Demixing smells - fast inference in olfaction Supplementary Material

Agnieszka Grabska-Barwińska
Gatsby Computational Neuroscience Unit
UCL
agnieszka@gatsby.ucl.ac.uk

Jeff Beck
Duke University
jeff@gatsby.ucl.ac.uk

Alexandre Pouget
University of Geneva
Alexandre.Pouget@unige.ch

Peter E. Latham
Gatsby Computational Neuroscience Unit
UCL
pel@gatsby.ucl.ac.uk

1 Variational Bayesian inference

Here we derive the equations we used in the main text for variational inference. There are three parts to the derivation: first we modify slightly our original generative model, then we introduce a set of auxiliary variables (or, more accurately, they introduce themselves), and, finally, we write down a variational approximation that takes into account the auxiliary variables.

1.1 The variational generative model

We start, mainly for completeness, by writing down the original generative model; this is the same as Eqs. (2.1) and (2.2) of the main text. For the likelihood we assume that the spike counts are Poisson,

$$
\begin{equation*}
P(\mathbf{r} \mid \mathbf{c})=\prod_{i} \frac{\left(r_{0}+\sum_{j} w_{i j} c_{j}\right)^{r_{i}}}{r_{i}!} e^{-\left(r_{0}+\sum_{j} w_{i j} c_{j}\right)} \tag{1.1a}
\end{equation*}
$$

and we use a "spike and slab" prior on the concentrations and a Bernoulli prior on s_{j}, the variable that indicates presence or absence of odor j,

$$
\begin{align*}
P(\mathbf{c} \mid \mathbf{s}) & =\prod_{j}\left(1-s_{j}\right) \delta\left(c_{j}\right)+s_{j} \Gamma\left(c_{j} \mid \alpha_{1}, \beta_{1}\right) \tag{1.1b}\\
P(\mathbf{s}) & =\prod_{j} \pi^{s_{j}}(1-\pi)^{1-s_{j}} \tag{1.1c}
\end{align*}
$$

where $\delta(c)$ is the Dirac delta-function and $\Gamma(c \mid \alpha, \beta)$ is the Gamma distribution,

$$
\begin{equation*}
\Gamma(c \mid \alpha, \beta)=\frac{\beta^{\alpha} c^{\alpha-1} e^{-\beta c}}{\Gamma(\alpha)} \tag{1.2}
\end{equation*}
$$

Here $\Gamma(\alpha)$ is the ordinary Gamma function: $\Gamma(\alpha)=\int_{0}^{\infty} d x x^{\alpha-1} e^{-x}$.
Because of the delta-function in the prior, performing efficient variational inference in our model is, as far as we know, difficult. Therefore, we smooth the delta-function, and replace it with a Gamma distribution, $\delta\left(c_{j}\right) \longrightarrow \Gamma\left(c_{j} \mid \alpha_{0}, \beta_{0}\right)$. In the limit $\alpha_{0} \rightarrow 0$ and $\beta_{0} \rightarrow \infty$ we recover the true prior. However, when these two parameters are finite, absent odors - odors with $s_{j}=0$ - have non-zero concentrations. To correct for this, we choose α_{0} and β_{0} so that there is an effective background
rate equal to r_{0}, and then we remove r_{0} from the likelihood. This results in a variational generative model of the form

$$
\begin{align*}
P_{v a r}(\mathbf{r} \mid \mathbf{c}) & =\prod_{i} \frac{\left(\sum_{j} w_{i j} c_{j}\right)^{r_{i}}}{r_{i}!} e^{-\left(\sum_{j} w_{i j} c_{j}\right)} \tag{1.3a}\\
P_{v a r}(\mathbf{c} \mid \mathbf{s}) & =\prod_{j}\left(1-s_{j}\right) \Gamma\left(c_{j} \mid \alpha_{0}, \beta_{0}\right)+s_{j} \Gamma\left(c_{j} \mid \alpha_{1}, \beta_{1}\right) \tag{1.3b}\\
P_{v a r}(\mathbf{s}) & =\prod_{j} \pi^{s_{j}}(1-\pi)^{1-s_{j}} \tag{1.3c}
\end{align*}
$$

