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1 Introduction

Correlations among spikes, both on the same neuron and across neurons, are
ubiquitous in the brain. For example cross-correlograms can have large peaks, at
least in the periphery (Rodieck, 1967; Mastronarde, 1983a; Mastronarde, 1983b;
Nirenberg et al., 2001; Dan et al., 1998), and smaller – but still non-negligible –
ones in cortex (see Cohen and Kohn, 2011 for a review), and auto-correlograms
almost always exhibit non-trivial temporal structure at a range of timescales
(Kim et al., 1990; Bair et al., 2001; Deger et al., 2011). Although this has been
known for over forty years, it’s still not clear what role these correlations play
in the brain – and, indeed, whether they play any role at all. The goal of this
chapter is to shed light on this issue.

If synchronous spikes, or other temporal structures, are to play a role in the
brain, they must convey something of interest – either about the outside world or
about some internal state. One example of this comes from the so-called “binding
hypothesis” (Milner, 1974; von der Malsburg, 1981; Gray, 1999) in which the rate
of synchronous spikes across two neurons tells us whether two objects should be
bound together (Fig. 9.1a). Alternatively, arbitrary patterns of spikes, rather
than just synchronous ones, could be used to signal information about the outside
world (Staude et al., 2010) (Fig. 9.1b). In both cases, the spike patterns act as
an extra channel of information; information is also carried by overall firing rate.

A key feature of these codes is that the degree of synchrony or the rate at
which patterns occur is stimulus modulated, which automatically implies that
the degree of correlations in the spike trains is stimulus modulated. For this
reason, we refer to these as correlation-based neural codes. (Here when we refer
to correlations we mean correlations conditioned on stimulus – so-called noise
correlations, a point that is covered in detail in Chapter XI. In addition, we use
the standard neuroscience convention, which is that correlations refer to correla-
tions at all orders, not just covariance, as is common in the statistics literature.).
To demonstrate that such correlation-based neural codes exist, then, one merely
needs to look for stimulus-modulated correlations. This, however, is harder than
it sounds, primarily because if synchronous spikes – or spike patterns – are an
important component of the neural code (at least important from an information-
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Figure 1: Illustrative examples of synchrony and spike pattern codes. a. Synchrony
code. The circles in the top and bottom panels represent the receptive fields of two
neurons; the vertical bars represent spike times. In the top panel, the neurons are
activated by lines associated with a well known symbol, the letter A; to signal this,
the neurons emit a large number of synchronous spikes (thick bars). In the bottom
panel, the neurons are activated by a mainly random set of lines, and so the number
of synchronous spikes (again shown as thick bars) is at chance. b. Spike pattern code.
A population of neurons codes for the features of the image (in this case the position,
orientation and length of the set of lines), and there is an additional spike pattern code
for well known symbols. In the top panel, the image is, again, an A; the associated
spike pattern code for the A is indicated by thick bars. In the bottom panel the lines
are mainly random, and so there is no additional spike pattern code.
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theory perspective), they need to carry information not carried in firing rate. If,
for instance, whenever the rate of synchronous spikes increases, so do firing rates,
the brain could look at firing rate – which is, typically, far easier to estimate –
and ignore synchronous spikes altogether. Of course, it would not have to do
this; it could instead look at synchronous spikes, and ignore firing rate. How-
ever, demonstrating that experimentally is highly nontrivial. If, on the other
hand, synchronous spikes carry extra information, then if the brain wants that
information, it has to pay attention to correlations.

In this chapter we discuss quantitative methods for determining what role
correlations play. By way of background, we start with a general discussion of
the neural coding problem – which is to determine what aspects of spike trains
carry information. Here we take the point of the brain, so “important” means
“modify the brain’s view of what is going on in the outside world.” We then
introduce a measure of the importance of correlations to the brain, and discuss
what has been found using this measure, what it does (and doesn’t) mean, and
how it can be estimated for large population. We end with a brief discussion of
future directions.

2 The neural coding problem

The brain receives a steady stream of sensory information from the external world,
a stream that is translated into spike trains by peripheral sensors (e.g., hair cells
in the auditory system and photoreceptors in the retina). The job of the sensory
system is to make sense of those spike trains; that is, use them to construct, either
explicitly or implicitly, a representation of the outside world. In the neural coding
field, we generally use s to denote sensory stimuli (e.g. sounds or visual scenes)
and r to denote neural activity. The transformation from sensory information to
spike trains, is, then, a transformation from s to r, and the job of the brain is to
invert that transformation, and construct a mapping from r to s.

An important feature of this transformation that it is stochastic: if one were
to record from, say, retinal ganglion cells (the output cells of the retina) while
showing exactly the same stimulus over and over, one would record a different
pattern of spike trains each time the stimulus was shown. This probabilistic
transformation is denoted p(r|s), which we refer to as the conditional response
distribution. It is not, though, the quantity of fundamental interest to the brain;
what the brain really needs is p(s|r), the probability distribution of stimuli given
responses, known as the posterior distribution. That quantity is related to p(r|s)
via Bayes’ theorem,

p(s|r) =
p(r|s)p(s)

p(r)
(1)

where p(s) is the prior distribution over stimuli and p(r) is the total response
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distribution, given by

p(r) =
∑

s

p(r|s)p(s) . (2)

The denominator in Eq. (1), p(r), ensures that p(s|r) is properly normalized,
meaning

∑

s p(s) = 1. (If the stimulus is continuous, sums over s are replaced by
integrals.)

