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1 Variational Bayesian inference

Here we derive the equations we used in the main text for variational inference. There are three parts
to the derivation: first we modify slightly our original generative model, then we introduce a set of
auxiliary variables (or, more accurately, they introduce themselves), and, finally, we write down a
variational approximation that takes into account the auxiliary variables.

1.1 The variational generative model

We start, mainly for completeness, by writing down the original generative model; this is the same
as Eqs. (2.1) and (2.2) of the main text. For the likelihood we assume that the spike counts are
Poisson,

P (r|c) =
∏
i

(
r0 +

∑
j wijcj

)ri
ri!

e−
(
r0+

∑
j wijcj

)
(1.1a)

and we use a “spike and slab” prior on the concentrations and a Bernoulli prior on sj , the variable
that indicates presence or absence of odor j,

P (c|s) =
∏
j

(1− sj)δ(cj) + sjΓ(cj |α1, β1) (1.1b)

P (s) =
∏
j

πsj (1− π)1−sj (1.1c)

where δ(c) is the Dirac delta-function and Γ(c|α, β) is the Gamma distribution,

Γ(c|α, β) =
βαcα−1e−βc

Γ(α)
. (1.2)

Here Γ(α) is the ordinary Gamma function: Γ(α) =
∫∞

0
dxxα−1e−x.

Because of the delta-function in the prior, performing efficient variational inference in our model is,
as far as we know, difficult. Therefore, we smooth the delta-function, and replace it with a Gamma
distribution, δ(cj) −→ Γ(cj |α0, β0). In the limit α0 → 0 and β0 → ∞ we recover the true prior.
However, when these two parameters are finite, absent odors – odors with sj = 0 – have non-zero
concentrations. To correct for this, we choose α0 and β0 so that there is an effective background
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rate equal to r0, and then we remove r0 from the likelihood. This results in a variational generative
model of the form

Pvar(r|c) =
∏
i

(∑
j wijcj

)ri
ri!

e−
(∑

j wijcj

)
(1.3a)

Pvar(c|s) =
∏
j

(1− sj)Γ(cj |α0, β0) + sjΓ(cj |α1, β1) (1.3b)

Pvar(s) =
∏
j

πsj (1− π)1−sj . (1.3c)

To choose α0 and β0 to mimic the background firing rate, r0, we note that if all the odors were
absent (all the sj were zero), the average background rate, raverage, would be

raverage =
∑
j

〈wij〉〈cj〉 = pcNodorsα0/β0 (1.4)

where pc is the connection probability and Nodors is the total number of odors (recall that wij is 1
with probability pc and 0 with probability 1 − pc; see main text, Sec. 4), and α0/β0 is the average
value of cj under the prior when sj = 0. Setting raverage to r0 implies that

α0

β0
=

r0

pcNodors
. (1.5)

We enforce this constraint in our simulations.

1.2 Turning products of sums into sums of products

Collecting the terms in Eq. (1.3a), we see that the posterior distribution over c and s is given by

P (s, c|r) ∝
∏
i

(∑
j wijcj

)ri
ri!

e−
(∑

j wijcj

)
(1.6)

×
∏
j

[
(1− sj)Γ(cj |α0, β0) + sjΓ(cj |α1, β1)

][
πsj (1− π)1−sj

]
.

Variational inference with this posterior is hard, primarily because the likelihood consists of products
over sums. We can, however, turn those products over sums into sums over products by using the
multinomial theorem,(∑

j

wijcj

)ri
=
∑
Nij

∆
(
ri −

∑
j

Nij

)
ri!
∏
j=0

(wijcj)
Nij

Nij !
(1.7)

where ∆ is the the Kronecker delta, ∆(n) = 1 if n = 0 and 0 otherwise, and the sum over Nij is
shorthand for a set of sums in which Ni1, Ni2, ... all run from 0 to ri. The posterior distribution can
now be written

P (c, s|r) =
∑
N

P (N, c, s|r) (1.8)

where, inserting Eq. (1.3b) into (1.6), P (N, c, s|r) is given by

P (N, c, s|r) ∝
∏
i

∆
(
ri −

∑
j

Nij

)∏
j

(wijcj)
Nije−wijcj

Nij !
(1.9)

×
∏
j

[
(1− sj)Γ(cj |α0, β0) + sjΓ(cj |α1, β1)

][
πsj (1− π)1−sj

]
.
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1.3 The variational approximation

The variational approach we use approximates the augmented posterior distribution, P (N, c, s|r),
rather than the original one, P (c, s|r). We use a factorized variational distribution of the form

Q(N, c, s|r) = Q(N|r)Q(c, s|r) (1.10)

where we are using the notation that a probability distribution is labeled by its argument. This can
in principle produce confusion, but it won’t for this problem.