To choose α_{0} and β_{0} to mimic the background firing rate, r_{0}, we note that if all the odors were absent (all the s_{j} were zero), the average background rate, $r_{\text {average }}$, would be

$$
\begin{equation*}
r_{\text {average }}=\sum_{j}\left\langle w_{i j}\right\rangle\left\langle c_{j}\right\rangle=p_{c} N_{\text {odors }} \alpha_{0} / \beta_{0} \tag{1.4}
\end{equation*}
$$

where p_{c} is the connection probability and $N_{\text {odors }}$ is the total number of odors (recall that $w_{i j}$ is 1 with probability p_{c} and 0 with probability $1-p_{c}$; see main text, Sec. 4), and α_{0} / β_{0} is the average value of c_{j} under the prior when $s_{j}=0$. Setting $r_{\text {average }}$ to r_{0} implies that

$$
\begin{equation*}
\frac{\alpha_{0}}{\beta_{0}}=\frac{r_{0}}{p_{c} N_{\text {odors }}} \tag{1.5}
\end{equation*}
$$

We enforce this constraint in our simulations.

1.2 Turning products of sums into sums of products

Collecting the terms in Eq. (1.3a), we see that the posterior distribution over \mathbf{c} and \mathbf{s} is given by

$$
\begin{align*}
P(\mathbf{s}, \mathbf{c} \mid \mathbf{r}) & \propto \prod_{i} \frac{\left(\sum_{j} w_{i j} c_{j}\right)^{r_{i}}}{r_{i}!} e^{-\left(\sum_{j} w_{i j} c_{j}\right)} \tag{1.6}\\
& \times \prod_{j}\left[\left(1-s_{j}\right) \Gamma\left(c_{j} \mid \alpha_{0}, \beta_{0}\right)+s_{j} \Gamma\left(c_{j} \mid \alpha_{1}, \beta_{1}\right)\right]\left[\pi^{s_{j}}(1-\pi)^{1-s_{j}}\right]
\end{align*}
$$

Variational inference with this posterior is hard, primarily because the likelihood consists of products over sums. We can, however, turn those products over sums into sums over products by using the multinomial theorem,

$$
\begin{equation*}
\left(\sum_{j} w_{i j} c_{j}\right)^{r_{i}}=\sum_{N_{i j}} \Delta\left(r_{i}-\sum_{j} N_{i j}\right) r_{i}!\prod_{j=0} \frac{\left(w_{i j} c_{j}\right)^{N_{i j}}}{N_{i j}!} \tag{1.7}
\end{equation*}
$$

where Δ is the the Kronecker delta, $\Delta(n)=1$ if $n=0$ and 0 otherwise, and the sum over $N_{i j}$ is shorthand for a set of sums in which $N_{i 1}, N_{i 2}, \ldots$ all run from 0 to r_{i}. The posterior distribution can now be written

$$
\begin{equation*}
P(\mathbf{c}, \mathbf{s} \mid \mathbf{r})=\sum_{\mathbf{N}} P(\mathbf{N}, \mathbf{c}, \mathbf{s} \mid \mathbf{r}) \tag{1.8}
\end{equation*}
$$

where, inserting Eq. (1.3b) into (1.6), $P(\mathbf{N}, \mathbf{c}, \mathbf{s} \mid \mathbf{r})$ is given by

$$
\begin{align*}
P(\mathbf{N}, \mathbf{c}, \mathbf{s} \mid \mathbf{r}) & \propto \prod_{i} \Delta\left(r_{i}-\sum_{j} N_{i j}\right) \prod_{j} \frac{\left(w_{i j} c_{j}\right)^{N_{i j}} e^{-w_{i j} c_{j}}}{N_{i j}!} \tag{1.9}\\
& \times \prod_{j}\left[\left(1-s_{j}\right) \Gamma\left(c_{j} \mid \alpha_{0}, \beta_{0}\right)+s_{j} \Gamma\left(c_{j} \mid \alpha_{1}, \beta_{1}\right)\right]\left[\pi^{s_{j}}(1-\pi)^{1-s_{j}}\right]
\end{align*}
$$

