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Coarse codes are widely used throughout the brain to encode sensory
and motor variables. Methods designed to interpret these codes, such
as population vector analysis, are either inef�cient (the variance of the
estimate is much larger than the smallest possible variance) or biolog-
ically implausible, like maximum likelihood. Moreover, these methods
attempt to compute a scalar or vector estimate of the encoded variable.
Neurons are faced with a similar estimation problem. They must read out
the responses of the presynaptic neurons, but, by contrast, they typically
encode the variable with a further population code rather than as a scalar.
We show how a nonlinear recurrent network can be used to perform esti-
mation in a near-optimal way while keeping the estimate in a coarse code
format. This work suggests that lateral connections in the cortex may be
involved in cleaning up uncorrelated noise among neurons representing
similar variables.

1 Introduction

Many sensory and motor variables in the brain are encoded with coarse
codes, that is, through the activity of large populations of neurons with
broad tuning to the variables. For instance, direction of visual motion is
believed to be encoded in the medial temporal (MT) visual area by the
responses of a large number of cells with bell-shaped tuning to direction, as
illustrated in Figure 1A (Maunsell & Van Essen, 1983).
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Figure 1: (A) Idealized tuning curves for 16 direction-tuned neurons. (B) Noise-
less pattern of activity (o) from 64 simulated neurons with tuning curves like
the ones shown in A, when presented with a direction of 180± . (C) Same as in B
but in the presence of gaussian noise.

In response to an object moving along a particular direction, the pattern
of activity across such a population would look like a noisy hill of activity
(see Figure 1C). On the basis of this activity vector, A, the best that can be
done is to recover the conditional probability distribution of the direction
of motion, µ , given the activity, p.µ | A/ (Anderson, 1994; Zemel, Dayan, &
Pouget, 1998). A slightly less ambitious goal is to come up with a good
guess, or estimate, Oµ , of the direction, µ , given the activity. Because of the
stochastic nature of the noise, the estimator is a random variable; that is, for
the same image, Oµ will vary from trial to trial. A good estimator should be
unbiased; the conditional mean of the estimator, E[ Oµ | µ], should be equal to
the true direction, µ . Furthermore, this unbiased estimator should have the
smallest possible conditional variance, E[. Oµ ¡ µ/2 | µ ], because the variance
determines how well two similar directions can be discriminated using this
estimator (Green & Swets, 1966; Paradiso, 1988). This conditional variance is
bounded below by the Cramér-Rao bound, which depends on the noise level
and the tuning curves of the units (Paradiso, 1988; Papoulis, 1991). Typically,
computationally simple estimators, such as the optimum linear estimator
(OLE) (Baldi & Heiligenberg, 1988; Pouget, Fisher, & Sejnowski, 1993), are
not ef�cient, in the statistical sense that their variances are several times
the bound. By contrast, Bayesian or maximum likelihood (ML) estimators
(which are equivalent for the case under consideration in this article) can
reach this bound but require more complex calculations (Paradiso, 1988;
Seung & Sompolinsky, 1993; Salinas & Abbott, 1994).

These decoding techniques are valuable for a neurophysiologist inter-
ested in reading out the population code, but they are not directly relevant
for understanding how neural circuits perform estimation. In particular,
they all provide the estimate in a format that is incompatible with what
we know of sensory representations in the cortex. For example, cells in V4
are estimating orientation from the noisy responses of orientation tuned V1
cells, but, unlike ML or OLE, which provide a scalar estimate, V4 neurons
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retain orientation in a coarse code format, as demonstrated by the fact that
V4 cells are just as broadly tuned to orientation as V1 neurons (Desimone,
Schein, Moron, & Ungerleider, 1985). Such coarse codes have several com-
putational advantages over scalar representations, and it is important to
understand how they are maintained throughout the cortex (Hinton, 1992).

Therefore, it seems that a theory of estimation in biological networks
should have two critical characteristics: (1) it should preserve the estimate
in a coarse code, and (2) it should be ef�cient, that is, the variance should be
close to the Cramér-Rao bound. This article describes a model that satis�es
these two requirements. Our model uses lateral connections in a nonlin-
ear recurrent network of direction-tuned neurons to come up with an ML
estimate of direction in a coarse code format. We also show how linear re-
current networks are related to the population vector estimator used by
Georgopoulos, Kalaska, Caminiti, & Massey (1982), and we provide a per-
formance comparison between various network architectures and classical
estimation methods such as OLE and ML.

In this article, we �rst describe how we generated neuronal patterns of
activity used in the simulations. Then we review four estimators that have
been previously used in the literature to decode such patterns. Next, we
consider linear and nonlinear networks with lateral connections, and we
show how they can be used as estimators. We report the results of simula-
tions in which we compared the performance of a nonlinear network to the
classical methods. Finally, we show analytically the relation between the
nonlinear network and maximum likelihood.

2 Model of Neuronal Responses

The simulations involve estimating the value of the direction of a moving
bar based on the activity, A D faig, of 64 input units with bell-shaped tuning
to direction corrupted by noise. The tuning function of unit i, fi.µ /, which
is the same as the conditional mean response, E [ai | µ ], was given by:

fi.µ/ D ® exp.¯.cos.µ ¡ µi/ ¡ 1// C °: (2.1)

This function is known as the circular normal distribution. Its pro�le is
very similar to a gaussian, but it is periodic. ® corresponds to the mean peak
response, ¯ to the width of the tuning curve, and ° to the mean spontaneous
activity of each unit. Cortical neurons commonlyshow spontaneous activity,
although the amplitude of this activity varies from one cortical area to the
next. The peaks of the tuning curves, µi, were evenly spread over the interval
[0±; 360±].

The activity ai depended on the noise distribution. We used two types of
noise, normally distributed with �xed variance, ¾ 2

n :

P.ai D a | µ/ D
1p

2¼¾ 2
n

exp
³

¡
.a ¡ fi.µ//2

2¾ 2
n

´
;
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or Poisson distributed:

P.ai D k | µ/ D
fi.µ/ke¡ fi.µ /

k!
:

Figure 1C shows a typical pattern of activity with gaussian noise (¾ 2
n D 7).

Note that the noise is in the activity level, ai, not in µ . On any given trial, µ

is assumed to have a given value; i.e., the probability distribution over µ ,
P.µ/, is assumed to be a Dirac function.

3 Classical Decoding Methods

We now review four different methods for decoding patterns of neural activ-
ity: maximum likelihood (ML), optimum linear estimator (OLE), center of
mass (COM), and complex estimator (COMP). We indicate in each case how
we computed the variance of these estimators. Simulation results and com-
parison with recurrent network architecture are provided in the following
sections.