An important feature of Eq. (1) is that the response, r, carries information
about the full distribution of stimuli, not just about one single stimulus. Thus,
when we say that the problem faced by the sensory system is to make sense of
incoming spike trains, what we mean is that the problem faced by the brain is to
compute p(s|r), or at least compute an approximation to it. Of course, there is
no guarantee that the brain really does this. Instead, it could simply associate
a single stimulus with each neural response. This is an important possibility
to consider, because computing full probability distributions if far harder than
estimating single values. However, it seems to be an unlikely possibility: even
for something as simple as crossing the street when there is an oncoming car,
it is necessary to estimate when the car will reach us and attach error bars
to that estimate; without error bars it would be impossible to make a good
decision. And, indeed, there is mounting evidence that the brain does take into
account uncertainty when making decisions (Jacobs, 1999; Ernst and Banks, 2002;
Körding and Wolpert, 2004; Chater et al., 2006; Ma et al., 2011); uncertainty that
can only come from p(s|r). Here, then, we consider full posteriors.

So far this is all very straightforward. However, although Eq. (1) is highly
compact, it is not easy to work with, for two reasons. First, the set of stimuli
is infinite, and it has a structure that is very hard to capture mathematically.
This makes it effectively impossible to determine the probability of every stimu-
lus (imagine, for example, trying to determine the probability of every possible
image). Consequently, the prior, p(s), cannot be known, let alone written down.
Second, the response, r, consists of a set of spike times, and so lives in an infi-
nite dimensional space. Thus, the same pattern of activity never occurs twice,
making it impossible to estimate p(r|s) from data if we stick to a pure spike time
representation.

The first problem we ignore altogether (a common, although not universal,
strategy in the neural coding field): rather than considering realistic stimuli, we
consider a relatively small set of discrete stimuli, and simply assign a probability
to each of them. For example, when investigating the visual system, we might
show images consisting of a set of oriented bars at 12 different angles, and assign
each of them a probability of 1/12.

This is a huge simplification, because it means if we know p(r|s), computing
p(s|r) via Bayes’ theorem is straightforward. Thus, we can focus solely on p(r|s).
However, it too is very high dimensional, so estimating it is still a hard problem.
Importantly, the brain has the same hard problem: it, like us, has to learn what

4



spike times mean – that is, learn how to translate from responses to stimuli, via
Eq. (1). Since it never sees the same set of spike trains twice, it can’t use a pure
spike time representation; if it did, every spike train would look new, and it would
never learn anything.

The solution, of course, is to apply some sort of regularization, so that spike
trains that are close mean approximately the same thing. Because the brain is a
mechanistic device, this happens naturally, (barring issues of chaotic dynamics,
which is a topic in itself; see, for example, London et al., ). We as neuroscientists
would like to know what regularization the brain uses. This is the neural coding
problem, and it has dominated the neural coding field for the last several decades.

Importantly, what regularization the brain uses – that is, what neural code it
uses – has consequences that go well beyond the neural coding field. Consider, for
example, two possible neural codes. In one, different spike trains are considered
close if there are about the same number of spikes on each neuron in any 100 ms
interval (a spike count code); in the other, different spike trains are considered
close if most of the spikes occur within about 1 ms of each other (a spike timing
code). Networks that compute with these two neural codes are highly likely to
look very different. Therefore, before building computational models of the brain,
we need to understand what the neural code is.

3 Approximate distributions and the neural code

It is, unfortunately, next to impossible to directly determine what kind of regular-
ization the brain uses – that would almost require a complete theory of sensory
processing. We can, however, determine this indirectly if we’re willing to make
one assumption: if there is information in spike trains, the brain uses it. With
that assumption, we can try out different regularizations and see which one pro-
vides the most information about the stimulus.

There are, basically, two ways to do this. The one that was popular in the
1980s and 90s (Optican and Richmond, 1987; Richmond and Optican, 1990;
Bialek et al., 1991; Bialek and Rieke, 1992), and continues to be used today (Ince
et al., 2010; Kayser et al., 2010), is the direct approach, in which we choose a
regularization; that is, we define explicitly what it means for two spike trains
to be close. For example, we could discretize time into bins, and replace spike
times by spike count on each neuron in each time bin. This is equivalent to
defining r to be a set of spike counts rather than spike times, and it means
that two spike trains are considered exactly the same if they have the same
spike counts for all neurons in all bins, even if the spikes occurred at different
times. Analysis then proceeds by computing the mutual information (Shannon
and Weaver, 1949) between stimuli and responses versus bin size. (For a review
of information theory, especially how it is used in neuroscience, see Chapter XI).
Other notions of closeness that have been used are principal components (Optican
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and Richmond, 1987; Richmond and Optican, 1990; Eskandar et al., 1992; Gawne
and Richmond, 1993; Gawne et al., 1996; Wiener and Richmond, 1999) and a
metric that measures distance in terms of how much one has to move spikes and
add or delete them to make two spike trains identical (Victor and Purpura, 1996;
Victor, 2005). Here, though, we consider only binned spike trains.

The other approach is to use an approximate distribution, which we denote
q(r|s), in place of p(r|s). This approach, which was popular in the 1960s and 70s
(Marmarelis and Marmarelis, 1978), fell out of favor when information theory
was introduced, but has gained a resurgence of popularity in the last decade
(Truccolo et al., 2005). Note that it includes the previous approach, for which
q(r|s) = p(f(r)|s) where f(r) is a mapping that respects the relevant notion of
closeness (e.g., for binned spike trains, f(r) maps spike times to spike counts).
However, it gives us a much broader class of approximate distributions, and
thus much more flexibility. It does, though, slightly change the neural coding
problem: rather than asking, say, what bin size is relevant to the brain, it asks
what approximate distribution takes us closest to the true posterior.

