
Divisive Normalization, Line AttractorNetworks and Ideal ObserversSophie Deneve1 Alexandre Pouget1, and P.E. Latham21Georgetown Institute for Computational and Cognitive Sciences,Georgetown University, Washington, DC 20007-21972Dpt of Neurobiology, UCLA, Los Angeles, CA 90095-1763, U.S.A.AbstractGain control by divisive inhibition, a.k.a. divisive normalization,has been proposed to be a general mechanism throughout the vi-sual cortex. We explore in this study the statistical propertiesof this normalization in the presence of noise. Using simulations,we show that divisive normalization is a close approximation to amaximum likelihood estimator, which, in the context of populationcoding, is the same as an ideal observer. We also demonstrate ana-lytically that this is a general property of a large class of nonlinearrecurrent networks with line attractors. Our work suggests thatdivisive normalization plays a critical role in noise �ltering, andthat every cortical layer may be an ideal observer of the activity inthe preceding layer.Information processing in the cortex is often formalized as a sequence of a linearstages followed by a nonlinearity. In the visual cortex, the nonlinearity is best de-scribed by squaring combined with a divisive pooling of local activities. The divisivepart of the nonlinearity has been extensively studied by Heeger and colleagues [1],and several authors have explored the role of this normalization in the computationof high order visual features such as orientation of edges or �rst and second ordermotion[4]. We show in this paper that divisive normalization can also play a role innoise �ltering. More speci�cally, we demonstrate through simulations that networksimplementing this normalization come close to performing maximum likelihood es-timation. We then demonstrate analytically that the ability to perform maximumlikelihood estimation, and thus e�ciently extract information from a population ofnoisy neurons, is a property exhibited by a large class of networks.Maximum likelihood estimation is a framework commonly used in the theory ofideal observers. A recent example comes from the work of Itti et al., 1998, who haveshown that it is possible to account for the behavior of human subjects in simplediscrimination tasks. Their model comprised two distinct stages: 1) a network



which models the noisy response of neurons with tuning curves to orientation andspatial frequency combined with divisive normalization, and 2) an ideal observer (amaximum likelihood estimator) to read out the population activity of the network.Our work suggests that there is no need to distinguish between these two stages,since, as we will show, divisive normalization comes close to providing a maximumlikelihood estimation. More generally, we propose that there may not be any partof the cortex that acts as an ideal observer for patterns of activity in sensory areasbut, instead, that each cortical layer acts as an ideal observer of the activity in thepreceding layer.1 The networkOur network is a simpli�ed model of a cortical hypercolumn for spatial frequencyand orientation. It consists of a two dimensional array of units in which each unitis indexed by its preferred orientation, �i, and spatial frequency, �j .1.1 LGN modelUnits in the cortical layer are assumed to receive direct inputs from the lateralgeniculate nucleus (LGN). Here we do not model explicitly the LGN, but focusinstead on the pooled LGN input onto each cortical unit. The input to each unitis denoted aij . We distinguish between the mean pooled LGN input, fij(�; �), asa function of orientation, �, and spatial frequency, �, and the noise distributionaround this mean, P (aij j�; �).In response to a stimulus of orientation, �, spatial frequency, �, and contrast, C,the mean LGN input onto unit ij is a circular Gaussian with a small amount ofspontaneous activity, �:fij(�; �) = KC exp�cos(�� �j)� 1�2� + cos(� � �i)� 1�2� �+ �; (1)where K is a constant. Note that spatial frequency is treated as a periodic variable;this was done for convenience only and should have negligible e�ects on our resultsas long as we keep � far from 2�n, n an integer.On any given trial the LGN input to cortical unit ij, aij , is sampled from a Gaussiannoise distribution with variance �2ij :p(aij j�; �) = 1q2��2ij exp � [aij � fij(�; �)]22�2ij ! : (2)In our simulations, the variance of the noise was either kept �xed (�2ij = �2) or setto the mean activity (�2ij = fij(�; �)). The latter is more consistent with the noisethat has been measured experimentally in the cortex. We show in �gure 1-A anexample of a noisy LGN pattern of activity.1.2 Cortical Model: Divisive NormalizationActivities in the cortical layer are updated over time according to:
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Figure 1: A- LGN input (bottom) and stable hill in the cortical network afterrelaxation (top). The position of the stable hill can be used to estimate orientation(�̂) and spatial frequency (�̂). B- Inverse of the variance of the network estimate fororientation using Gaussian noise with variance equal to the mean as a function ofcontrast and number of iterations (0, dashed; 1, diamond; 2, circle; and 3, square).The continuous curve corresponds to the theoretical upper bound on the inverseof the variance (i.e. an ideal observer). C- Gain curve for contrast for the corticalunits after 1, 2 and 3 iterations.