1.3 The variational approximation

The variational approach we use approximates the augmented posterior distribution, $P(\mathbf{N}, \mathbf{c}, \mathbf{s} \mid \mathbf{r})$, rather than the original one, $P(\mathbf{c}, \mathbf{s} \mid \mathbf{r})$. We use a factorized variational distribution of the form

$$
\begin{equation*}
Q(\mathbf{N}, \mathbf{c}, \mathbf{s} \mid \mathbf{r})=Q(\mathbf{N} \mid \mathbf{r}) Q(\mathbf{c}, \mathbf{s} \mid \mathbf{r}) \tag{1.10}
\end{equation*}
$$

where we are using the notation that a probability distribution is labeled by its argument. This can in principle produce confusion, but it won't for this problem.

Our goal is to choose $Q(\mathbf{N}, \mathbf{c}, \mathbf{s} \mid \mathbf{r})$ so that it minimizes the KL distance between $Q(\mathbf{N}, \mathbf{c}, \mathbf{s} \mid \mathbf{r})$ and $P(\mathbf{N}, \mathbf{c}, \mathbf{s} \mid \mathbf{r})$. To see what this implies, we explicitly minimize the KL distance with respect to $Q(\mathbf{N} \mid \mathbf{r})$. To do that we first differentiate with respect to $Q(\mathbf{N} \mid \mathbf{r})$,

$$
\begin{align*}
& \frac{d}{d Q(\mathbf{N} \mid \mathbf{r})} \sum_{\mathbf{N}, \mathbf{s}} \int d \mathbf{c} Q(\mathbf{N}, \mathbf{c}, \mathbf{s} \mid \mathbf{r}) \log \frac{Q(\mathbf{N}, \mathbf{c}, \mathbf{s} \mid \mathbf{r})}{P(\mathbf{N}, \mathbf{c}, \mathbf{s} \mid \mathbf{r})} \tag{1.11}\\
& \quad=1+\log Q(\mathbf{N} \mid \mathbf{r})-\sum_{\mathbf{s}} \int d \mathbf{c} Q(\mathbf{c}, \mathbf{s} \mid \mathbf{r}) \log P(\mathbf{N}, \mathbf{c}, \mathbf{s} \mid \mathbf{r})
\end{align*}
$$

and then set the right hand side to zero. This yields

$$
\begin{equation*}
\log Q(\mathbf{N} \mid \mathbf{r}) \sim\langle\log P(\mathbf{N}, \mathbf{c}, \mathbf{s} \mid \mathbf{r})\rangle_{Q(\mathbf{c}, \mathbf{s} \mid \mathbf{r})} \tag{1.12a}
\end{equation*}
$$

where " \sim " indicates equality up to constants. An essentially identical calculation yields

$$
\begin{equation*}
\log Q(\mathbf{c}, \mathbf{s} \mid \mathbf{r}) \sim\langle\log P(\mathbf{N}, \mathbf{c}, \mathbf{s} \mid \mathbf{r})\rangle_{Q(\mathbf{N} \mid \mathbf{r})} \tag{1.12b}
\end{equation*}
$$