Which approach is better? The answer is not immediately obvious.. There are
two advantages to using explicit regularizations. The first is that it is conceptually
straightforward. The second is that it is easy to determine how much information
is lost by any particular regularization. That’s because the mapping from r to
f(r) can at best preserve information, and usually leads to information loss. Thus,
if we binned spikes, we could ask how much information is lost as a function of bin
size. At some sufficiently small bin size we would find that almost no information
is lost; the size of this bin is the timescale that matters in the brain (assuming
that the brain really wants all available information).

There is, though, a downside to using an explicit regularization, or at least
to binning spikes: it requires a large amount of data. One reason is that as the
bin size get smaller, it becomes harder and harder to estimate the probability
of a spike in any one bin: the number of trials required to accurately estimate
that probability is inversely proportional to the bin size (which follows because
for small enough bin size, spiking becomes Bernoulli). And if the probability
can’t be estimated accurately, the information can’t be computed accurately. A
related reason has to do with correlations: the number of spikes in one bin is
correlated with the number of spikes in other bins. Thus, we really need the joint
probability of spiking across bins. If, for example, we had 10 bins, at small enough
bins sizes that there could be at most one spike in each of them, there are 1024
(210) possible responses, and we need to compute the probability of each of them
– a daunting task. The problem becomes exponentially harder as the number of
neurons increases, because with each neuron we get 10 more bins. Even for only
10 neurons, there are 100 bins, and so about 1030 possible spike patterns – and,
again, we need to compute the probability of each of them! This exponential
increase is the curse of dimensionality, and it’s what makes population coding so
hard.
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For that reason, we are typically better off using an approximate distribution
rather than directly regularizing spike trains. This gives us the freedom to choose
a parametrization for which the number of parameters does not grow exponen-
tially with the number of neurons. Instead, typically it can be chosen to grow
linearly or quadratically, making it feasible to determine the approximate distri-
bution from data. Of course, this approach also has a downside. When we bin
spikes and compute the probability distribution over spike counts, we have only
two sources of error: estimation error and error associated with the information
we have thrown away by using finite bin sizes. When we use an approximate
distribution, we are typically using the wrong distribution. This requires us to be
careful about how we assess the quality of the approximate distribution we use.
This is the subject of the next section.

4 Assessing the quality of approximate distri-

butions: ∆I

In practice, we often (although not always) use a mix of the two approaches de-
scribed in the previous section: we bin spikes, and then, based on the resulting
spike count code, we use an approximate distribution. For simplicity, here we
discretize time into only one bin, so that r → n ≡ (n1, n2, ..., nN) where ni is the
spike count on neuron i and there are N neurons. (We could, of course, discretize
time into multiple bins, but this would add nothing conceptually; the only effect
would be to turn the ni into vectors of spike counts.) The approximation con-
ditional response distribution is, then, given by q(n|s) and, in a slight abuse of
notation, we define the true distribution to be p(n|s). Note that this is only a
slight abuse: p(n|s) is the true distribution of spike counts; it just doesn’t tell us
the true distribution over spike times.

Associated with the approximate conditional response distribution, q(n|s), is
an approximate posterior; in analogy to Bayes’ theorem, Eq. (1), it is given by

q(s|n) =
q(n|s)p(s)

q(n)
(3)

where q(n) is the approximate total response distribution, q(n) =
∑

s q(n|s)p(s).
Note that we are using the correct prior. It too could be approximated, but we
do not discuss that here.

This leaves us with two questions: How do we determine how close q(n|s)
is to the true posterior distribution, p(n|s)? And what approximate conditional
response distribution do we use? There is no one answer to the first question,
as there are many ways to compare distributions, and the correct one should de-
pend on the goal of the organism under study. One approach, proposed by Amari
and colleagues, is based on the Fisher information available to an approximate
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decoder (Wu et al., 2000; Wu et al., 2001). That measure, however, can not
be used with discrete stimuli, so here we use a somewhat generalized version of
their measure. It is based on what is probably the most natural measure of dis-
tance between probability distributions, the Kullback-Leibler distance, denoted
DKL

(

p(s|n)||q(s|n)
)

. This quantity (which is not a true distance (Kullback and
Leibler, 1951)) is given by

DKL

(

p(s|n)||q(s|n)
)

=
∑

s

p(s|n) log
p(s|n)

q(s|n)
. (4)

This is the distance for a particular response; to get a response independent
measure, we average over all responses weighted by their probability of occurring.
The resulting quantity, denoted ∆I, is given by (Nirenberg et al., 2001; Nirenberg
and Latham, 2003; Latham and Nirenberg, 2005)

∆I =
∑

n

p(n)DKL

(

p(s|n)||q(s|n)
)

. (5)

Note that because ∆I is based on the Kullback-Leibler distance, it is zero only
if q(s|n) = p(s|n) for all stimuli; if q(s|n) 6= p(s|n) for even one stimulus, it is
positive. Throughout most of this chapter we use ∆I as our measure of the quality
of an approximate distribution. Below we discuss in more depth its meaning, its
limitations, and, briefly, other possible measures.

The second question, “what approximate distribution do we use?”, doesn’t
have an easy answer, in large part because there are essentially no restrictions on
this distribution. To choose a sensible approximation, we need a better handle
on what question we’re interested in. For that we take a close look at population
coding.