uij(t+ 1) =Xkl wij;klokl(t); oij(t+ 1) = uij(t+ 1)2S + �Pkl ukl(t+ 1)2 ; (3)where fwij;klg are the �ltering weights, oij(t) is the activity of unit ij at time t,S is a constant, and � is what we call the divisive inhibition weight. The �lteringweights implement a two dimensional Gaussian �lter:wij;kl = wi�k;j�l = Kw exp�cos[2�(i� k)=P ]� 1�2w� + cos[2�(j � l)=P ]� 1�2w� � (4)where Kw is a constant, �w� and �w� control the width of the �ltering weights, andthere are P 2 units.On each iteration the activity is �ltered by the weights, squared, and then nor-malized by the total local activity. Divisive normalization per se only involves thesquaring and division by local activity. We have added the �ltering weights to ob-tain a local pooling of activity between cells with similar preferred orientations andspatial frequencies. This pooling can easily be implemented with cortical lateralconnections and it is reasonable to think that such a pooling takes place in thecortex.



2 Simulation ResultsOur simulations consist of iterating equation 3 with initial conditions determined bythe presentation orientation and spatial frequency. The initial conditions are chosenas follows: For a given presentation angle, �0, and spatial frequency, �0, determinethe mean cortical activity, fij(�0; �0), via equation 1. Then generate the actualcortical activity, faijg, by sampling from the distribution given in equation 2. Thisserves as our set of initial conditions: oij(t = 0) = aij .Iterating equation 3 with the above initial conditions, we found that for very lowcontrast the activity of all cortical units decayed to zero. Above some contrastthreshold, however, the activities converged to a smooth stable hill (see �gure 1-Afor an example with parameters �w� = �w� = �� = �� = 1=p8, K = 74, C = 1,� = 0:01). The width of the hill is controlled by the width of the �ltering weights.Its peak, on the other hand, depends on the orientation and spatial frequency of theLGN input, �0 and �0. The peak can thus be used to estimate these quantities (see�gure 1-A). To compute the position of the �nal hill, we used a population vectorestimator [3] although any unbiased estimator would work as well. In all cases welooked at, the network produced an unbiased estimate of �0 and �0.In our simulations we adjusted �w� and �w� so that the stable hill had the samepro�le as the mean LGN input (equation 1). As a result, the tuning curves of thecortical units match the tuning curves speci�ed by the pooled LGN input. For thiscase, we found that the estimate obtained from the network has a variance closeto the theoretical minimum, known as the Cram�er-Rao bound [3]. For Gaussiannoise of �xed variance, the variance of the estimate was 16.6% above this bound,compared to 3833% for the population vector applied directly to the LGN input.In a 1D network (orientation alone), these numbers go to 12.9% for the networkversus 613% for population vector. For Gaussian noise with variance proportionalto the mean, the network was 8.8% above the bound, compared to 722% for thepopulation vector applied directly to the input. These numbers are respectively 9%and 108% for the 1-D network. The network is therefore a close approximation toa maximum likelihood estimator, i.e., it is close to being an ideal observer of theLGN activity with respect to orientation and spatial frequency.As long as the contrast, C, was superthreshold, large variations in contrast did nota�ect our results (�gure 1-B). However, the tuning of the network units to contrastafter reaching the stable state was found to follow a step function whereas, for realneurons, the curves are better described by a sigmoid [2]. Improved agreementwith experiment was achieved by taking only 2-3 iterations, at which point theperformance of the network is close to optimal (�gure 1-B) and the tuning curves tocontrast are more realistic and closer to sigmoids (�gure 1-C). Therefore, reachinga stable state is not required for optimal performance, and in fact leads to contrasttuning curves that are inconsistent with experiment.3 Mathematical AnalysisWe �rst prove that line attractor networks with su�ciently small noise are closeapproximations to a maximum likelihood estimator. We then show how this resultapplies to our simulations with divisive normalization.