3.1 Maximum Likelihood (ML). The ML estimate is de�ned as:

OµML D arg max
µ

P.A | µ /:

With independent noise between units, �nding the ML estimate reduces
to curve �tting, or template matching (Paradiso, 1988; Lehky & Sejnowski,
1990; Wilson & McNaughton, 1993). One needs to �nd the noise-free hill that
minimizes distance from the data where the distance metric is determined
by the distribution of the noise (if the noise is gaussian, the appropriate
distance is the Mahalanobis norm; Duda & Hart, 1973). This step involves a
nonlinear regression, which is typically performed by moving the position
of the hill until the distance from the data is minimized (see Figure 2B).

The position of the peak of the �nal hill corresponds to the ML estimate.
With a large number of units, this estimate is unbiased, and its variance is
equal to the Cramér-Rao bound (Paradiso, 1988; Papoulis, 1991; Seung &
Sompolinsky, 1993):

E
h
. OµML ¡ µ /2

i
D

1
I

;

where

I D E
µ

¡ @2

@µ2 log P.A | µ/

¶
: (3.1)

If we assume independent noise across units, then:

I D
NX

iD1

E
µ

¡ @2

@µ2 log P.ai | µ/

¶
:
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Figure 2: (A) The complex estimator uses the phase of the �rst Fourier compo-
nent of the input pattern (solid line) as an estimate of direction. It is equivalent
to �tting a cosine function to the input. (B) The ML estimate is found by moving
an “expected” hill of activity (dotted line) until the squared distance with the
data is minimized (solid line).

For a normally distributed noise with �xed variance, ¾ 2
n :

I D
PN

iD1 f 0
i .µ/2

¾ 2
n

; (3.2)

and for a Poisson distributed noise (Seung & Sompolinsky, 1993):

I D
NX

iD1

f 0
i .µ/2

fi.µ/
: (3.3)

3.2 Optimum Linear Estimator (OLE). The simplest possible estimator
is an estimator that is linear in the activities of the neurons, A (Pouget et al.,
1993):

OµOLE D wTA:

A common choice for w is to take the weight vector minimizing the mean
square distance between the estimate, OµOLE, and the true direction, µ :

w D arg min
w

E
h
.µ ¡ OµOLE/2

i
:

One can think of the linear estimator as being the response of a single
output unit with weights w. Note that this estimator is poorly adapted to
the estimation of a periodic variable such as direction. In our simulations,
we worked around 180 degrees, staying away from the discontinuity at 0
and 360 degrees.
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OLE is known to be unbiased for a large number of units, that is, E[ OµOLE | µ]
D µ (Baldi & Heiligenberg, 1988). In this case, its variance given µ is:

E
µ±

OµOLE ¡ Eµ
²2

| µ
¶

D
LX

iD1

w2
i ¾ 2

i ; (3.4)

where ¾ 2
i D ¾ 2

n for the normally distributed noise with �xed variance ¾ 2
n ,

and ¾ 2
i D fi.µ/ for the Poisson distributed noise.

3.3 Center of Mass (COM). This estimator is a one-dimensional version
of the population vector used by Georgopoulos et al. (1982) (see also Zohary,
1992; Snippe, 1996). It is de�ned as:

OµCOM D
PN

iD1 µi.ai ¡ ° /
PN

iD1.ai ¡ ° /
:

The mean spontaneous activity, ° (see equation 2.1), is subtracted from
the activities ai to prevent systematic bias. Like OLE, COM handles poorly
the discontinuity between 0 and 360 degrees.

We obtained an approximation of the variance of the COM estimate us-
ing computer simulations. These estimates, computed for 201 values of di-
rection, systematically varied from 170 to 190 degrees by increments of
0:1 degree. For each direction, the variance and mean of the estimate were
calculated according to:

E
h

OµCOM | µ
i

D
1
L

LX

lD1

Oµ l
COM

E
µ±

OµCOM ¡ E
h

OµCOM | µ
i²2

| µ
¶

D
1

L ¡ 1

LX

lD1

±
Oµ l
COM ¡ E

h
OµCOM | µ

i²2
:

We used L D 1000 trials in all simulations.

3.4 Complex Estimator (COMP). The complex estimator (also known
as population vector; Georgopoulos et al., 1982) is de�ned as the phase of
the �rst Fourier component of the input pattern (Seung & Sompolinsky,
1993):

OµCOMP D phase.z/;

where

z D
NX

jD1

ajeiµj :
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This estimator is often said to be linear (see Seung & Sompolinsky, 1993;
Salinas & Abbott, 1994), but it is important to realize that only z, and not
OµCOMP, is linear in A. Recovering the phase of a complex number is a non-
linear operation.

This estimator is equivalent to an ML estimator only under the assump-
tion that the data were generated according to a cosine tuning function with
period 2¼ corrupted by gaussian noise of �xed variance (see Figure 2A). This
estimator is guaranteed to be suboptimal if the noise is nongaussian or if
the data are generated by any other function and, in particular, the one used
in our simulations (see equation 2.1).

We obtained an approximation of the variance of the estimator using
computer simulations as described in the previous section.

4 Recurrent Networks

All the methods described so far recover a scalar estimate of direction. We
now consider network architectures in which the estimate is kept in a coarse
code format. These networks have an input and output layer of 64 units, fully
connected from the input to the output layer (feedforward connections) and
within the output layer (lateral connections), using periodic boundaries and
identical weight matrices for the feedforward and lateral connections (see
Figure 3A). We use the notation A D faig for the activity of the input units
as speci�ed in equation 2.1 and Ot D foi;tg for the activities of the output
units at time t.

We consider only the case of a transient input; at time zero, we set the ac-
tivity of the input units to faig, pass it through the feedforward connections,
and then remove the input and let the activities of the output units evolve
according to the dynamical equation for this layer.

As we will show, an appropriate choice of the weights and the activation
function can ensure that the activity in the output layer, which forms a
recurrent network, will evolve toward a stable state, corresponding to a
hill-shaped pattern of activity (see Figure 3B, which shows the activity over
time for the nonlinear network described below; Zhang, 1996).

We can use the �nal position of the hill across the neuronal array after
relaxation as a coarse code estimate of the direction, µ . In the next two
sections, we explore the properties of this estimator for linear and nonlinear
activation functions.