5 Population coding

A potentially interesting, and potentially powerful, feature of population coding
is the possibility of nontrivial structure in spike trains, as discussed in the intro-
duction in the context of the the binding hypothesis and spike pattern codes (see
in particular Fig. 9.1). If such nontrivial structure does exist, there are several
far-reaching consequences. Probably the most important – and often overlooked
– is that the brain must have the machinery to generate synchronous spikes or
precise patterns of activity that carry information about the stimulus. Conse-
quently, whether or not such structures exist is an extremely important question,
since it affects, in a very fundamental way, how we think about how the brain
carries out computations.

A second, also important, consequence is that if there really is nontrivial
structure in the spike trains, it means that neurons act together to represent
the world. Uncovering that representation requires, at the very least, paired
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recordings – and in the case of spike pattern codes, simultaneous recordings from
a potentially large number of neurons. Thus, computational issues aside, from a
purely pragmatic point of view it is important to know whether they exist.

The fact that nontrivial structure (or at least nontrivial structure as we have
defined it here) can be seen only when neurons are recorded simultaneously sug-
gests a natural approximate distribution: one in which simultaneously recorded
neurons are replaced with neurons recorded on separate trials. This is equiva-
lent to assuming independence, for which the approximate conditional response
distribution, which we denote qind(n|s), is given by

qind(n|s) =
∏

i

p(ni|s) (6)

where p(ni|s) is the single neuron conditional response distribution. Here the
parametrization is the single neuron conditional response distribution under a
spike count assumption. This has a very convenient feature: it removes the curse
of dimensionality. That’s because if there are k possible responses for each neu-
ron (ni can take on k different values) and N neurons, then for each stimulus, s,
we need only N(k− 1) numbers to fully characterize qind(n|s) (we need N(k− 1)
numbers rather than Nk because p(ni|s) is a normalized probability distribu-
tion). For even moderate N , this is many orders of magnitude smaller than the
kN numbers (more accurately, kN − 1, again because of the normalization) we
typically need to characterize the full distribution, p(n|s).

By using the independent distribution as the approximate one, it seems that
we are getting to the heart of the question “are correlations important?”. In-
deed, suppose qind(s|n) = p(s|n) for all stimuli (recall that qind(s|n) is given by
Eq. (3)). In that case, downstream areas in the brain could both decode responses
perfectly and perform computations optimally without knowing anything about
correlations. In the opposite case, qind(s|n) 6= p(s|n) for at least one stimulus,
the brain would have to know about correlations. We are tempted, then, to make
the statement “correlations are unimportant if qind(s|n) = p(s|n), and important
otherwise.” Alternatively, because ∆I is zero if and only if qind(s|n) = p(s|n) for
all stimuli (see Eq. (5)), this statement is equivalent to “correlations are unim-
portant if and only if ∆I = 0.”

Indeed, from a purely information theory and optimal computing point of
view, this is correct. However, from the point of view of the brain, the situation
is more nuanced. In Sec. 10 we expand on this point. First, though, we need a
better understanding of some of the mathematical properties of ∆I, and we also
need to consider alternative approaches. In the next several sections, then, we
provide an information-theoretic interpretation of ∆I, provide examples in which
the responses are highly correlated and ∆I = 0, take a look at the experimental
data on ∆I, consider two alternative approximate distributions, and look at
another measure of the role of correlations.
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6 An information-theoretic perspective on ∆I

If we did an experiment and found that ∆I = 0, the result would be easy to
interpret: the posterior distribution over stimuli computed from the independent
conditional distribution is exactly the same as that computed from the true con-
ditional distribution. However, experimentally we almost never find that ∆I = 0;
besides the fact that correlations almost always play some role, even if ∆I really
were zero, when computed from finite data it typically becomes positive. So how
do we interpret positive values of ∆I? Our favorite interpretation is that it is
the penalty one pays, in yes/no question, in guessing the stimulus (an interpreta-
tion that is independent of whether or not q(n|s) is the independent distribution,
qind(n|s), or some other one). This interpretation is discussed in some detail in
Nirenberg and Latham, 2003; here we review it briefly.

Suppose that rather than computing the posterior distribution over stimuli,
we guessed the stimuli using yes/no questions. An example of an allowed ques-
tion, in the case of four stimuli, is “is it stimulus 1, 3 or 4?”. Once that question
is answered, we get to ask another one, and the process continues until we know
exactly what the stimulus is. The optimal question asking strategy is to divide
the total probability of the stimulus in half with each question. This is a gener-
alization of the approach to answering the question “We’re thinking of a number
between 1 and 1024; what is it?”. Assuming a uniform prior, the first ques-
tion would be something like “is it between 1 and 512?”, and each subsequent
questions would reduce the number of possibilities by a factor of two. For a
non-uniform prior, however, the strategy is different. If, for instance, you knew
that we always chose a number between 1 and 512, the first question would be
something like “is it between 1 and 128?”.

While this seems like a rather artificial approach to neural coding, it turns
out that it can be directly related to mutual information. In fact, the difference
in the average number of yes/no questions it takes to guess the stimulus before
and after receiving a response is the mutual information (a statement that is
largely correct, but requires some caveats associated with batch coding (Cover
and Thomas, 1991)).