Our goal is to choose Q(N, c, s|r) so that it minimizes the KL distance between Q(N, c, s|r) and
P (N, c, s|r). To see what this implies, we explicitly minimize the KL distance with respect to
Q(N|r). To do that we first differentiate with respect to Q(N|r),

d

dQ(N|r)

∑
N,s

∫
dcQ(N, c, s|r) log

Q(N, c, s|r)

P (N, c, s|r)
(1.11)

= 1 + logQ(N|r)−
∑
s

∫
dcQ(c, s|r) logP (N, c, s|r) ,

and then set the right hand side to zero. This yields

logQ(N|r) ∼ 〈logP (N, c, s|r)〉Q(c,s|r) (1.12a)

where “∼” indicates equality up to constants. An essentially identical calculation yields

logQ(c, s|r) ∼ 〈logP (N, c, s|r)〉Q(N|r) . (1.12b)

To proceed, we simply need to average logP (N, c, s|r) with respect to the variational distributions.
We start by writing down an explicit expression for logP (N, c, s|r),

logP (N, c, s|r) ∼
∑
i

log ∆
(
ri −

∑
j

Nij

)
+
∑
ij

Nij log(wijcj)− wijcj − logNij !

+
∑
j

(1− sj)
[
(α0 − 1) log cj − β0cj

]
+ sj

[
(α1 − 1) log cj − β1cj

]
+
∑
j

sj log

[
π

1− π
Γ(α0)

βα0
0

βα1
1

Γ(α1)

]
. (1.13)

Using Eq. (1.12), and performing averages over either Q(N|r) or Q(c, s|r) in Eq. (1.13), whichever
is appropriate, we arrive at

logQ(N|r) ∼
∑
i

log ∆
(
ri −

∑
j

Nij

)
+
∑
ij

Nij logwij +Nij〈log cj〉Q(c,s|r) − logNij !

(1.14a)

logQ(c, s|r) ∼
∑
j

(1− sj)

[(
α0 + 〈Nij〉Q(N|r) − 1

)
log cj −

(
β0 +

∑
i

wij

)
cj

]

+
∑
j

sj

[(
α1 + 〈Nij〉Q(N|r) − 1

)
log cj −

(
β1 +

∑
i

wij

)
cj

]
(1.14b)

+
∑
j

sj log

[
π

1− π
Γ(α0)

βα0
0

βα1
1

Γ(α1)

]
.

Examining these expressions, we see thatQ(N|r) is multinomial andQ(c, s|r) is the sum of Gamma
distributions. Using red to indicate the parameters of these distributions, and noting that Q(c, s|r)
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can be decomposed as Q(c, s|r) = Q(c|s, r)Q(s|r), we have

Q(N|r) =
∏
i

∆
(
ri −

∑
j

Nij

)
ri!
∏
j

pij
Nij

Nij !
(1.15a)

Q(c|s, r) =
∏
j

[
(1− sj)Γ(cj |α0j , β0j) + sjΓ(cj |α1j , β1j)

]
(1.15b)

Q(s|r) =
∏
j

λ
sj
j (1− λj)sj (1.15c)

where

pij =
wije

〈log cj〉Q(c,s|r)∑
j wije

〈log cj〉Q(c,s|r)
(1.16a)

α0j = α0 + 〈Nij〉Q(N|r) (1.16b)

α1j = α1 + 〈Nij〉Q(N|r) (1.16c)

β0j = β0 +
∑
i

wij (1.16d)

β1j = β1 +
∑
i

wij (1.16e)

λj
1− λj

=
π

1− π
β
α0j

0j Γ(α0)

βα0
0 Γ(α0j)

βα1
1 Γ(α1j)

β
α1j

1j Γ(α1)
. (1.16f)

Equations (1.15b) and (1.15c) correspond to Eq. (3.2) of the main text.

Now all we have to do is compute 〈Nij〉Q(N|r) and 〈log cj〉Q(c,s|r). The former is straightforward:
using Eq. (1.15a), we see that

〈Nij〉Q(N|r) = ripij . (1.17)

Thus, Eqs. (1.16b) and (1.16c) become

α0j = α0 +
∑
i

ripij (1.18a)

α1j = α1 +
∑
i

ripij . (1.18b)

The latter quantity, 〈log cj〉Q(c,s|r), is slightly more complicated. Note first of all that

〈log cj〉Q(c,s|r) =
∑
s

Q(s|r)

∫
dcQ(c, s|r) log cj . (1.19)

Examining Eqs. (1.15b) and (1.15c), we see that the integral over c is an integral over Gamma
functions. These are known integrals,