To proceed, we simply need to average $\log P(\mathbf{N}, \mathbf{c}, \mathbf{s} \mid \mathbf{r})$ with respect to the variational distributions. We start by writing down an explicit expression for $\log P(\mathbf{N}, \mathbf{c}, \mathbf{s} \mid \mathbf{r})$,

$$
\begin{align*}
\log P(\mathbf{N}, \mathbf{c}, \mathbf{s} \mid \mathbf{r}) & \sim \sum_{i} \log \Delta\left(r_{i}-\sum_{j} N_{i j}\right)+\sum_{i j} N_{i j} \log \left(w_{i j} c_{j}\right)-w_{i j} c_{j}-\log N_{i j}! \\
& +\sum_{j}\left(1-s_{j}\right)\left[\left(\alpha_{0}-1\right) \log c_{j}-\beta_{0} c_{j}\right]+s_{j}\left[\left(\alpha_{1}-1\right) \log c_{j}-\beta_{1} c_{j}\right] \\
& +\sum_{j} s_{j} \log \left[\frac{\pi}{1-\pi} \frac{\Gamma\left(\alpha_{0}\right)}{\beta_{0}^{\alpha_{0}}} \frac{\beta_{1}^{\alpha_{1}}}{\Gamma\left(\alpha_{1}\right)}\right] . \tag{1.13}
\end{align*}
$$

Using Eq. (1.12), and performing averages over either $Q(\mathbf{N} \mid \mathbf{r})$ or $Q(\mathbf{c}, \mathbf{s} \mid \mathbf{r})$ in Eq. (1.13), whichever is appropriate, we arrive at

$$
\begin{align*}
\log Q(\mathbf{N} \mid \mathbf{r}) & \sim \sum_{i} \log \Delta\left(r_{i}-\sum_{j} N_{i j}\right)+\sum_{i j} N_{i j} \log w_{i j}+N_{i j}\left\langle\log c_{j}\right\rangle_{Q(\mathbf{c}, \mathbf{s} \mid \mathbf{r})}-\log N_{i j}! \tag{1.14a}\\
\log Q(\mathbf{c}, \mathbf{s} \mid \mathbf{r}) & \sim \sum_{j}\left(1-s_{j}\right)\left[\left(\alpha_{0}+\left\langle N_{i j}\right\rangle_{Q(\mathbf{N} \mid \mathbf{r})}-1\right) \log c_{j}-\left(\beta_{0}+\sum_{i} w_{i j}\right) c_{j}\right] \\
& +\sum_{j} s_{j}\left[\left(\alpha_{1}+\left\langle N_{i j}\right\rangle_{Q(\mathbf{N} \mid \mathbf{r})}-1\right) \log c_{j}-\left(\beta_{1}+\sum_{i} w_{i j}\right) c_{j}\right] \tag{1.14b}\\
& +\sum_{j} s_{j} \log \left[\frac{\pi}{1-\pi} \frac{\Gamma\left(\alpha_{0}\right)}{\beta_{0}^{\alpha_{0}}} \frac{\beta_{1}^{\alpha_{1}}}{\Gamma\left(\alpha_{1}\right)}\right]
\end{align*}
$$

Examining these expressions, we see that $Q(\mathbf{N} \mid \mathbf{r})$ is multinomial and $Q(\mathbf{c}, \mathbf{s} \mid \mathbf{r})$ is the sum of Gamma distributions. Using red to indicate the parameters of these distributions, and noting that $Q(\mathbf{c}, \mathbf{s} \mid \mathbf{r})$
can be decomposed as $Q(\mathbf{c}, \mathbf{s} \mid \mathbf{r})=Q(\mathbf{c} \mid \mathbf{s}, \mathbf{r}) Q(\mathbf{s} \mid \mathbf{r})$, we have

$$
\begin{align*}
Q(\mathbf{N} \mid \mathbf{r}) & =\prod_{i} \Delta\left(r_{i}-\sum_{j} N_{i j}\right) r_{i}!\prod_{j} \frac{p_{i j} N_{i j}}{N_{i j}!} \tag{1.15a}\\
Q(\mathbf{c} \mid \mathbf{s}, \mathbf{r}) & =\prod_{j}\left[\left(1-s_{j}\right) \Gamma\left(c_{j} \mid \alpha_{0 j}, \beta_{0 j}\right)+s_{j} \Gamma\left(c_{j} \mid \alpha_{1 j}, \beta_{1 j}\right)\right] \tag{1.15b}\\
Q(\mathbf{s} \mid \mathbf{r}) & =\prod_{j} \lambda_{j}^{s_{j}}\left(1-\lambda_{j}\right)^{s_{j}} \tag{1.15c}
\end{align*}
$$