To guess the stimulus in the minimum number of questions, one has to know
the true posterior; if an approximate posterior is used, it will take more questions.
This was obvious in the previous example: if the question-asker had not known
that we always choose a number between 1 and 512, she would have taken one
extra question. That this is true in general is slightly less obvious, but is not
hard to show; see, for example, (Cover and Thomas, 1991). It also suggests a
natural metric against which ∆I should be measured: the true mutual informa-
tion, denoted I, which is the reduction in yes/no questions one gets by observing
the stimulus (Cover and Thomas, 1991; Nirenberg and Latham, 2003).

Note that while ∆I is a yes/no question cost, and yes/no questions look a lot
like bits, it’s not a true information loss. In fact, ∆I can exceed the information
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(Schneidman et al., 2003a), something that happens when the approximate dis-
tribution is, on average, worse than the prior distribution (at least as measured
by yes/no questions). However, as shown in (Latham and Nirenberg, 2005), it
is an upper bound on information loss. Consequently, small values of ∆I are
meaningful.

Although ∆I has a relatively intuitive interpretation, is it really necessary
to bother with this quantity? Why not simply ask how correlated responses
are? The answer is that just because correlations exist doesn’t mean they are
important for determining the posterior distribution over stimuli. In other words,
the question “is q(s|n) close to p(s|n)?” – which we are asking here, and which
∆I answers – is very different from the question “is q(n|s) close to p(n|s)?”.

A general mathematical prescription for when q(s|n) and p(s|n) can be equal
even though q(n|s) and p(n|s) are different was provided by Amari and Nakahara,
2006. Intuitively, though, it’s easy to see why – and when – this can happen.
What matters is that in regions where the same response can lead to different
stimuli, the relative response probabilities associated with different stimuli are the
same under the approximate and true distributions. This is illustrated in Fig. 9.2a
for a two dimensional response distribution when the approximate distribution
is the independent one, qind(n|s), and in Fig. 9.2b for spike trains, again when
the approximate distribution is the independent one. In both cases qind(n|s) and
p(n|s) are very different even though qind(s|n) and p(s|n) are identical.

An additional example in which correlations exist but do not affect the poste-
rior comes from the linear probabilistic population coding framework (Pouget et
al., 2003; Ma et al., 2006). In this framework, conditional response distributions
have the form

p(n|s) = φ(n) exp
(

h(s) · n + ψ(s)
)

(7)

where φ(n) is an arbitrary function of the responses and h(s) and ψ(s) are ar-
bitrary functions of the stimulus. Here the correlations, which are contained in
φ(n), could be very complicated, but we don’t have to know them to compute
the posterior. As is easy to show,

p(s|n) =
exp

(

h(s) · n + ψ(s)
)

p(s)
∑

s′ exp
(

h(s′) · n + ψ(s′)
)

p(s′)
, (8)

which is independent of φ(n), and thus does not require knowledge of the cor-
relations. That we don’t need to know the correlational structure to determine
p(s|n) is not so surprising in this case, since the correlations are stimulus inde-
pendent. Nevertheless, if this – or a close approximation to it – really is the
distribution used by the brain, then we don’t have to worry about correlations
at all, even when they are quite strong (i.e., when φ(n) yields a highly correlated
distribution).
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Figure 2: ∆I can be zero when correlations are strong: two hypothetical examples.
a. Continuous distributions for four stimuli. The left panel shows the true conditional
response distribution. For stimuli 1 and 2 the probability is uniform within each square,
and the probability of landing within any one of the squares is 1/6, as indicated in the
legend. The lower right square associated with stimulus 1 perfectly overlaps the upper
left square associated with stimulus 2; they are offset slightly for clarity. For stimuli
3 and 4 the responses are perfectly correlated: r1 perfectly predicts r2 and vice-versa.
The right panel shows the independent conditional response distribution. For stimuli
1 and 2 the squares now have different probabilities, as indicated in the legend, and
none of them are equal to the true probabilities. However, in the overlap region the
ratio of the probabilities remains the same and so, via Bayes’ theorem, the responses
would be decoded perfectly. For example, assuming uniform priors, if the response
fell in the overlap region, under both the true and independent conditional response
distributions the probability assigned to stimuli 1 and 2 would be 1/2. For stimuli 3
and 4 the conditional response distributions are now uniform within the rectangles.
Note that if a response fell in the overlap region it would not be clear which stimulus
caused it. However, under the true distribution the responses never fall in the overlap
region, so even if one used the independent conditional response distribution to decode,
one would decode perfectly all true responses. b. Spiking response and two stimuli.
Synchronous spikes are indicated by thick bars. Stimulus 2 produces a higher firing
rate than stimulus 1, but it also produces more synchronous spikes. As is not hard
to show, if the probability of synchronous spikes is a function of the firing rates only,
and does not depend on the stimulus, then knowledge of synchronous spikes adds no
information, and ∆I is zero. Adapted from Nirenberg and Latham, 2003.
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7 What experiments tell us

What value of ∆I does one find in experimental data? The first study to address
this question was performed by Yang Dan and colleagues, in the cat lateral genic-
ulate nucleus (Dan et al., 1998). They found that, for some pairs of neurons, using
the independent distribution resulted in a 40% information loss. This was not,
however, the general trend. Studies in rat barrel cortex (Petersen et al., 2001),
mouse retina (Nirenberg et al., 2001), V1 (Golledge et al., 2003), motor cortex
(Averbeck and Lee, 2006) and supplementary motor (Averbeck and Lee, 2003)
area all showed that ∆I was of the order of 10% of the total information. In the
one case in which the information loss was measured (as opposed to ∆I, which
is an upper bound) from experimental data, it was very close to ∆I (Oizumi et
al., 2009; Oizumi et al., 2010).