4.1 Linear Network. We �rst consider a network with linear activation
functions in the output layer and whose dynamics is governed by the fol-
lowing difference equation:

Ot D ..1 ¡ ¸/ I C ¸W/ Ot¡1; (4.1)
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Figure 3: (A) Two-layer network for estimation using coarse code. The �rst
layer generates the noisy activity pattern faig according to the tuning function
f fi.µ/g. The output layer is a recurrent network that generates a hill of activity
corresponding to the tuning function fgi.µ/g. (B) Activity over time in the output
layer with a nonlinear activation function in response to an initial small, random
pattern of activity. The activity of the units is plotted as a function of their
preferred direction of motion. (C) Pattern of weights in the nonlinear recurrent
network as a function of the difference in preferred direction between units.
(D) Activation function, h.x/, of the nonlinear recurrent network.

where ¸ is a number between 0 and 1, I is the identity matrix, and W is the
matrix for the lateral connections. The activity at time 0, O0, is initialized
to WA, where A is an input pattern (like the one shown in Figure 1C) and
W is the feedforward weight matrix, which is set to be equal to the lateral
weight matrix (hence, the same notation).

The dynamics of such networks is well understood (Hirsch & Smale,
1974). If each unit receives the same weight vector—if all the rows of W,
which we will denote w, are translated versions of one another—a Fourier
transform of equation 4.1 (not in time but over the vectors Ot, Ot¡1, and w)
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leads to:

Ot D ..1 ¡ ¸/I C ¸W / Ot¡1

D QOt¡1;

where Ot and Ot¡1 are the Fourier transforms of Ot and Ot¡1, and W is a
diagonal matrix with the Fourier coef�cients of w along the diagonal. Since
O0 D W A, we obtain:

Ot D Qt W A:

Consequently, the network dynamics ampli�es or suppresses indepen-
dently the Fourier component of the initial input pattern, A, by a factor
equal to the corresponding component of the Fourier transform of Q. For
example, if the �rst diagonal term of Q is more than one (resp., less than
one), the �rst Fourier component of the initial pattern of activity will be
ampli�ed (resp., suppressed).

Thus, we can choose W such that the network ampli�es selectively the
�rst Fourier component of the data while suppressing the others. The net-
work would be unstable, but if we stop after a large, yet �xed, number of
iterations, the activity pattern would look like a cosine function of direction
with a phase corresponding to the phase of the �rst Fourier components of
the data. If we now use the position of the peak of the hill, which is the same
as the phase of the cosine, as an estimate of direction, we end up with the
same value as the one provided by the COMP methods. A network for orien-
tation selectivity proposed by Ben-Yishai, Bar-Or, and Sompolinsky (1995)
is closely related to this linear network. Their network is actually nonlinear,
but the nonlinearity simply acts as a gain control, which prevents activity
from growing to in�nity.

Although such networks keep the estimate in a coarse code format, they
suffer from two problems: it is unclear how they could be extended to non-
periodic variables, such as disparity, and they are suboptimal since they are
equivalent to the COMP estimator.

4.2 Nonlinear Network. We consider next a network with nonlinear
activation functions in which the dynamics of the output units is governed
by the following difference equations:

oi;t D h.ui;t/ D a
±

log.1 C ebCcui;t /
²d

(4.2)

ui;t D .1 ¡ ¸/ui;t¡1 C ¸

NX

jD1

wijoj;t¡1: (4.3)

Using vector notations, we rewrite these equations as:

Ot D h.Ut/ D a
±

log.1 C ebCcUt /
²d

(4.4)
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Ut D .1 ¡ ¸/Ut¡1 C ¸WOt¡1: (4.5)

As shown in Zhang (1996), the weights, W, can be set in such a way that
a hill of activity of pro�le, g.µ/, centered at any location on the network is
a stable state (see Figure 3B). These kinds of networks are known as line
attractor networks, because the set of all hills de�nes a one-dimensional
continuous stable manifold in activity space. The rows of the weight matrix
must be a translated version of the same vector, w, which is found by solving:

g.µ / D h.w ¤ g.µ//; (4.6)

where g.µ/ is the desired bell-shaped pro�le, ¤ is the convolution, and h.¢/
is the activation function (this equation involves continuous functions but
it can be easily discretized to deal with a �nite number of units).1 There
is no analytical solution to this equation, but a close approximation can be
obtained for a wide variety of bell-shaped pro�les of activity and monotonic
activation functions (Zhang, 1996).

Thus, the shape of the stable hill is fully speci�ed by the weights and
activation function. By contrast, the �nal position of the hill on the neuronal
array depends on only the initial input (Zhang, 1996). Therefore, like ML,
the network �ts an “expected” function—the stable hill—through the noisy
input pattern, A. We will use the notation g.µ/ to refer to this function and
gi.µ/ for the corresponding tuning curves of the output units (see Figure 2A).

For reasons that will become clear, we selected the lateral weights, W,
to minimize the L 2 distance between g.µ/—the function corresponding to
the stable hill—and the function f .µ/ (see equation 2.1) used to generate
the activity patterns, A (see Zhang, 1996, for details about this procedure
based on regularization theory). The resulting weights are locally excitatory
with long-range inhibition, a common pattern of connectivity in models of
cortical circuitry (see Figure 3C).

The resulting network can be used as an estimator by �rst initializing
the input layer to a vector A, passing the activity through the feedforward
connections (which amount to setting U0 to WA) and iterating equations 4.4
and 4.5 until a stable hill of activity is obtained. The stable hill in the output
layer can be treated as a population code for the estimated direction, OµRN
(RN, recurrent network), and a scalar value can be obtained by computing
the peak position. We computed the position of the peak using a COMP

1 Strictly speaking, the weights that solve equation 4.6 in the discrete case lead to a
network with N stable �xed points along the one-dimensional manifold, interspersed
with N unstable �xed points, where N is the number of units. Therefore, the resulting
network is not truly a line attractor network; the eigenvalue, ¸, of the Jacobian along the
manifold near the attracting �xed point is slightly less than 1. It can be shown, however,
that 1 > ¸ > 1 ¡ k=N2, where k is a constant independent of N. Therefore, for large N,
the dynamics of convergence along the manifold is so slow that it can be ignored for all
practical purposes, which is what we do in the rest of the article.
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operator applied to the stable pattern of activity, O1, although any unbiased
estimator would have worked. Note that this step would not be required
in the brain. We have added it only to allow comparison with the other
estimators.

Estimates of the bias and variance of the direction estimates were ob-
tained with the same method as that used for the COMP estimator. The
activation function, h.¢/, used in equation 4.2, looks like a linear recti�ed
function (see Figure 3D). It is close to zero for negative x and grows roughly
linearly past a threshold. The parameters ®, ¯ , and ° in equation 2.1 were
set, respectively, to 38, 7, and 3.8 and the parameters a, b, c, and d in equa-
tion 4.2 were set to, respectively, 6.3, 5, 10, and 0.8. All of these choices were
motivated by the fact that the same parameters and function were used
by Zhang (1996) in a previous study. Our results do not depend critically
on these particular choice; variations in these parameters do not affect our
results.

The standard deviation of the gaussian noise was set to ¾n D 5:8, which
corresponds to a signal-to-noise ratio of 6 for the most active units. By com-
parison, the signal-to-noise ratio of the most active units when using Poisson
noise was 6.5.