where

$$
\begin{align*}
p_{i j} & =\frac{w_{i j} e^{\left\langle\log c_{j}\right\rangle_{Q(\mathbf{c}, \mathbf{s} \mid \mathbf{r})}}}{\sum_{j} w_{i j} e^{\left\langle\log c_{j}\right\rangle_{Q(\mathbf{c}, \mathbf{s} \mid \mathbf{r})}}} \tag{1.16a}\\
\alpha_{0 j} & =\alpha_{0}+\left\langle N_{i j}\right\rangle_{Q(\mathbf{N} \mid \mathbf{r})} \tag{1.16b}\\
\alpha_{1 j} & =\alpha_{1}+\left\langle N_{i j}\right\rangle_{Q(\mathbf{N} \mid \mathbf{r})} \tag{1.16c}\\
\beta_{0 j} & =\beta_{0}+\sum_{i} w_{i j} \tag{1.16d}\\
\beta_{1 j} & =\beta_{1}+\sum_{i} w_{i j} \tag{1.16e}\\
\frac{\lambda_{j}}{1-\lambda_{j}} & =\frac{\pi}{1-\pi} \frac{\beta_{0 j}^{\alpha_{0 j}} \Gamma\left(\alpha_{0}\right)}{\beta_{0}^{\alpha_{0}} \Gamma\left(\alpha_{0 j}\right)} \frac{\beta_{1}^{\alpha_{1}} \Gamma\left(\alpha_{1 j}\right)}{\beta_{1 j}^{\alpha_{1 j}} \Gamma\left(\alpha_{1}\right)} . \tag{1.16f}
\end{align*}
$$

Equations (1.15b) and (1.15c) correspond to Eq. (3.2) of the main text.
Now all we have to do is compute $\left\langle N_{i j}\right\rangle_{Q(\mathbf{N} \mid \mathbf{r})}$ and $\left\langle\log c_{j}\right\rangle_{Q(\mathbf{c}, \mathbf{s} \mid \mathbf{r})}$. The former is straightforward: using Eq. (1.15a), we see that

$$
\begin{equation*}
\left\langle N_{i j}\right\rangle_{Q(\mathbf{N} \mid \mathbf{r})}=r_{i} p_{i j} \tag{1.17}
\end{equation*}
$$

Thus, Eqs. (1.16b) and (1.16c) become

$$
\begin{align*}
& \alpha_{0 j}=\alpha_{0}+\sum_{i} r_{i} p_{i j} \tag{1.18a}\\
& \alpha_{1 j}=\alpha_{1}+\sum_{i} r_{i} p_{i j} \tag{1.18b}
\end{align*}
$$

The latter quantity, $\left\langle\log c_{j}\right\rangle_{Q(\mathbf{c}, \mathbf{s} \mid \mathbf{r})}$, is slightly more complicated. Note first of all that

$$
\begin{equation*}
\left\langle\log c_{j}\right\rangle_{Q(\mathbf{c}, \mathbf{s} \mid \mathbf{r})}=\sum_{\mathbf{s}} Q(\mathbf{s} \mid \mathbf{r}) \int d \mathbf{c} Q(\mathbf{c}, \mathbf{s} \mid \mathbf{r}) \log c_{j} \tag{1.19}
\end{equation*}
$$