There is, though, one other study in which large ∆I was found (Ince et al.,
2010). In that study, the authors found that for pairs or triplet of neurons in the
barrel cortex, ∆I was small. However, by increasing the population size to 8, ∆I
became significant, on the order of 40% of the total information. As the authors
note, this could mean that the the neurons receiving input from the barrel cortex
must know about the correlations between barrel neurons.

8 What to do when investigating large popula-

tions

One problem with ∆I is that it can’t be computed from data for more than a
handful of neurons. That’s because it depends on the true conditional response
distribution (see Eq. (5)), which we typically don’t know, and, indeed, which
the curse of dimensionality tells us we can’t know. What we can do, though,
is consider families of parametrized distributions, and ask whether the posterior
distribution converges as the family becomes more complex; we just can’t ask if it
converges to the true posterior. Two such families commonly used in neuroscience
are generalized linear models, or GLMs (Truccolo et al., 2005; Pillow et al., 2008)
and maximum entropy models (Jaynes, 1957a; Jaynes, 1957b; Schneidman et al.,
2003b; Schneidman et al., 2006; Shlens et al., 2006). Here we describe them
briefly, and summarize what we have learned from them.

Although GLMs and maximum entropy models share some similarities, there
are two major differences. The first has to do with bin size. While GLMs are often
used with finite bin sizes, this is not necessary, and in fact one of the strengths
of these models is that they make sense in the continuous time limit (Gerwinn
et al., 2010). For maximum entropy models, on the other hand, results depend
critically on bin size (Roudi et al., 2009a). The second difference has to do with
how past and current spikes influence the probability of spiking: in GLMs, past
spikes have a strong influence and current spikes have none; in maximum entropy
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models (at least the versions usually used in neuroscience) it is just the opposite.
To make this explicit, we start by writing down the conditional response

distribution for GLMs. In these models, the probability of spiking is independent
conditioned on the stimulus and previous spikes. Discretizing time (to better
make contact with maximum entropy models) and suppressing the dependence
on previous spikes (for ease of notation), we have, therefore,

q(n(t)|s) =
∏

i

q(ni(t)|s) . (9)

The individual distributions, q(ni(t)|s), are given by

q(ni(t)|s) =
1

Z
exp

[

Ki[s]ni(t) +
∑

t′<t

hi(t
′)ni(t− t′) +

∑

t′<t,j 6=i

Jij(t
′)nj(t− t′)

]

.

(10)
where Z ensures that q(ni(t)|s) is properly normalized. Here the notation t′ < t

indicates that the sum contains only previous bins (and, recall, time is a discrete
variable; thus the sum). This sum, of course, extends only a finite time into the
past. The dependence on the stimulus is essentially arbitrary, but it is usually
taken to be a temporal linear convolution, or, if the stimulus is spatially varying,
a spatio-temporal linear convolution (the brackets around s indicate that there
is a dependence on stimulus history). The parameters of the GLM are hi(t

′) and
Jij(t

′), and any parameters associated with Ki[s]. In addition, the nonlinearity
does not have to be exponential, but if a different nonlinearity is chosen, extra
parameters are (typically) needed to characterize it. And finally, Eq. (10) is
technically correct only in the limit of infinitessimally small bin size.

Maximum entropy models are a broad class of models in which one constructs
the distribution that has maximum entropy, subject to constraints. Here we
consider second order maximum entropy models, since those are the ones most
commonly used in neuroscience (Schneidman et al., 2006; Shlens et al., 2006;
Tkačik et al., 2006; Tkačik, 2007; Tang et al., 2008; Yu et al., 2008; Shlens et
al., 2009; Roudi et al., 2009b; Roudi et al., 2009c; Granot-Atdegi et al., 2010;
Ohiorhenuan et al., 2010; Ganmor et al., 2011a; Ganmor et al., 2011b). For these
models the constraints are on the first and second moments of the probability
of spiking in a bin. When those moments can depend on stimulus, the most
common form for the model is

q(n(t)|s) =
1

Z(t)
exp

[

∑

i

hi[s]ni(t) +
∑

j 6=i

Jij[s]ni(t)nj(t)

]

(11)

where Z(t) ensures that q(n|s) is properly normalized, and, as above, the fact
that the stimulus appears in square brackets in hi[s] and Jij [t] indicates that these
terms depend on stimulus history. Equation (11) has the form of the Ising model
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(Ising, 1925); because it also has stimulus dependence, we call it the stimulus-
dependent Ising model.

For both GLMs and Ising models, correlations across neurons are contained
in the coupling terms, the Jij . Thus, one can assess the role of correlations
by asking about the quality of the model with and without that term. This
is, of course, difficult to do exactly, but one can take an approximate approach.
Perhaps the simplest is to build a decoder based on the approximate distribution,
q(n|s), with and without the coupling terms, and either compute its variance
numerically or, for discrete stimuli, estimate the probability of making a correct
classification. Correlations can then be assessed by comparing the decoder under
the two conditions.

