronger and the response that
yields the lower return gets weaker.

When rewards are delivered on concurrent random interval schedules, the
intervals between rewards are primarily determined by the delays imposed
by the schedule rather than by the subject’s responding, because subjects
shift back and forth between the two options—in our case between two lev-
ers on opposing sides of a box—at intervals substantially shorter than the
average of the scheduled delays. Under these circumstances, increasing the
investment on one side (that is, the average stay on that side and hence
the average number of lever presses on that side per unit of session time)
and decreasing the investment on the other has little effect on the number
of rewards that the subject obtains from the two levers in the course of a
session (Heyman, 1982). Put another way, changes in the expected stay dura-
tions have little effect on expected income. In economics, the income from
an investment is the amount of reward that the investment yields per unit
of time—not per unit of time or effort invested, but simply per unit of time.
Thus, if reward magnitude is assumed to be constant, the income that a sub-
ject obtains from pressing a lever is the number of rewards it gets from that
lever per minute of session time, regardless of how much or how little time
the subject spends pressing that lever, that is, regardless of how many or
how few responses it made to obtain those rewards. (Investments measured
in responses and investments measured in time spent responding are so
closely correlated that they may be treated as interchangeable (see Baum &
Rachlin, 1969).)

By contrast, changes in the expected stay durations have a strong effect
on returns. The expected (average) return from a response (or from a unit of
time invested in a response option) is approximately inversely proportional to
the average stay duration. Thus, for example, doubling the average duration
of stays on the richer side and halving it on the poorer side approximately
halves the return from the richer side and doubles the return from the poorer
side (while having very little effect on the incomes from the two sides).
Return, which is also called expected value, quantifies the relation between
behavior and its consequences, whereas income specifies what the animal
has obtained without regard to its investment (how much it did).

The inverse relation between investment and return is the key to the melio-
ration model’s explanation of matching behavior. As the investment in the
richer option goes up, but the income realized remains almost constant, so
the return from that option goes down. Similarly for the poorer option: as
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the investment declines, the income remains almost constant, hence the re-
turn goes up. The adjustment of relative investments continues until a ratio
of investments is reached that equates the returns. This equilibrium point is
reached when the ratios between the average stay durations at the two loca-
tions matches the ratio of the average incomes. In models where behavior
is driven by its consequences (see, for example, Montague, Dayan, & Sej-
nowski, 1996; Schultz, Dayan, & Montague, 1997; Sutton & Barto, 1998),
it is the returns that matter. When the subject matches its investment ratio
to the income ratio, the expected values of the responses are equal. Inequali-
ties in the returns drive the behavioral process to this equilibrium point.

THE GIBBON MODEL

In the Gibbon model what matters are the incomes not the returns. The
subject remembers the intervals between rewards at each foraging location.
The interval from one reward to the next divided into the magnitude of the
reward gives an income datum for that location. In the typical matching
experiment, reward magnitude does not vary, so remembering the income
data is equivalent to remembering the interreward intervals, which are pro-
portional to the reciprocals of the incomes. (Reward magnitude is the con-
stant of proportionality.) By visiting the two locations and responding on
the two manipulanda, the subject obtains two populations of remembered
intervals. In deciding to stay at a given location or leave it, the subject contin-
ually draws a pair of samples, one from each of these two populations. After
each sampling, it chooses to visit (or to continue visiting) the location associ-
ated with the shorter sample.

The odds that a sample from one population of exponentially distributed
intervals will be shorter than a sample from another such population are the
inverse of the ratio of the expectations (Rachlin, Logue, Gibbon, & Frankel,
1986). Thus, for example, if the average interval between rewards in one
population is half as long as the average interval in the other, then the odds
are 2:1 that a sample from the first population will be shorter than the sample
from the second. In that case, the probability that after any one sampling the
subject will decide to leave the richer location to visit the poorer is half the
probability that it will decide to leave the poorer location to visit the richer.
The expected durations of the stays at the richer locations will be twice the
expected durations of the stays at the poorer location, because the expected
duration of a stay is the sampling interval times the reciprocal of the probabil-
ity that a sampling results in the decision to leave a location. If, for example,
the subject samples once per second and the probability that a sample will
cause it to leave is 1 in 4, then the expected duration of its stays is 4 s.