5 Simulation Results

Since the preferred directions of two consecutive units in the network are
more than 5 degrees apart, we �rst wondered whether recurrent network
(RN) estimates would exhibit a systematic bias—a difference between the
mean estimate and the true direction—in particular for directions between
the peaks of two consecutive units. Our simulations showed no signi�cant
bias for any of the directions tested (see Figure 4). This entails that, with 64
units only, the stable hill can settle in any position, in particular between
the peaks of the tuning curves of two successive units.

Next, we compared the standard deviations of the estimates for four
estimators—OLE, COM, COMP and ML—to the nonlinear RN. We did not
simulate the linear network since it is equivalent to the COMP methods. The
standard deviations for the ML and OLE were obtained using equations 3.2,
3.3, and 3.4.

The RN method was found to outperform the OLE, COM, and COMP
estimators in both cases and to match the Cramér-Rao bound for gaussian
noise (see Figure 5). For noise with Poisson distribution, the standard de-
viation for RN was only 6.5% above the bound (see Figure 5B). To con�rm
that ML and RN are similar, we looked at the coef�cient of correlation be-
tween the two estimates. We obtained a value of 0.98, indicating that the
two estimates are almost identical on individual trials.

We also estimated numerically ¡@ OµRN=@ai |µD170± , the partial derivative
of the RN estimate with respect to the initial activity of each of 64 units
for a direction of 170 degrees. This derivative in the case of ML matches
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Figure 4: The solid line shows the mean estimated direction as a function of the
true direction for normally distributed noise of �xed variance. The estimator is
unbiased, that is, the mean estimate is equal to the true direction. The upper and
lower dotted lines are one standard deviation away from the mean.
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Figure 5: Histogram of the standard deviations of the estimate for all �ve meth-
ods (OLE, optimal linear estimator; COM, center of mass; COMP, complex esti-
mator; ML, maximum likelihood; RN, recurrent network). (A) Noise with nor-
mal distribution. (B) Noise with Poisson distribution. In both cases, the value for
ML is the Cramér-Rao bound. The RN method reaches this bound for gaussian
noise and performs slightly worse for Poisson noise.

closely the derivative of the cell tuning curve, f 0
i .µ/. In other words, in ML,

units contribute to the estimate according to the amplitude of the deriva-
tive of the tuning curve. As shown in Figure 6A, the same is true for RN;
¡@ OµRN=@ai |µ D170± matches closely the derivative of the units’ tuning curves.
In contrast, the same derivatives for the COMP estimate (dotted line) or the
COM estimate (dash-dotted line) do not match the pro�le of f 0

i .µ /. In partic-
ular, units with preferred direction far away from 170 degrees—units whose
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Figure 6: (A) Comparison of f 0.µ/ (solid line) and ¡@ Oµ=@ai |µD 170± for RN, COMP,
and COM. All functions have been normalized to one. (B) Standard deviation as
a function of time, or number of iterations of the recurrent network. The point
at t D ¡1 is the COMP estimator applied to the input activity, A, whereas the
point at t D 0 corresponds to COMP applied to WA.

activity is just noise—end up contributing to the �nal estimate, hindering
the performance of the estimator.

Reaching a stable state can take many iterations, which could make the
RN method too slow for any practical purpose. Consequently, we looked
at the standard deviation of the RN as a function of time—that is, the num-
ber of iterations. We found that the convergence to ML is very fast. In fact,
initializing U0 to WA and O0 to h.U0/ is suf�cient to obtain a standard
deviation very close to the bound, and 5 to 10 iterations leads to the asymp-
totic values (see Figure 6B). The initialization is mathematically equivalent
to one network iteration with the integration constant, ¸, set to one (see
equation 4.5). We can therefore conclude that there is no need to wait for a
perfectly stable pattern of activity to obtain minimum standard deviation
and that one network iteration is suf�cient to obtain performance close to
ML.

So far, the input units (which determine the input patterns, A) and the
network units had the same tuning curves: f .µ/ D g.µ/. Next, we explored
the effect of varying the amplitude and the width of the input tuning curves
while keeping the output tuning curves constant. A comparable situation
for ML would be to �t the wrong tuning curve through the data. With ML,
an error in the assumed amplitude of the bump would not affect perfor-
mance (the minimum of the nonlinear regression step is unaffected; see
Figure 2B), whereas a mismatch between the actual and assumed width
results in suboptimal performance.

Our simulations revealed that both parameters affect the performance of
the network estimate (see Figures 7A and 7B). Large differences in ampli-
tude or width lead to a standard deviation much larger than the Cramér-Rao
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Figure 7: Standard deviation of the RN estimator in terms of percentage above
the Cramér-Rao bound, as a function of the amplitude (A) and width (B) of the
input bump. (A) The data are plotted as a function of the logarithm in base 2 of
the ratio of input-output amplitudes. Changing the gain of the input by a factor
of 2 or less affects the performance of the network only moderately. (B) The width
of the tuning curve is computed at half the peak value. The network sharpens the
input tuning curves for width values above 50 degrees and widens for smaller
values. The Cramér-Rao bound is reached only when the widths of the input
and output tuning curves differ by less than 10 degrees.

bound. The curves, however, are both quadratic around the minimum, indi-
cating that the network is fairly robust with respect to these kinds of errors.
In particular, changing the amplitude by a factor of two has a minimal im-
pact on the standard deviation (see Figure 7A). Nevertheless, unlike ML,
performance eventually decreases with larger-amplitude changes.

Finally, Figure 8A shows the covariance matrix of the input unit activities,
ai, when presented repetitively with a direction of 170 degrees. Since the
noise was chosen to be independent across units, only the diagonal terms of
the covariance matrix—the variances of the individual units—differ from
zero. Interestingly, the covariance of the network units after a stable pattern
has been reached has a different structure (see Figure 8B). Units with similar
direction preferences around 150 degrees are positively correlated while
being negatively correlated with units whose direction preference is around
190 degrees, and vice versa. Furthermore, units with preferred directions
away from the test direction (outside the interval 170± §30±) have a variance
and covariance close to zero.