〈log c〉Γ(c|α,β) = Ψ(α)− log β (1.20)

where Ψ is the digamma function: Ψ(α) = d log Γ(α)/dα. We thus have

〈log cj〉Q(c,s|r) = (1− λj)(Ψ(α0j)− log β0j) + λj(Ψ(α1j)− log β1j) , (1.21)

and pij becomes

pij =
wije

(1−λj)(Ψ(α0j)−log β0j)+λj(Ψ(α1j)−log β1j)∑
k wike

(1−λj)(Ψ(α0k)−log β0k)+λk(Ψ(α1k)−log β1k)
. (1.22)

When α1 = α0 + 1, the set of equations for the parameters of the variational distribution simplify
considerably, and reduce to Eq. (3.3) of the main text.
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Figure 1: F (α, λ) versus α for different values of λ.

In this limit, α1j = α0j + 1, and we can write

pij =
wijFj(λj , α0j)∑
k wikFk(λk, αk)

(1.23)

with

Fj(λ, α) ≡ exp [(1− λ)(Ψ(α)− log β0j) + λ(Ψ(α+ 1)− log β1j)] . (1.24)

This nonlinearity can be further decomposed into

Fj(λ, α) = (β1j/β0j)
−λβ0j

−1 × F (λ, α) . (1.25)

In Figure 1 we plot F (λ, α)

F (λ, α) = exp [(1− λ)(Ψ(α)) + λ(Ψ(α+ 1))] . (1.26)

This function is essentially threshold linear.

2 Sampling

Here we show that Gibbs sampling on the sj does indeed have the correct equilibrium distribution
in the limit dt→ 0. We start with the update rule, which comes from Eq. (3.10) of the main text,

T (s′j |c̃, s, r) = ν0dtP (s′j |c̃, s, r) + (1− ν0dt) ∆(s′j − sj) (2.1)

where s′j ≡ sj(t+ dt), and s and c̃ should be evaluated at time t.

We want to show that this update rule acting on the true distribution maps to the true distribution in
the small dt limit. Keeping only terms that are first order in dt, we have

∑
s

∏
j

T (s′j |c̃, s, r)

P (c̃, s|r) = (1−Nodorsν0dt)
∑
s

∏
j

∆(s′j − sj)

P (c̃, s|r) (2.2)

+ ν0dt
∑
s

∑
j

∏
j′ 6=j

∆(s′j′ − sj′)

P (s′j |c̃, s, r)P (c̃, s|r) .
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Sums involving ∆(s′j − sj) are trivial, giving us

∑
s

∏
j

T (s′j |c̃, s, r)

P (c̃, s|r) = (1−Nodorsν0dt)P (c̃, s′|r) (2.3)

+ ν0dt
∑
j

∑
sj

P (s′j |c̃, s′\j , sj , r)P (c̃, s′\j , sj |r)

where the notation \j indicates all indices except j. The sum over sj is simply P (c̃, s′|r) and the
sum over j yields a factor of Nodors; that factor exactly cancels the Nodors on the first line. Thus,
in the limit dt→ 0,

∑
s

∏
j

T (s′j |c̃, s, r)

P (c̃, s|r) = P (c̃, s′|r) . (2.4)

6



−10

−5

0

L

1 odor

−10

−5

0

L

2 odors

−10

−5

0

L

3 odors

−10

−5

0

L

4 odors

0 20 40 60 80 100

−10

−5

0

Time [ms]

L

5 odors

Variational

0

0.5

1

<
p

(s
=

1
)>

1 odor

0

0.5

1

<
p

(s
=

1
)>

2 odors

0

0.5

1

<
p

(s
=

1
)>

3 odors

0

0.5

1

<
p

(s
=

1
)>

4 odors

0 200 400 600 800 1000
0

0.5

1

Time [ms]

<
p

(s
=

1
)>

5 odors

Sampling

Figure 2: Log probability and probability codes make different predictions about activity of the
non-presented odors. The left column is log p(s) for the variational algorithm; the right column is
p(s) for the sampling algorithm – exactly the same as the right column in Fig. 3 of the main text.
For the variational algorithm, the activity of the neurons (L) codes for log probability (relative to
some background to keep firing rates non-negative). For this algorithm, the drop in probability of
the non-presented odors from about e−5 to e−12 corresponds to a large drop in firing rate. For the
sampling based algorithm, on the other hand, activity codes for probability, and there is almost no
drop in activity.
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Figure 3: Same as Figure 3 in the main text, but for a longer time (up to 1 second) and up to
10 presented odors. Increasing the number of components in the mixture reveals the advantage of
sampling over the variational approach — on average, sampling makes slightly more correct guesses
than the variational algorithm.
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