3.1 General Case: Line Attractor NetworksLet on be the activity vector (denoted by bold type) at discrete time, n, for a setof P interconnected units. We consider a one dimensional network, i.e., only onefeature is encoded; generalization to multidimensional networks is straightforward.A generic mapping for this network may be writtenon+1 = H(on) (5)where H is a nonlinear function. We assume that this mapping admits a lineattractor, which we denoteG(�), for whichG(�) = H(G(�)) where � is a continuousvariable.1 Let the initial state of the network be a function of the presentationparameter, �0, plus noise, o0 = F(�0) +N (6)where F(�0) is the function used to generate the data (in our simulations thiswould correspond to the mean LGN input, equation 1). Iterating the mapping,equation 5, leads eventually to a point on the line attractor. Consequently, asn!1, on ! G(�̂). The parameter �̂ provides an estimate of �0.To determine how well the network does we need to �nd �� � �̂ � �0 as a functionof the noise, N, then average over the noise to compute the mean and variance of��. Because the mapping, equation 5, is nonlinear, this cannot be done exactly. Forsmall noise, however, we can take a perturbative approach and expand around apoint on the attractor. For line attractors there is no general method for choosingwhich point on the attractor to expand around. Our approach will be to expandaround an arbitrary point,G(�), and choose � by requiring that the quadratic termsbe �nite. Keeping terms up to quadratic order, equation 6 may be writtenon = G(�) + �on: (7)�on = Jn � �o0 + 12 n�1Xm=0(Jm � �oo) �H00 � (Jm � �oo) ; (8)where J(�) � [@G(�)H(G(�))]T is the Jacobian (the subscript T means transpose),H00 is the Hessian of H evaluated at G(�) and a \�" represents the standard dotproduct.Because the mapping, equation 5, admits a line attractor, J has one eigenvalueequal to 1 and all others less than 1. Denote the eigenvector with eigenvalue 1 asv and its adjoint vy: J � v = v and JT � vy = vy. It is not hard to show that v =@�G(�), up to a multiplicative constant. Since J has an eigenvalue equal to 1, toavoid the quadratic term in Eq. 8 approaching in�nity as n!1 we require thatlimn!1Jn � �o0 = 0: (9)1The line attractor is, in fact, an idealization; for P units the attractors associated withequation 5 consists of P isolated points. However, for P large, the attractors are spacedclosely enough that they may be considered a line.