Examining Eqs. (1.15b) and (1.15c), we see that the integral over \mathbf{c} is an integral over Gamma functions. These are known integrals,

$$
\begin{equation*}
\langle\log c\rangle_{\Gamma(c \mid \alpha, \beta)}=\Psi(\alpha)-\log \beta \tag{1.20}
\end{equation*}
$$

where Ψ is the digamma function: $\Psi(\alpha)=d \log \Gamma(\alpha) / d \alpha$. We thus have

$$
\begin{equation*}
\left\langle\log c_{j}\right\rangle_{Q(\mathbf{c}, \mathbf{s} \mid \mathbf{r})}=\left(1-\lambda_{j}\right)\left(\Psi\left(\alpha_{0 j}\right)-\log \beta_{0 j}\right)+\lambda_{j}\left(\Psi\left(\alpha_{1 j}\right)-\log \beta_{1 j}\right) \tag{1.21}
\end{equation*}
$$

and $p_{i j}$ becomes

$$
\begin{equation*}
p_{i j}=\frac{w_{i j} e^{\left(1-\lambda_{j}\right)\left(\Psi\left(\alpha_{0 j}\right)-\log \beta_{0 j}\right)+\lambda_{j}\left(\Psi\left(\alpha_{1 j}\right)-\log \beta_{1 j}\right)}}{\sum_{k} w_{i k} e^{\left(1-\lambda_{j}\right)\left(\Psi\left(\alpha_{0 k}\right)-\log \beta_{0 k}\right)+\lambda_{k}\left(\Psi\left(\alpha_{1 k}\right)-\log \beta_{1 k}\right)}} . \tag{1.22}
\end{equation*}
$$

When $\alpha_{1}=\alpha_{0}+1$, the set of equations for the parameters of the variational distribution simplify considerably, and reduce to Eq. (3.3) of the main text.

Figure 1: $F(\alpha, \lambda)$ versus α for different values of λ.

In this limit, $\alpha_{1 j}=\alpha_{0 j}+1$, and we can write

$$
\begin{equation*}
p_{i j}=\frac{w_{i j} F_{j}\left(\lambda_{j}, \alpha_{0 j}\right)}{\sum_{k} w_{i k} F_{k}\left(\lambda_{k}, \alpha_{k}\right)} \tag{1.23}
\end{equation*}
$$

with

$$
\begin{equation*}
F_{j}(\lambda, \alpha) \equiv \exp \left[(1-\lambda)\left(\Psi(\alpha)-\log \beta_{0 j}\right)+\lambda\left(\Psi(\alpha+1)-\log \beta_{1 j}\right)\right] \tag{1.24}
\end{equation*}
$$

This nonlinearity can be further decomposed into

$$
\begin{equation*}
F_{j}(\lambda, \alpha)=\left(\beta_{1 j} / \beta_{0 j}\right)^{-\lambda} \beta_{0 j}^{-1} \times F(\lambda, \alpha) . \tag{1.25}
\end{equation*}
$$

In Figure 1 we plot $F(\lambda, \alpha)$

$$
\begin{equation*}
F(\lambda, \alpha)=\exp [(1-\lambda)(\Psi(\alpha))+\lambda(\Psi(\alpha+1))] . \tag{1.26}
\end{equation*}
$$

This function is essentially threshold linear.

2 Sampling

Here we show that Gibbs sampling on the s_{j} does indeed have the correct equilibrium distribution in the limit $d t \rightarrow 0$. We start with the update rule, which comes from Eq. (3.10) of the main text,

$$
\begin{equation*}
T\left(s_{j}^{\prime} \mid \tilde{\mathbf{c}}, \mathbf{s}, \mathbf{r}\right)=\nu_{0} d t P\left(s_{j}^{\prime} \mid \tilde{\mathbf{c}}, \mathbf{s}, \mathbf{r}\right)+\left(1-\nu_{0} d t\right) \Delta\left(s_{j}^{\prime}-s_{j}\right) \tag{2.1}
\end{equation*}
$$

where $s_{j}^{\prime} \equiv s_{j}(t+d t)$, and \mathbf{s} and $\tilde{\mathbf{c}}$ should be evaluated at time t.
We want to show that this update rule acting on the true distribution maps to the true distribution in the small $d t$ limit. Keeping only terms that are first order in $d t$, we have