In the limit, income is sensitive to behavior, because the interval between
successive rewards experienced at a location cannot be shorter than the inter-
val between the termination of the last visit and the beginning of the next.
However, in feedforward models, the process that generates behavior is not
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sensitive to the dependence of income on behavior. Feedforward models are
predicated on the implicit assumption that the animal’s behavior is unlikely
to affect how rewards are distributed in space and time. Insofar as this has
been true during the evolution of the mechanisms that determine behavior,
it is better to base behavior on the observed distributions of interreward inter-
vals rather than on the observed returns, because returns are inherently nois-
ier than incomes. The variability in returns is the result of the variability in
the temporal distribution of rewards and the variability in the subject’s sam-
pling of that distribution. Thus, if a subject’s behavior generally has no effect
on whether a reward is or is not available to it—and if the manner in which
it samples the world does not systematically distort what it observes—then
it is better to base behavior simply on what has been observed, without regard
to whatever effect the subject’s behavior may have had on what it observed.

DISTINGUISHING BETWEEN FEEDBACK AND
FEEDFORWARD MODELS

Models based on the law of effect are feedback models. The subject dis-
covers the behavior that yields the greatest return by varying its behavior
and assessing the resulting variation in returns. When the expected delays
of reward change, the time that it takes the process to adjust to the new
expectations cannot be shorter than some multiple of the time that it takes
for a change in behavior to become manifest in a change in the returns. The
subject must first discover that its returns are no longer equal. Then, it must
discover by trial and error the ratio of response strengths (investments) that
equates returns (expected values) in the new situation. The process of dis-
covering by trial and error a critical point in a space defined by behavioral
(output) parameters is called hill climbing in the computer science literature.
Models based on the law of effect are hill climbing models. The need to
repeatedly observe the effects of repeated changes in one’s behavior limits
the speed with which the hill can be climbed.

In the Gibbon model, matching behavior is not the result of a hill-climbing
process. There is no need to repeatedly observe the effects of repeated
changes in the parameters of behavior. The adjustment to a change in the
relative rates of reward takes no longer than the time it takes to replace the
prechange populations of remembered intervals with remembered intervals
that come entirely from the period after the change in the programmed rates
of reward. How long that takes depends on how large the populations are
from which the subject samples, a question we will return to in a later section.
For the moment, suffice it to note that, in principle at least, a feedforward
system can adjust to changes more rapidly than a feedback system, because
there is no need to determine the effects of intermediate changes in output en
route to the final output state. Reflexes (feedforward behavioral mechanisms)
respond to changes faster than servomechanisms (mechanisms that employ
feedback).
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Heyman (1982) formulated the distinction we are after here as the distinc-
tion between conditioned and unconditioned behavior, when he suggested
that matching was unconditioned behavior. By ‘‘conditioned’’ he meant op-
erantly conditioned and by unconditioned he meant ‘‘innate.’’ For an uncon-
ditioned behavior to occur, it suffices simply for an animal to experience a
situation, because the response to that situation is innate. For a conditioned
behavior to occur, the animal must not only experience a situation, it must
in addition discover by trial and error which of its behaviors pays off more
often in that situation. The emergence of a stable conditioned response to
a situation necessarily takes longer than the emergence of an (equivalent)
unconditioned response to that same situation, because the former requires
more extensive experience. A corollary of this is that for an operantly condi-
tioned response to change from one stable value to another in response to
a change in situation, the animal must experience the consequences of
changes in its own behavior within the new situation. By contrast, an innate
response changes to a new stable form as soon as the animal detects the
change in situations, before it has the opportunity to experience the conse-
quences of changes in its behavior in the new situation. This is a consequence
of the point that Schmajuk emphasized in the above quote: in operant condi-
tioning, the consequences of behavior evaluate the responses that produced
those consequences; they do not ‘‘indicate the correct response.’’

THE RAT APPROXIMATES AN IDEAL DETECTOR
OF CHANGES IN RATES OF REWARD

We have recently reported the results of an experiment that determined
how long it takes rats to adjust their stay duration ratios to unpredictable
complementary step changes in the programmed rates of brain stimulation
reward (Gallistel, Mark, King, & Latham, 2001). One phase of the experi-
ment lasted for 20 daily 2-h-long sessions. In this phase, rats experienced
two changes in the relative rates of scheduled rewards per session. The direc-
tion and magnitude of each change was unpredictable, although the two rates
always changed in such a way as to preserve the overall rate of reward (the
sum of the two rates). One change always occurred between the end of the
previous session and the beginning of the next. The timing of the second
change was not predictable; it occurred at a randomly chosen moment in the
middle 80 min of each 120-min session. The intervals in the RI schedules
were produced by an electronically realized random rate process, which gen-
erated different sequences of intervals every time it was called. The next
intervals in a sequence with a given expectation could not be anticipated
from knowledge of the preceding intervals, no matter how often the subject
had experienced a schedule with that expectation. Moreover, a given interval
could occur in schedules with widely differing expectations, so the experi-
ence of a single interval could never specify which schedule was in force.
However, the experience of a single interval could, in some cases, suffice



52 GALLISTEL ET AL.

to indicate with high probability that a schedule with a substantially lower
or higher expectation had supplanted the schedule previously in force. The
question was whether subjects were sensitive to these probabilities.