So what has been found using these two models? In the case of GLMs, Pillow
and colleagues fit the model to retinal ganglion cells from macaque monkeys, and
estimated the signal-to-noise ratio with and without the coupling terms (Pillow
et al., 2008). A smaller signal to noise ratio essentially means a lower variance
decoder. What they found was that, for populations of 27 neurons, the log of
the signal to noise was about 20% lower when the coupling terms were excluded
from the model (that is, when correlations were ignored). Whether or not one
considers this a large or small information loss is a matter of taste; but we feel
that it is small – after all, as pointed out by Pillow et al., it’s possible that the
ratio of the information with and without the coupling terms could have scaled
linearly with the number of neurons. Had this been the case, the information loss
would have been on the order of 97%, not 20%. If the information loss stays at
20% for even larger populations, then it may be the case that correlations – or at
least pairwise correlations – don’t have much affect on the posterior distribution
over stimuli.

For Ising models, most studies have not considered any stimulus dependence
(Schneidman et al., 2006; Shlens et al., 2006; Tkačik, 2007; Tang et al., 2008;
Yu et al., 2008; Shlens et al., 2009; Ganmor et al., 2011a). However, there are
four that have (Tkačik, 2007; Granot-Atdegi et al., 2010; Ohiorhenuan et al., 2010;
Ganmor et al., 2011b). The first of these assumed that the hi, but not the Jij ,
depended on the stimulus (Tkačik, 2007). For populations of 10 retinal ganglion
cells, taking into account the correlations resulted in a modest improvement –
the correlated model (Jij 6= 0) did about 10% better predicting the absence of
firing compared to the independent model (Jij = 0). The second did not directly
examine decoding, but they did find that the stimulus dependent Ising model
did a much better job predicting stimuli than the stimulus dependent model
(Granot-Atdegi et al., 2010). This was, though, the only model that allowed the
couplings, the Jij, to depend on stimulus. Interestingly, the dependence was very
weak; the implications of that finding are not yet fully understood. In the third
model, the authors did not investigate the effect of the coupling terms on the
posterior distribution over stimuli (Ohiorhenuan et al., 2010). They did compute
information with and without coupling, but, as discussed in the next section (and
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elsewhere (Latham and Nirenberg, 2005)), it is not clear what this tells us about
the role of correlations. The fourth study was probably the most interesting.
Here the authors considered a maximum entropy model that went beyond second
order (Ganmor et al., 2011b). When they used that model to decode novel stimuli
from ∼100 retinal ganglion cells, they could decode them about three times faster
than when they used the independent model. Thus, it seems that in this case
correlations are clearly important.

9 Other measures of the role of correlations

So far we have asked how correlations affect one’s ability to compute the poste-
rior distribution over stimuli, p(s|r). However, one may ask a different question:
what is the effect of correlations on the ability of a population to encode in-
formation? There are several reasons for asking this question. One is to gain
intuition about whether correlations are “good” or “bad” – that is, whether they
increase or decrease information. The other, related, reason is that the brain
might use strategies to modify the correlations, and so measuring correlations
in several conditions (e.g., with and without attention) may give us insight into
computational strategies used by the brain.

Theoretically, this question was addressed over a decade ago by Abbott and
Dayan (Abbott and Dayan, 1999), who found that correlations can either increase
or decrease information in a population code. The reason is rather easy to see, and
can be illustrated with only two neurons using a spike count code (in which, for
ease of exposition, we pretend that spike count is a continuous variable). Suppose
that conditioned on stimulus, the spike counts of the two neurons are positively
correlated. In that case, the conditional response distributions form ellipse-like
shapes that are neither purely vertical or purely horizontal, as illustrated in
Figs. 9.3a and b. The amount of information in the population depends on
how easy the responses are to decode, and thus on how much overlap there is
between the responses associated with each stimuli. If the mean responses for
each of the stimuli are aligned with the long axis of the ellipses, information will
be low (correlations decrease information; Fig. 9.3a), and if the mean responses
are aligned with the short axis, information will be high (correlations increase
information; Fig. 9.3b).

Despite that fact that correlations can either increase or decrease information,
there seems to be a feeling among the community that correlations generally
decrease it (Zohary et al., 1994; Shadlen et al., 1996). While not necessarily true,
it would seem to be true whenever neurons have similar tuning properties and
neurons are positively correlated (so that the responses look more like Fig. 9.3a
than 9.3b). In particular, for a very common correlational structure – neurons
with similar tuning are more correlated than neurons with dis-similar tuning
curves – increasing correlations does decrease information (Abbott and Dayan,
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Figure 3: Correlations can either increase or decrease information. In both figures,
the responses are taken to be continuous and the conditional response distributions are
Gaussian. The ellipses indicate contours containing 90% of the probability for the true
responses; the circles contain 90% of the probability for the independent responses. a.
Correlations make the responses harder to decode relative to the independent responses,
so they decrease information. b. Correlations make the responses easier to decode
relative to the independent responses, so they decrease information.
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1999; Sompolinsky et al., 2001). It is this intuition that is behind several studies
that looked at how correlations changed with attention. These studies found that
attention decreased them, and so, it was stated, information should go up (Cohen
and Maunsell, 2009; Mitchell et al., 2009). However, a recent study showed that
if tuning curves do not all have the same amplitude (as is probably the case
in the brain), then, even when correlations are large and positive for similarly
tuned neurons and weak for dis-similarly tuned ones (exactly the case for which
correlations should decrease information), increasing correlations does not lead to
much of a decrease in information (Ecker et al., 2011). In fact, for a large enough
population, correlations of this type always increase information. So we’re back
where we started: correlations can either increase or decrease information, and
it can be very hard to make general statements about which one will happen in
realistic situations.