Interestingly, these correlations do not re�ect the similarity of the tuning
curves for units with similar preferred directions. The similarity in tun-
ing curves introduces similarities in the mean responses. By contrast, the
covariance matrices plotted in Figure 8B show correlations in the �uctu-
ations about these mean responses. Such correlations are often considered



Estimation Using Population Coding 387

100

200

100

200

0
0.1
0.2

C D
Preferred Direction (deg)

A B

100

200

100

200

 4
 2

0
2
4

Preferred Direction (deg)

 100 0 100

 3

 2

 1

0

1

2

3

Difference in Preferred Direction (deg)

C
or

re
la

tio
n

100 200 300
 1

 0.5

0

0.5

1

1.5

2

Direction (deg)

C
or

re
la

tio
n

Figure 8: Covariance matrices of the input units (A) and network units (B) for
repetitive presentations of a direction of 170 degrees. Only the central part of
the covariance matrix is shown (units with preferred directions between 84 and
270 degrees). Whereas the input units are independent, the output units are
correlated due to the lateral connections. (C) Correlation of unit with preferred
direction 135 degrees with all the other units as a function of the difference
in preferred direction. The curve has the same pro�le as the derivative of the
tuning curve. (D) Correlation between two units (preferred directions 158 and
182 degrees) as a function of stimulus direction.

damaging because they reduce the signal-to-noise ratio (Zohary, Shadlen, &
Newsome, 1994). We see here, however, that they could be the unavoidable
consequence of pooling the unit activities through the lateral connections
to clean up the noise in an optimum way.

At �rst, one might think that this pattern of correlation re�ects the weights
of the lateral connections; for example, units with similar preferred direc-
tions are positively correlated because they are positively interconnected. It
turns out, however, that these correlations are the result of �tting a hill to the
data. Indeed, the activity of a unit at the end of relaxation, oi;1, is dependent
on the activities of all the other units in a way that is speci�ed by the pro-
�le of the stable hill. Consequently, the correlation between pairs of units
is determined by the product of their tuning curve derivatives, evaluated
at the current direction (170 degrees in Figure 8B). Hence, when plotting
the correlation of the units with preferred direction 135 degrees with all the
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other units, the resulting curve has the same pro�le as the derivative of the
tuning curve (compare Figure 8C and f 0.µ/ shown in Figure 6A). This prop-
erty is not speci�c to the RN method but would also apply to any method
involving �tting a hill, such as ML or COMP.

The magnitude and sign of these correlations are therefore dependent
on the stimulus direction. This is illustrated in Figure 8D, which shows
the correlation between units with preferred direction of 158 degrees and
182 degrees as a function of the stimulus direction. Notice that even though
the weight of the connection between these two units is negative .¡0:08/, the
correlation can be positive or negative depending on the stimulus direction.

Whether such patterns of correlations exist in the cortex is unknown.
Correlations between cells have been reported in area MT (Zohary et al.,
1994), but there has been no attempt to relate these correlations to the tun-
ing curve derivatives. It is unlikely, however, that real neurons will exhibit
reversal in the correlation sign as large as the one illustrated in Figure 8.
Relaxation in our network is a deterministic process, whereas, by contrast,
additional noise would be introduced at each iteration if we were to model
our units as Poisson process, a more realistic assumption (Shadlen & New-
some, 1994). This extra noise is likely to lead to additional correlations whose
form remains to be determined. Nevertheless, we would expect the corre-
lation to change with the stimulus direction in a way consistent with what
is illustrated in Figure 8D.

6 Analysis

Our simulations demonstrate that the recurrent network can provide a
coarse code estimate of direction that is almost as ef�cient as the ML es-
timate. We now prove analytically that the network estimate is indeed close
to the ML estimate for small gaussian noise; that is, it is unbiased and ef�-
cient. The proof relies on a linearization of the network dynamics around
the stable manifold.

6.1 Notation. We start by rewriting the dynamics of the network as fol-
lows:

Ot D h.Ut/ D 6:3
±

log.1 C e5C10Ut /
²0:8

(6.1)

Ut D .1 ¡ ¸/Ut¡1 C ¸WOt¡1 (6.2)

D .1 ¡ ¸/Ut¡1 C ¸Wh.Ut¡1/ (6.3)

D e.Ut¡1/: (6.4)

As we have done so far, we will use the notation fi.µ/ to refer to the
function corresponding to the tuning curve of the input units with preferred
direction µi—the mean activity in response to µ—and gi.µ/ the equivalent
function for the output units.
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In response to a direction µ0, the mean activity vector for the input units
is given by f fi.µ0/gN

iD1, and we will use boldface fonts, f.µ0/, to refer to this
vector. The same convention will be applied all the other functions used in
the proof.

The functions f .µ0/ and g.µ0/ are de�ned with respect to the variable Ot.
There exist two corresponding functions for the activity variable Ut, which
we will denote f u.µ0/ and gu.µ0/, where f .µ0/ D h. f u.µ0// and g.µ0/ D
h.gu.µ0//, h.¢/ being the network activation function. f.µ0/, g.µ0/, fu.µ0/, and
gu.µ0/ refer to the corresponding vectors of activity.

In the simulations, we initialized U0 to WA and O0 to h.U0/ to simulate the
propagation of activity through the feedforward connections. To simplify
notations in the proof, we will consider instead that O0 is initialized to
A and U0 to h¡1.A/. This modi�cation does not affect the proof because
the initialization used in the simulations is equivalent to one iteration of the
output network with the integration constant, ¸, set to 1, and it turns out that
the eigenvectors of the Jacobian for the output network are independent of ¸.
We will look at the case where A, and therefore O0, is distributed according
to a normal distribution N .hAi ; 60/ with hAi D f.µ0/ and 60 diagonal with
all the diagonal terms equal to ¾ 2

n .

6.2 Linearization. We consider the case in which the functions f and g
(and f u and gu) are identical.

Since A is a random variable, we can think of this system as being a
random process that generates a temporal sequence of random variables,
fO0, O1, : : : , Ot, : : : , O1g, where O0 D A, and fU0, U1, : : : , Ut, : : : , U1g.

We �rst note that our network is globally stable since the dynamics min-
imizes a Lyapunov function of the form (Cohen & Grossberg, 1983):

L D ¡1
2

X

i;j

wijh.ui/h.uj/ C
X

i

Z ui

0
zh0.z/ dz:

Since the weights were chosen to solve g D h.Wg/, we know that a hill of
pro�le g.µ0/, peaking at any location of the neuronal array, is a �xed point.
In terms of the variable Ut the stable activity pro�le is given by the function
gu.µ0/.

Since we consider the case where fu.µ0/ D gu.µ0/, fu.µ0/ is a stable state.
Moreover, for small enough noise, most initial patterns, U0, are less than ²

away from the stable manifold, that is, the Euclidean distance between U0
and the nearest point on the manifold is less than ² , where ² is a small num-
ber. Consequently, we can study the behavior of our network by linearizing
equation 6.4 around hU0i D gu.µ0/. Let JT be the Jacobian of the function
e.¢/ (see equation 6.4) evaluated at hU0i (we use JT instead of J to simplify
notation later on):

Ut D e.Ut¡1/ (6.5)

¼ e.hU0i/ C JT.Ut¡1 ¡ hU0i/: (6.6)
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Combining equation 6.6 and the fact that e.hU0i/ D hU0i (the mean hU0i
is a stable state), we �nd that:

QUt ¼ JT QUt¡1; (6.7)

where QUt D Ut ¡ hU0i. The transpose of the Jacobian JT is of the form:

JT D .1 ¡ ¸/I C ¸WH0; (6.8)

where H0 is a diagonal matrix whose diagonal terms are equal to h0.gu
i .µ0//.