$$
\begin{align*}
\sum_{\mathbf{s}}\left[\prod_{j} T\left(s_{j}^{\prime} \mid \tilde{\mathbf{c}}, \mathbf{s}, \mathbf{r}\right)\right] P(\tilde{\mathbf{c}}, \mathbf{s} \mid \mathbf{r}) & =\left(1-N_{\text {odors }} \nu_{0} d t\right) \sum_{\mathbf{s}}\left[\prod_{j} \Delta\left(s_{j}^{\prime}-s_{j}\right)\right] P(\tilde{\mathbf{c}}, \mathbf{s} \mid \mathbf{r}) \tag{2.2}\\
& +\nu_{0} d t \sum_{\mathbf{s}} \sum_{j}\left[\prod_{j^{\prime} \neq j} \Delta\left(s_{j^{\prime}}^{\prime}-s_{j^{\prime}}\right)\right] P\left(s_{j}^{\prime} \mid \tilde{\mathbf{c}}, \mathbf{s}, \mathbf{r}\right) P(\tilde{\mathbf{c}}, \mathbf{s} \mid \mathbf{r})
\end{align*}
$$

Sums involving $\Delta\left(s_{j}^{\prime}-s_{j}\right)$ are trivial, giving us

$$
\begin{align*}
\sum_{\mathbf{s}}\left[\prod_{j} T\left(s_{j}^{\prime} \mid \tilde{\mathbf{c}}, \mathbf{s}, \mathbf{r}\right)\right] P(\tilde{\mathbf{c}}, \mathbf{s} \mid \mathbf{r}) & =\left(1-N_{\text {odors }} \nu_{0} d t\right) P\left(\tilde{\mathbf{c}}, \mathbf{s}^{\prime} \mid \mathbf{r}\right) \tag{2.3}\\
& +\nu_{0} d t \sum_{j} \sum_{s_{j}} P\left(s_{j}^{\prime} \mid \tilde{\mathbf{c}}, \mathbf{s}_{\backslash j}^{\prime}, s_{j}, \mathbf{r}\right) P\left(\tilde{\mathbf{c}}, \mathbf{s}_{\backslash j}^{\prime}, s_{j} \mid \mathbf{r}\right)
\end{align*}
$$

where the notation $\backslash j$ indicates all indices except j. The sum over s_{j} is simply $P\left(\tilde{\mathbf{c}}, \mathbf{s}^{\prime} \mid \mathbf{r}\right)$ and the sum over j yields a factor of $N_{\text {odors }}$; that factor exactly cancels the $N_{\text {odors }}$ on the first line. Thus, in the limit $d t \rightarrow 0$,

$$
\begin{equation*}
\sum_{\mathbf{s}}\left[\prod_{j} T\left(s_{j}^{\prime} \mid \tilde{\mathbf{c}}, \mathbf{s}, \mathbf{r}\right)\right] P(\tilde{\mathbf{c}}, \mathbf{s} \mid \mathbf{r})=P\left(\tilde{\mathbf{c}}, \mathbf{s}^{\prime} \mid \mathbf{r}\right) \tag{2.4}
\end{equation*}
$$

Figure 2: Log probability and probability codes make different predictions about activity of the non-presented odors. The left column is $\log p(s)$ for the variational algorithm; the right column is $p(s)$ for the sampling algorithm - exactly the same as the right column in Fig. 3 of the main text. For the variational algorithm, the activity of the neurons (L) codes for \log probability (relative to some background to keep firing rates non-negative). For this algorithm, the drop in probability of the non-presented odors from about e^{-5} to e^{-12} corresponds to a large drop in firing rate. For the sampling based algorithm, on the other hand, activity codes for probability, and there is almost no drop in activity.

Figure 3: Same as Figure 3 in the main text, but for a longer time (up to 1 second) and up to 10 presented odors. Increasing the number of components in the mixture reveals the advantage of sampling over the variational approach - on average, sampling makes slightly more correct guesses than the variational algorithm.