10 Correlations, learning and computations: ∆I

take 2

Suppose we did an experiment and found that the posterior distribution over
stimuli under the independence assumption was equal to the true posterior (∆I =
0). We could, then, measure single neuron conditional response distributions
and use them to build optimal decoders – and, by extension, perform optimal
computations. So far in this chapter we have defined this to mean that correlations
are not important. However, we should keep in mind that this is not the only
notion of important, or even the best one. Indeed, the above assertion comes
with a number of caveats.

An important one is the qualifier “optimal” that appears above. While it’s
true that when ∆I = 0 we can decode optimally, it is not true that we can
perform approximate decoding optimally. For example, suppose that ∆I = 0
under the independence assumption, and we wanted to build a linear classifier
that divides stimuli into two classes. In Fig. 9.4a we show the responses to
eight stimuli, four of which (the ones on the upper left) should be in class 1
and the other four (the ones in the lower right) should be in class 2. Under the
independence assumption, in which the conditional response distributions are
squares, the optimal linear classifier runs right between the two classes (dashed
line). Under the true conditional response distribution, this classifier is always
correct for class 2, but correct only about 75% of the time for class 1. This is
in contrast to the optimal linear classifier (solid line), for which classification is
perfect. However, to find it, the true conditional response distribution must be
known. So finding that ∆I = 0 does not mean one can build an optimal linear
classifier.

The opposite can also occur: ∆I can be positive even when a suboptimal de-
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Figure 4: For suboptimal decoders, ∆I can be misleading. a. Eight stimuli need to
be divided into two classes using a linear classifier. The responses to the stimuli in
class 1 (upper left) are perfectly anti-correlated, as indicated by the bars at −45◦; the
responses to stimuli in class 2 (lower right) are perfectly correlated, as indicated by the
bars at +45◦. The independent conditional response distributions are squares; open
for class 1 and gray for class 2. The dashed line is the optimal linear classifier under
the independence assumption, for which some errors are made for class 1 stimuli. The
solid line is the optimal linear classifier under the true distribution, for which errors are
never made. Thus, although ∆I = 0, a suboptimal decoder does not perform perfectly.
b. Two stimuli need to be divided need into two classes, again with a linear classifier.
The ellipses show the true distribution; the circles show the independent one (as in
Fig. 9.3). Here ∆I 6= 0, since, for almost all responses, the posterior probability of
the stimuli is different for the true and independent assumption. However, the linear
classifier (dashed line) is the same for both the true and independent distributions.
Thus, if all one cared about was the performance of a linear classifier, the fact that ∆I

is greater than 0 would be of little interest.
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coder can work perfectly without knowledge of the correlational structure. Con-
sider, for example Gaussian conditional response distributions from two neurons,
as shown in Fig. 9.4b for two stimuli. As is clear from this figure (or is easy
to calculate), ∆I is not zero. However, the optimal linear classifier under the
independence assumption is the same as it is for the true model.

The take home message here is that ∆I may not be very informative about
how well approximate decoders will fare. This is especially important because
the problems faced by the brain are so complicated that it almost always (if
not always) has to make some approximations. If the approximations the brain
makes is known, then finding the correct measure is easy. For example, for a linear
classifier, the correct measure would involve a comparison between the fraction
correct under the independent conditional response distribution and under the
true one. However, if the approximation the brain takes is not known, finding
the correct measure is a nontrivial task.

Second, and equally, if not more, important, the brain doesn’t have access
to single neuron responses. Thus, even if it wanted to construct the posterior
distribution based on the independent responses, it couldn’t. What it sees are the
full, correlated responses on every trial. The question we should be asking, then,
is: how do correlations affect both learning and the optimal computations used by
the network? Pouget and colleagues have addressed the second question, although
for a relatively simple problem (by the standards of the brain), cue combination
(Ma et al., 2006). Although they did not explicitly consider correlations, the
techniques they used could be extended, with some work, in that direction.

11 Summary

So what is the role of correlations? As we have seen here, experimentally one
can often construct a near-optimal posterior distribution over stimuli based only
on the single neuron conditional response distributions – and, therefore, with no
knowledge of the correlational structure (Nirenberg et al., 2001; Petersen et al.,
2001; Averbeck and Lee, 2003; Golledge et al., 2003; Averbeck and Lee, 2006;
Tkačik, 2007; Granot-Atdegi et al., 2010). There are, though, exceptions (Dan
et al., 1998; Ince et al., 2010; Ganmor et al., 2011b). Of these, the study by
Ganmor et al. is especially interesting, because it considered ∼100 retinal ganglion
cells and found that when correlations were taken into account, decoding speed
increased by a factor of about three (Ganmor et al., 2011b). From an evolutionary
standpoint, such a speed increase would be highly beneficial. Whether this is a
general principle throughout the cortex remains to be seen, but in any case it
makes an important point: we should be studying large, not small, neuronal
populations.

Finally, our approach – asking whether one needs to know about correlations
to accurately represent the outside world – isn’t exactly the question we want
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to ask of the brain. The brain computes with responses rather than explicitly
constructing the posterior distribution, it typically does so using approximate
algorithms, and it doesn’t have access to the independent conditional response
distribution. The first two are relevant because we saw that when performing
approximate computations, it may be necessary to know the true distribution
even when ∆I = 0 (Fig. 9.4a), and it may not be necessary to know the true
distribution even when ∆I 6= 0 (Fig. 9.4b). The third is relevant because the
brain has to learn what to do based on correlated responses, and so the real
question is: how do correlations affect learning? This is a problem for which the
answer is not known, at least not in general. Thus, despite much work on the
role of correlations, much is left to be done.
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