We can obtain a similar linear equation for the variable QOt. Indeed, lin-
earizing equation 6.1 yields:

QOt ¼ H0 QUt:

If we substitute equation 6.8 in equation 6.7 and multiply both sides by
H0 , we obtain:

H0 QUt ¼ H0..1 ¡ ¸/I C ¸WH0/ QUt¡1

QOt ¼ .1 ¡ ¸/ QOt¡1 C ¸H0W QOt¡1:

Since H0 is diagonal and W is symmetric, H0W D .WH0/T , which entails:

QOt ¼ J QOt¡1:

Therefore, the Jacobian for QOt is J. Iterating this equation leads to:

QOt ¼ Jt QO0:

QO0 is distributed according to N .0; 60/, where 0 is a vector of N zeroes.
Since QOt is related to QO0 by a linear relationship, QOt is distributed according
to N .0; 6t/, where:

6t D Jt60JtT:

Let us de�ne

J1 D lim
t!1

Jt

QO1 D J1 QO0:

The existence of a bounded Lyapunov function ensures that all the eigen-
values of J are less than or equal to one, and therefore J1 exists. At equilib-
rium, we have:

61 D J160J1T: (6.9)
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Figure 9: During relaxation, the initial activity A D O0 is projected onto the tan-
gent, g0.µ0/, of the stable manifold de�ned by the function g.µ/, along directions
orthogonal to gu 0.µ0/. As a result, the initial distribution of activity (shown as a
density plot indicated by the gray circles) is collapsed onto the axis de�ned by
g0.µ0/.

6.3 Characterizing the Transformation J1. We now show that J1 is a
projection on a line pointing in the direction of g0.µ0/—the derivative of g
with respect to µ evaluated at µ0— along the directions orthogonal to gu0.µ0/

(see Figure 9).

6.3.1 Projection onto g0.µ0/. First, we note that:

J1 QO1 D QO1;

and furthermore:

J1J1 QO0 D J1 QO1

D QO1

D J1 QO0:

This is true for arbitrary QO0; thus:

J1J1 D J1;

which is the de�nition of a projection. Therefore, J1 is a projection onto
the subspace spanned by QO1. Next, we show that this subspace is a line
pointing in the direction of g0.µ0/.
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The projecting space is spanned by the vectors, QO, which are solutions
to:

J1 QO D QO: (6.10)

The activity patterns that satisfy equation 6.10 correspond to stable states.
Therefore QO D QO1 D O1 ¡ hO0i where O1 and hO0i are of the form:

O1 D g.µ0 C ±µ/

hO0i D g.µ0/

hence,

QO D O1 ¡ hO0i (6.11)

D g.µ0 C ±µ / ¡ g.µ0/ (6.12)

¼ ±µg0.µ0/: (6.13)

Therefore, J1 is a projection onto g0.µ0/. A similar analysis would show
that J1T is a projection onto gu 0.µ0/.

6.3.2 Projection Along the Directions Orthogonal to gu0.µ0/. To demon-
strate that the projection is along the directions orthogonal to gu 0.µ0/, we
need to show that for any vector, gu0.µ0/

?, orthogonal to gu0.µ0/ (i.e.,
gu0.µ0/

T
gu0.µ0/

? D 0), we have, J1gu0.µ0/
? D 0. We start from the fact that

J1 is a projection onto g0.µ0/ and therefore:

J1gu 0.µ0/
? D ®g0.µ0/

gu0.µ0/
T

J1gu 0.µ0/
?

D ®gu 0.µ0/
T

g0.µ0/

.J1Tgu0
.µ0//Tgu 0

.µ0/
?

D ®gu 0
.µ0/

T
g0.µ0/

gu 0.µ0/
T

gu 0.µ0/
? D ®gu 0.µ0/

T
g0.µ0/

0 D ®gu 0.µ0/
T

g0.µ0/:

Since, in general (and in our simulations), gu0.µ0/
T and g0.µ0/ are not

orthogonal, we can conclude that:

® D 0:

In other words, any vector orthogonal to gu0.µ0/ is an eigenvector of J1

whose eigenvalue is zero. Therefore, J1 is a projection on g0.µ0/ along the
directions orthogonal to gu0.µ0/ (see Figure 9A).

Next, we show that the resulting estimator is unbiased and has a variance
close to the Cramér-Rao bound.
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6.4 Properties of the Network Estimate.

6.4.1 Unbiased Estimator. Since QO1 is distributed according to N .0; 61/,
we have hO1i D hO0i D g.µ0/, and hO1i D f.µ0/ when the functions f and g
are identical. This entails that the �nal activity, O1, is an unbiased estimate
of the initial activity O0.

The network estimate µRN is obtained by applying a complex estimator
to O1. The complex estimator is an unbiased estimate of direction when
applied to O0. SinceO1 is an unbiased estimate of O0, the complexestimator
applied to O1, that is, OµRN , is unbiased.

6.4.2 Variance of the Network Estimate. Let ¾ 2
CR be the variance corre-

sponding to the Cramér-Rao bound. If the activity of the units, oi;0, is in-
dependent and normally distributed according to N . fi.µ0/; ¾ 2

n /, we have
(from equation 3.2):

¾ 2
CR D

¾ 2
n

kf0.µ0/k2 :

We now show that the variance of the network estimate, ¾ 2
OµRN

, is close

to ¾ 2
CR.