We found that the subjects were remarkably sensitive to the probabilistic
implications of the interreward intervals they experienced. They adjusted
their expected stay durations to new rates of reward about as rapidly as is
in principle possible. That is, our subjects behaved like ideal detectors of
changes in rates of reward; no physically realizable device could have ad-
justed to the new rates much faster than our subjects adjusted. This means
that there was no delay between the detection of the change in situation and
their adjustment to that change. They made the adjustment before there was
time for them to assess the consequences of changes in their behavior within
the new situation. Thus, the change they made could not have been a conse-
quence of such an assessment.

To reach this conclusion, we had to develop a suitable representation of
the behavior and of the inputs that might drive it—the experienced incomes
and the experienced returns. The expected incomes (the inputs) and the ex-
pected stay durations (the outputs) in a matching protocol cannot be known
exactly. They must be represented by probability density functions. These
functions quantify the objective (inescapable) uncertainty about the true ex-
pectation of a random rate process that has only been observed for a finite
interval. They give for every rate the relative likelihood that it is the expected
rate.

The longer we observe the output of a constant random rate process, the
more precisely we can estimate its expectation, that is the average number
of events it produces per unit of time. (This statement is a version of the
law of large numbers; the longer you observe, the bigger the number of
events; hence, the more precisely the average is known.) Thus, the probabil-
ity density function representing the rate of reward on a given side will show
a higher and narrower peak as a session progresses, so long as that rate
remains constant. This analytically necessary trend is evident in the pre-
change peaks of the probability density functions for the reward rates in Figs.
1 and 2 (left). If the subject believes that rate remains constant within a
session, then its estimates of the expected rates of reward at any point in the
session will be averages over the populations of intervals observed up to
that point. In such a case, its probability density functions at any point in
the session after the change would be flatter than before the change, because
all post-change estimates of the prevailing rate of reward would be based
on two different populations of interreward intervals, one generated by the
schedule before the change in rate and one by the schedule after the change.
The averaging across observed interreward intervals from before and after
the change in rates of reward will slow down the emergence of an accurate
estimate of the post-change rates, which is not ideal.

An ideal detector of changes takes into account the possibility that there
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FIG. 1. (Left) Probability density (y axis) as a function of rate of reward (x axis) at
successive session times (z axis) as calculated from our model of an ideal detector of changes
in rates of reward. (Right) Probability density (y axis) as a function of leaving rate (x axis)
at successive session times (z axis). The probability density functions were computed by a
Bayesian formula that assumed one and only one change in the rates of reward and leaving
rates in the course of each session (see Appendix to Gallistel et al., 2001). Notice that the
changes in the probability density functions for the expected stay durations are as abrupt as
those for the (known-to-be) step changes in the rates of reward.

has been a change. Instead of averaging over all the intervals since the begin-
ning of a session, it estimates whether the change in rate has occurred, and
what the rate now is. In developing a mathematical model of an ideal detec-
tor, we used a Bayesian approach to build in this a priori expectation—one
change within each session. This allowed us to compare the behavior of our
subjects to the behavior of an ideal detector.

In our model of an ideal detector, the probability density function for the
reward rate on a given side has two components, one for the case in which
the reward rate has not yet changed, and one for the case in which it has.
The integrals of the two components sum to 1. As data indicative of a change
in rate accumulate, the bulk of the probability shifts from the prechange
component to the post-change component. The ratios of the two integrals
give the odds that the change has already occurred. The shift is data driven;
the model does not know where the change in rate will occur, only that there
will be a change. Building the expectation that there will be a single step
change into the process that estimates the current rate of reward allows this
process to adjust its estimate of the current rates as fast as possible following
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FIG. 2. Same as Fig. 1, except that the probability density functions were computed from
the data for a different subject in a different session.

the change. Post-change estimates of the expected intervals are no longer
averages over all the interreward intervals observed up to a given point in
a session. When the pattern of intervals implies that the change has occurred,
the current estimate of the rate of reward (and any behavior based on that
estimate) is determined mostly by the intervals observed since the estimated
change point. The stronger this implication is, the more completely the cur-
rent estimate is based only on intervals since the change. (For the mathemati-
cal development of this Bayesian model of an ideal detector, see the Appen-
dix of Gallistel et al. (2001).)