This equations has an important consequence: it implies that, to linear order,limn!1 �on = 0 (see equation 8), which in turn implies that o1 = G(�) which,�nally, implies that � = �̂. Consequently we can �nd the network estimator of �0,�̂, by computing �. We now turn to that task.It is straightforward to show that J1 = vvy. Combining this expression for J withequation 9, using equation 7 to express �o0 in terms of o0 and G(�), and, �nallyusing equation 6 to express o0 in terms of the initial mean activity, F(�0), and thenoise, N, we �nd that vy(�) � [F(�0)�G(�) +N] = 0 : (10)Using �0 = � � �� and expanding F(�0) to �rst order in �� then yields�� = vy(�) � [N+F(�)�G(�)]vy(�) � F0(�) : (11)As long as vy is orthogonal to F(�)�G(�), h��i = 0 and the estimator is unbiased.This must be checked on a case by case basis, but for the circularly symmetricnetworks we considered orthogonality is satis�ed.We can now calculate the variance of the network estimate, h��i2. Assuming vy �[F(�)�G(�)] = 0, equation 11 implies thath��i2 = vy �R � vy[vy �F0]2 ; (12)where a prime denotes a derivative with respect to � and R is the covariance matrixof the noise, R = hNNi. The network is equivalent to maximum likelihood whenthis variance is equal to the Cram�er-Rao bound [3], h��i2CR. If the noise, N, isGaussian with a covariance matrix independent of �, this bound is equal to:h��i2CR = 1F0 �R�1 �F0 : (13)For independent Gaussian noise of �xed variance, �2, and zero covariance, thevariance of the network estimate, equation 12, becomes �2=(jF0j2 cos2 �) where �is the angle between vy and F0. The Cram�er-Rao bound, on the other hand, isequal to �2=jF0j2. These expressions di�er only by cos2 �, which is 1 if F / vy. Inaddition, it is close to 1 for networks that have identical input and output tuningcurves, F(�) = G(�), and the Jacobian, J, is nearly symmetric, so that v � vy(recall that v = G0). If these last two conditions are satis�ed, the network comesclose to being a maximum likelihood estimator.3.2 Application to Divisive NormalizationDivisive normalization is a particular example of the general case considered above.For simplicity, in our simulations we chose the input and output tuning curves tobe equal (F = G in the above notation), which lead to a value of 0.87 for cos2 �(evaluated numerically). This predicted a variance 15% above the Cram�er-Rao



bound for independent Gaussian noise with �xed variance, consistent with the 16%we obtained in our simulations. The network also handles fairly well other noisedistributions, such as Gaussian noise with variance proportional to the mean, asillustrated by our simulations.4 ConclusionsWe have recently shown that a subclass of line attractor networks can be used asmaximum likelihood estimators[3]. This paper extend this conclusion to a muchwider class of networks, namely, any network that admits a line (or, by straightfor-ward extension of the above analysis, a higher dimensional) attractor. This is truein particular for networks using divisive normalization, a normalization which isthought to match quite closely the nonlinearity found in the primary visual cortexand MT.Although our analysis relies on the existence of an attractor, this is not a require-ment for obtaining near optimal noise �ltering. As we have seen, 2-3 iterationsare enough to achieve asymptotic performance (except at contrasts barely abovethreshold). What matters most is that our network implement a sequence of lowpass �ltering to �lter out the noise, followed by a square nonlinearity to compensatefor the widening of the tuning curve due to the low pass �lter, and a normalizationto weaken contrast dependence. It is likely that this process would still clean upnoise e�ciently in the �rst 2-3 iterations even if activity decayed to zero eventually,that is to say, even if the hills of activity were not stable states. This would allow usto apply our approach to other types of networks, including those lacking circularsymmetry and networks with continuously clamped inputs.To conclude, we propose that each cortical layer may read out the activity in thepreceding layer in an optimal way thanks to the nonlinear pooling properties ofdivisive normalization, and, as a result, may behave like an ideal observer. It istherefore possible that the ability to read out neuronal codes in the sensory corticesin an optimal way may not be con�ned to a few areas like the parietal or frontalcortex, but may instead be a general property of every cortical layer.References[1] D. Heeger. Normalization of cell responses in cat striate cortex. Visual Neuro-science, 9:181{197, 1992.[2] L. Itti, C. Koch, and J. Braun. A quantitative model for human spatial vi-sion threshold on the basis of non-linear interactions among spatial �lters. InR. Lippman, J. Moody, and D. Touretzky, editors, Advances in Neural Infor-mation Processing Systems, volume 11. Morgan-Kaufmann, San Mateo, 1998.[3] A. Pouget, K. Zhang, S. Deneve, and P. Latham. Statistically e�cient estimationusing population coding. Neural Computation, 10:373{401, 1998.[4] E. Simoncelli and D. Heeger. A model of neuronal responses in visual area MT.Vision Research, 38(5):743{761, 1998.