At the end of relaxation, all the patterns, QO1, are con�ned to the axis
de�ned by g0.µ0/. Therefore, the covariance matrix is of the form:

61 D ¾ 2
1

g0.µ0/g0.µ0/T

kg0.µ0/k2 ; (6.14)

where ¾ 2
1 is the variance of the norm of QO1 along the axis g0.µ0/. Different

patterns correspond to the stable hill placed at different locations. Using
equation 6.13, we can now show that ¾ 2

1 is related to the variance of the
network estimate, ¾ 2

OµRN
, through the following relationship:

¾ 2
1 D

D
kO1 ¡ hO1i k2

E

¼ kg0.µ0/k2¾ 2
OµRN

:

Therefore:

¾ 2
OµRN

¼
¾ 2

1
kg0.µ0/k2 : (6.15)

Combining equations 6.9, 6.14, and 6.15, we get:

¾ 2
OµRN

g0.µ0/g0.µ0/
T ¼ J160J1T:
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We now multiply both sides of this equation by gu0.µ0/ on the left and
gu0.µ0/

T on the right:

¾ 2
OµRN

gu0.µ0/
T

g0.µ0/g0.µ0/
Tgu0.µ0/ ¼ gu0.µ0/

T
J160J1Tgu0.µ0/:

Since J1Tgu0.µ0/ D gu0.µ0/ (from the fact that gu0.µ0/ is stable):

¾ 2
OµRN

.g0.µ0/
Tgu 0

.µ0//2 ¼ gu0
.µ0/

T
60gu 0

.µ0/

¾ 2
OµRN

¼ gu0.µ0/
T
60gu 0.µ0/

.g0.µ0/Tgu0.µ0//2
:

If f D g and 60 D ¾ 2
n I:

¾ 2
OµRN

¼ ¾ 2
n

kfu0.µ0/k2

.fu 0.µ0/
Tf0.µ0//2

¼ ¾ 2
n

kfu0.µ0/k2

kfu 0.µ0/k2kf0.µ0/k2 cos2 ¹

¼
¾ 2

n

kf0.µ0/k2 cos2 ¹
;

where ¹ is the angle between the vector f0.µ0/ and fu0.µ0/.
Therefore, ¾ 2

OµRN
differs from ¾ 2

CR by a factor inversely proportional to

cos2 ¹ when f D g and 60 D ¾ 2
n I. In general, the angle ¹ will be small if

the activation function, h, is close to linear within the network dynamical
range. With the tuning curves and activation function we used, the cos2 ¹

term makes ¾ 2
OµRN

2% larger than ¾ 2
CR.

Given the small in�uence of this term, we will ignore it in the rest of the
article. This amounts to treating J1 as an orthogonal projection onto g0.µ0/.
Projecting the initial activity orthogonally onto g0.µ0/ amounts to �nding
the stable state that minimizes the square distance with O0. In the presence
of independent gaussian noise of equal variance, the ML estimate is also
the peak position of the stable state, which minimizes the square distance
with the initial activity.

6.5 Nonoptimal Cases.

6.5.1 Nonequal Variance. For arbitrary gaussian noise with covariance
matrix 60, the ML estimate is the direction that minimizes the Mahalanobis
distance between O0 and f.µ/:

µML D arg min
µ

.O0 ¡ f.µ //T6¡1
0 .O0 ¡ f.µ//:
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Since our network minimizes the square distance, it will be suboptimum
whenever this Mahalanobis distance differs from the Euclidean distance.
This is the case, in particular, when some neurons are noisier than others,
that is, when the variance of the noise is not the same for all units.

6.5.2 Correlations. In general, our method is also suboptimal when the
activity of the units is correlated. However, it is still optimum for certain
types of correlations. For gaussian noise with arbitrary covariance matrices,
60, the variance of the Cramér-Rao bound (obtained from equation 3.1) and
the variance of the network estimate (ignoring the difference between f0.µ0/

and fu0.µ0/, and under the assumption that f D g) are given by:

¾ 2
OµRN

¼ f0.µ0/
T
60f0.µ0/

.f0.µ0/Tf0.µ0//2

¾ 2
CR D

1

f0.µ0/T6¡1
0 f0.µ0/

:

These two quantities are equal if and only if f0.µ0/ is an eigenvector of
60. This is the case in particular for the covariance matrix of the stable state,
61. Indeed, all the variance in this case is along the axis de�ned by f0.µ0/.
It would be easy to show that this is also the case for any of the covariance
matrices 6t. In other words, covariance introduced by iterating the network
does not affect performance, which is precisely why we reach the Cramér-
Rao bound at the end of relaxation.

6.5.3 Large Noise. The size of the domain in which our linear approxima-
tion works depends on the amplitude of the second and higher derivatives
of the tuning function, h. The activation function we have used is �at for
negative inputs and rises almost linearly after a threshold (see Figure 3D).
Except for the fast transition from �at to linear rise, the high-order deriva-
tives are all small. This predicts that the network should be able to handle
a fairly large amount of noise and still provide optimal performance.

Another factor allows the network to be robust with respect to noise.
In our simulations, U0 is initialized to WA. This �rst linear averaging step
increases the signal-to-noise ratio by a factor proportional to

p
N, where N

is the number of input units (since wij » 1=N; Zhang, 1996). Therefore, in
the simulations, the size of the domain in which our approximation applies
is proportional to ² for U0 but

p
N² for A.

Our simulations con�rm that our network can indeed handle a fairly
large amount of noise without a signi�cant decrease in performance. Hence,
we have found that signal-to-noise ratio (the ratio of ®=¾n; see equation 2.1)
as low as 3 leads to a standard deviation within 5% of the Cramér-Rao
bound.



396 Alexandre Pouget, Kechen Zhang, Sophie Deneve, and Peter E. Latham

6.5.4 Nongaussian Distributions. Nongaussian noise distributions are a
problem only in the �rst one or two iterations. The central limit theorem
states that the average of a large number of random variables converges to
a normal distribution. Since U0 is initialized to WA, U0 will be normally
distributed in the limit of a large number of units. Even if U0 is not close to a
normal distribution, U1 or U2 will be, since the averaging process is repeated
on each iteration. How much information will be lost in the �rst iterations
cannot be determined in general and depends on the noise distribution.

In the case of a Poisson distribution, the convergence to a normal dis-
tribution is likely to be fast since such a distribution is similar to a normal
distribution with the variance equal to the mean. Our network is no longer
optimum, but our simulations con�rm that performance is still close to
maximum likelihood.

6.5.5 Different Input and Output Functions. When the input and output
functions, f and g, differ, the performance of the network is dif�cult to
predict in the general case. For small differences, however, the linear ap-
proximation leads to:

QO1 D J1.O0 ¡ hO0i/
D J1.O0 ¡ f.µ0//

D J1.O0 ¡ f.µ0/ C g.µ0/ ¡ g.µ0//

D J1.O0 ¡ g.µ0// ¡ J1.g.µ0/ ¡ f.µ0//:

As long as g.µ0/ ¡ f.µ0/ is orthogonal to gu0.µ0/, J1.g.µ0/ ¡ f.µ0// D 0,
and the network behaves as if f and g were identical. This is the case,
in particular, when f and g differ by their width or amplitude. Indeed, f
and g are even functions, whereas gu0.µ0/ is an odd function. This explains
why performance is minimally affected by such changes, as shown in the
simulations (see Figure 7).

6.6 Relation to Linear ML Estimator. Discrimination tasks have been
widely used in psychophysics to probe the representation of sensory vari-
ables such as orientation or direction. In one variation of the task, subjects
are presented with two possible directions, µ0 § ±µ , in rapid succession. The
task is to determine whether the temporal sequence is µ0 C ±µ followed by
µ0 ¡ ±µ , or the reverse.