The left-hand panels in Figs. 1 and 2 show examples of the step-like
changes in the estimates of the current rates of reward from our model of
an ideal detector. At the beginning of a session, the probability density func-
tions for the rates of reward are broad and low, reflecting the fact that the
expected rates of reward cannot be known with any precision from the first
few interreward intervals. As the session progresses, these functions become
narrow and sharply peaked, reflecting the increasing precision with which
the expected rates of reward can be estimated. At approximately the point in
each session at which the scheduled rates of reward changed, the probability
density landscapes abruptly flatten, reflecting the inescapable uncertainty
about the expected rates of reward during a time of change in those rates.
Soon after the change point, the ridges representing the likely values of the
new rates of reward rise and narrow. The shift from the ridges representing
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the prechange estimates to the ridges representing the post-change estimates
can be and usually are step-like, because the estimates after the change are
unaffected by the interreward intervals before the change.

We can represent the relevant aspect of the rat’s behavior in the same way
that we represent its objective experience of reward, because the durations
of its stays at the two locations where rewards are found are exponentially
distributed. This important fact was first reported by Heyman (1982) and
later confirmed by Gibbon (1995). It implies that the termination of a visit
to a location where rewards are found is determined by a process analogous
to the repeated flipping of a coin. In Gibbon’s 1995 model, the repeated
sampling from the population of interreward intervals is analogous to the
repeated flipping of a coin. When the sample interval from the other reward
location comes up shorter than the sample interval from the location where
the subject is, it leaves to visit the other location.

Because stay durations are exponentially distributed, the subject’s behav-
ior at a given location can be represented by an expected rate parameter—
a leaving rate. The expected duration of a stay is the reciprocal of the ex-
pected leaving rate, just as the expected interval between rewards is the recip-
rocal of the expected reward rate.

The right-hand panels in Figs. 1 and 2 show the evolution of two dif-
ferent rats’ leaving rates over time in representative sessions. The change in
the expected stay durations almost coincides with the change in the experi-
enced rates of reward, and it is about equally as abrupt. In other words, step
changes in reward rates lead, after a very short latency, to step changes in
expected stay durations. The abruptness of the changes sometimes observed
is shown in Fig. 3 in another way. Here we plot the cumulative time at one
location against the cumulative time at the other. The slope of this plot is
the ratio of the expected stay durations. In the example shown in Fig. 3, the
expected stay durations changed completely within the span of a single visit
cycle.

The abruptness of the changes in expected stay durations implies that the
process that determines them is like our model of an ideal detector in that
it does not average across the population of interreward intervals before and
after a change. Like our model, it must have a mechanism or procedure
that detects the changes and, in effect, divides the population of interreward
intervals on which post-change behavior is based into a prechange and a
post-change population. Only the latter population determines post-change
behavior.

We confirmed the impression of short-latency, abrupt changes by comput-
ing temporal probability density functions for the changes in rates of reward
and the changes in leaving rates. The temporal probability density functions
for the change in the rates of reward represent the accuracy with which any
system not privy to the computer program could in principle determine the
temporal locus of the change in rates of reward. Similarly, the temporal prob-
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FIG. 3. (Bottom) The cumulative duration of the subject’s stays at Location 1 plotted
against the cumulative duration of its stays at Location 2 over one session. The gray lines
give the coordinates of this plot at the moment when the ratio of the scheduled rates of reward
changed, from 9:1 in favor of Location 1 to 1:3 in favor of Location 2. The thin lines labeled
9 :1 and 1:3 show what the slope would be if the ratio of the subject’s expected stay durations
matched the ratio of the scheduled rates of reward. The slope of the plot at any point is the
ratio of the expected stay durations at that point. The abrupt change in this ratio more or less
coincides with the change in the relative rates of reward. The function at this point (the portion
enclosed within the small circle at the intersection of the gray lines) is shown greatly enlarged
in the top panel. The square points in this enlarged plot give the function at the completion
of successive visit cycles (composed of one visit to each location). The change in the ratio
of the expected stay durations was completed within the span of a single visit cycle.
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FIG. 4. The temporal probability density functions computed from the data underlying
the rate probability density functions in Fig. 1. These functions specify the location in time
of the changes in rates of reward and leaving rates seen in Fig. 1. The overlap in these functions
is measured by the t statistic.