Assuming that this task is performed on the basis of the response of
direction-tuned neurons such as the ones we have used so far, optimal per-
formance can be obtained by looking at the sign of the difference between
the ML estimation of the �rst and second direction. This reduces to a linear
problem when the reference direction, µ0, is kept constant. Therefore, this
task can be performed optimally by a two-layer network (Pouget & Thorpe,
1991; Seung & Sompolinsky, 1993).
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Three-layer networks are required when more than one reference direc-
tion is used (Pouget & Thorpe, 1991; Mato & Somplinsky, 1996), and mix-
tures of expert architecture can work for any arbitrary direction, but a large
number of hidden units and a gating network are necessary for optimal
performances (Mato & Sompolinsky, 1996).

Our network provides an alternative method that does not require a ded-
icated hidden layer. The iterative process converges onto a linear operator
J1, which is the optimal linear operator for the reference direction µ0.

7 Discussion

Our results demonstrate that it is possible to perform ef�cient, unbiased
estimation with coarse coding using a neurally plausible architecture. This
shows that one of the advantages of coarse codes is to provide a represen-
tation that simpli�es the problem of cleaning up uncorrelated noise within
a neuronal population.

Our model relies on lateral connections to implement a prior expecta-
tion on the pro�le of the activity patterns. As a consequence, units deter-
mine their activation according to their own input and the activity of their
neighbors. When the noise is small enough, this lateral pooling results in a
near-orthogonal projection of the initial activity onto the tangent to the sta-
ble manifold; the stable hill corresponds to the one minimizing the square
distance with the initial activity. Consequently, the network is very close to
ML when the noise is normally distributed with equal variance in each unit.

Cleaning up noise ef�ciently does not entail that the lateral connections
increase the signal-to-noise ratio, or the information content, of the repre-
sentation. It is a well-known result in information theory that data process-
ing cannot increase information content (Cover & Thomas, 1991; this result
holds for Shannon information, but the generalization to Fisher information
is straightforward). The fact that we are within 2% of the Cramér-Rao bound
when applying a complex estimator to the stable hill of the network demon-
strates that our procedure preserves almost completely Fisher information.
Our network, however, does not simply preserve Fisher information; it also
changes the format of information to make it easily decodable. Whereas ML
is the only way to decode the input pattern ef�ciently, a complex estima-
tor, or even a linear estimator, is suf�cient to decode the stable hill while
reaching the Cramér-Rao bound (see Figure 10). One can therefore think of
the relaxation of activity in the nonlinear recurrent network in two ways: as
a clean-up mechanism or as a processing that makes information easier to
decode.

If spike trains are the result of a Poisson process (Shadlen & Newsome,
1994), cleaning up noise ef�ciently is a critical problem for the cortex. As in-
formation is transmitted from one area to the next, noise increases, leading
to wider and wider activity distribution. Eventually activities are bound to
fall outside the neurons’ bandwidth, resulting in information loss. Our pro-
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Figure 10: The COMP estimate preserves Fisher information, I.µ /1, when ap-
plied to the stable hill of the recurrent network (A)—as ML does (B)—but not
when applied to the initial input (C). Therefore, the network dynamics changes
the format of information such that a simple estimator can read out the activity
optimally. I.µ/1, I.µ /2 , and I.µ/3 refer to the Fisher information about direction
at various stages in the estimation process.

cedure can prevent this problem by keeping the activities within a limited
bandwidth while preserving the information content.

Unlike OLE, COM, and COMP, the RN estimate is not the result of a
process in which units vote from their preferred direction, µi. Instead, units
contribute according to the derivatives of their tuning curves, f 0

i .µ/, as in
the case of ML. This feature allows the network to ignore background noise,
that is, responses due to other factors beside the variable of interest. This
property also predicts that discrimination of directions around the vertical
(90 degrees) would be most affected by shutting off the units tuned at 60 and
120 degrees (assuming that the half-width of the tuning curves is around
30 degrees). This prediction is consistent with psychophysical experiments
showing that discrimination around the vertical in humans is affected by
prior adaptation to orientations displaced from the vertical by §30 degrees
(Regan & Beverley, 1985).

As we have shown, the cleaning-up process is optimum only if the output
and input units have the same tuning curves. It is worth mentioning that
learning the weights of the lateral connections with a simple delta rule, a
biologically plausible rule, would actually lead to an output pattern match-
ing the input (Zhang, 1996). It is therefore possible that the match occurs
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naturally in the cortex as the result of a self-organizing process.
The fact that optimum performance is obtained for matched input and

output tuning curves has some interesting implicationsfor orientation selec-
tivity and the role of lateral connections in general in cortical processing. It
argues that the pooled input to cortical neurons should have the same mean
tuning as the output of the cells, a proposal in line with Hubel and Wiesel’s
(1962) model of orientation selectivity and recent experimental data by Fer-
ster, Chung, and Wheat (1996). By contrast, several groups have proposed
that lateral connections are used to sharpen tuning curves (Sillito, 1975;
Heggelund, 1981; Wehmeier, Dong, Koch, & Van Essen, 1989; Wörgotter
& Koch, 1991; Somers, Nelson, & Sur, 1995). Our work suggests that this
sharpening process can only degrade the representation and that the role of
lateral connections may be better described in terms of cleaning up noise, or
changing the format of information, rather than sharpening tuning curves
(Pouget & Zhang, 1996).

These considerations must be tempered by the fact that our attractor
network is a poor model of cortical circuitry in V1. This model is neurally
plausible in the same way Hop�eld network are: its style of computation
and the representation used are similar to the ones used in the cortex. Several
aspects of this model, however, are clearly implausible. V1 circuits are not
stable in the awake state, that is, V1 neurons do not keep on �ring when the
stimulus is extinguished, and inputs are typically not transient. We believe,
however, that the modi�cations required will not affect these conclusions,
and we intend to explore this issue further.

Our approach can be readily extended to any other periodic sensory or
motor variables. For nonperiodic variables such as the disparity of a line in
an image, our network needs to be adapted since it currently relies on circu-
larly symmetric weights. Simply unfolding the network will be suf�cient to
deal with values around the center of the interval under consideration, but
more work is needed to deal with boundary values. We can also generalize
this work to arbitrary mapping between two coarse codes for variables x
and y where y is a function of x. Indeed, a coarse code for x provides a set
of radial basis functions of x that can be used subsequently to approximate
arbitrary functions. It is even conceivable that a similar approach can be
used for one-to-many mappings, a common situation in vision or robotics,
by adapting our network such that several hills can coexist simultaneously.
We are currently exploring such architectures.
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