ability density functions for the leaving rates represent the accuracy with
which we can know where the change in the rat’s behavior occurred. The
degree of overlap in these two functions represents how close the rat comes
to being an ideal detector of the change in reward rates, how soon it detects
the change relative to what is in principle possible. Figure 4 shows probabil-
ity density functions for the temporal location of the changes portrayed in
Fig. 1. In the example given, it comes close, indeed. This is not an unrepre-
sentative example; indeed, it is longer than the typical case. The modal lag
over 20 transitions in each of six subjects, as measured by the t statistic (see
Fig. 4), was 0.25 (see Fig. 8 of Gallistel et al. (2001) for the distribution of
these measures of overlap).

The adjustment to the change in the rates of reward often occurred before
that change had an effect on the returns. Figure 5 gives an example. The top
two panels plot the cumulative rewards obtained as a function of the cumula-
tive amounts of time spent at each of the two locations. The slopes of these
plots are the returns, the number of rewards per unit of time invested in a
location. The axes of the right-hand top panel have both been scaled up by
the same factor relative to the axes in the left-hand top panel; the fact that
the slopes of the two plots are approximately the same reflects the fact that
when a subject matches its time-allocation ratio to the ratio of the rewards
obtained per unit of session time, it equates its returns. It will be recalled
that it was this fact that was the key to the melioration model: matching
equates returns.

The change in the programmed rates of reward occurred at the points indi-
cated by the vertical broken lines extending across all three pairs of panels
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FIG. 5. (Top) The cumulative numbers of rewards on each side plotted against the cumula-
tive time on location up to a given reward. The slope of this plot at a point is the expected
return at that point. The vertical dashed lines indicate the moment at which the relative rates
of scheduled rewards changed. Note the absence of any perturbation in expected returns at
or immediately after this point. (Middle) At the moment when a reward is delivered, the
momentary return at that location is the reciprocal of the time the subject has spent at that
location since the last delivery. These momentary returns are plotted against the cumulative
time on location. Note the extreme variability in these momentary returns. (Bottom) The cumu-
lative number of departures plotted against the cumulative time on location. The slope of this
plot at a point is the expected leaving rate at that point. Note the changes in expected stay
durations immediately after the change in scheduled rates of reward.
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in Fig. 5. The slopes of the plots in the bottom panels are the leaving rates.
There are inflection points in these plots at or very shortly after the broken
line, indicating that the subject adjusted its leaving rates almost immediately.
The problem for the melioration model—and for any hill climbing model
using returns—is that this adjustment occurred before the change in reward
rates had an effect on the returns. There is no discernible perturbation in the
slopes of the plots in the top panels preceding the clear change in the slopes
of the plots in the bottom panels. (Nor do statistical tests for the presence
of a change in returns yield any evidence of it; see Gallistel et al. (2001).)
According to the melioration model, the change in rates of reward must first
cause an observable difference in the returns, and then the subject must dis-
cover by a process of trial and error the departure rates (expected stay dura-
tions) that equate its returns under the new conditions. Thus, in this and other
hill-climbing or feedback models, there must be an observable perturbation
in the returns, which are then restored to equality by trial and error. This
was not the case.

The plots of the momentary returns in the middle panels of Fig. 5 suggest
how it is possible for the subject to react to a change in rates of reward
before the change has affected its returns. When return is calculated on a
reward by reward basis, it is a very noisy variable, because, as already noted,
its variability is the combined result of the variability in scheduled interre-
ward intervals and the variability in the subject’s visits. Random variation
in visit durations can mask for a while the effect on returns of a change in
the obtained rates of reward.

Consider the case in which a decrease in the rate of reward at one location
and an increase at the other happen to coincide with a string of shorter visits
to the first location and longer visits to the second (relative to the respective
expectations). During the sequence of fortuitously shorter visits to the first
location, the intervals between experienced rewards (measured in session
time) are longer than their expectation. If the subject’s behavior is based on
income, there is a clear signal to drive the observed behavioral change. The
effects of these longer interreward intervals on the returns experienced is,
however, masked by the fortuitous shortness of the visits, which reduces the
subject’s investment. The effect of the increased rate of reward at the other
location is similarly masked; the subject experiences unexpectedly short in-
terreward intervals, but it does not experience an increase in its returns be-
cause of its fortuitously lengthier visits. Thus, there is a change signal from
the income variable but not from the return variable.

IMPLICATIONS FOR GIBBON’S MODEL

The finding that the rat adjusts to changes in the rates of reward about as
fast as it is in principle possible to do implies that Gibbon (1995) was on
the right track in abandoning the law of effect and propounding a feedfor-
ward model for matching behavior. Heyman (1982) was the first to suggest
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that matching behavior was, in his words, ‘‘unconditioned behavior,’’ by
which he meant that it was not the result of what is usually understood to
be the essence of operant conditioning, namely, the shaping of behavior by
the fed back effects of reinforcement, that is, selection by consequences.
Rather, as Heyman argued, matching behavior is elicited by a certain pattern
of reward without regard to the role, if any, that the subject’s behavior played
in producing them. This is the essence of the feedforward conception. Our
results strongly support that conception.

On the other hand, the adjustments we observed occur too rapidly to be
explained by the simple and ingenious feedforward model that Gibbon elabo-
rated. The rate at which his model responds to a change in the experienced
rates of reward is determined by the sizes of the populations of remembered
interreward intervals from which the subject continually samples. The larger
these populations are, the longer it takes to replace the prechange intervals
with postchange intervals. Thus, to make the model respond rapidly to
changes, one has to assume that the populations being sampled are small.
One has to assume that the subject only samples from smallish populations of
the most recently experienced incomes. However, the sampling populations
cannot be too small. The model’s behavior becomes unstable when the popu-
lations being sampled get too small, as Gibbon clearly recognized (personal
communication to CRG).

If, for example, the subject samples from a population consisting of only
the last three intervals, then sooner or later the population for the location
with the longer expectation will happen to contain three relatively long inter-
vals. In that case, there will be long stretches when the samples for the loca-
tion with the shorter expectation are always shorter than the samples from
the side with the longer expectation. This will lead to long stretches when
the subject does not visit the location with the longer expectation. When it
finally does visit (after an exceptionally long interval is sampled from the
richer side), the interreward interval it experiences will necessarily be a long
one. This will lead to ever lengthening intervals between visits and conse-
quently ever longer interreward intervals in memory—a positive feedback
process eventuating in memory stores such that the subject never visits the
location with the longer expectation. The ever longer interreward intervals
that it experiences are, of course, the consequence of its own long absences,
but it is the essence of a feedforward model that it takes no account of the
impact of the subject’s own behavior on what it has observed. Income (by
definition) takes no account of investment, even when investment is a crucial
determinant of income, as it is in the example just discussed.

In several discussions of this problem, Gibbon and one of us (CRG) were
not able to work out how big the populations had to be to make the risk of
this kind of instability acceptably low. It was clear, however, that they had
to consist of substantially more than three intervals. This means that, in his
model, the completion of the subject’s adjustment to the new rates of reward
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would have to be substantially slower than many of the adjustments we ob-
served. We often observed adjustments—indeed, even overadjustments—
that went to completion in the span of one to three visit cycles. (Fig. 3 is
an example.)

We conclude that Gibbon (1995) and Heyman (1982) were correct in as-
suming that matching behavior arises from a purely feedforward process.
Matching is what the subject does after it has made certain observations
about the distribution of rewards in space and time, without regard to the
effect of its own behavior on the observed distributions.

The failure of the law of effect to apply under the simple and directly
apposite circumstances created by concurrent random interval schedules of
reward for competing operants raises the question, Under what circum-
stances is behavior determined through selection by its consequences? We
know from the autoshaping literature (Bilbrey & Winokur, 1973; Brown &
Jenkins, 1968) that the classic operants—key pecking in the pigeon and lever
pressing in the rat—can be produced by Pavlovian contingencies, that is
from experimental protocols in which the subject’s behavior has no effect on
reinforcement, so that the process leading to conditioned responding does not
depend on such a contingency. We know from the negative auto-maintenance
literature that when Pavlovian (feedforward) control is pitted against operant
control (selection by consequences), feedforward control prevails (Wil-
liams & Williams, 1969). Subjects respond to a stimulus that predicts reward,
even when their responding causes the omission of the predicted reward.
Thus feedforward contingency prevails over feedback contingency. It is time
to ask the radical question, Is the law of effect generally relevant to the
understanding of instrumental behavior? If so, to what aspects of that behav-
ior? That Gibbon’s work leads us to ask such radical questions is one measure
of its originality and importance.
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