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Supplementary Materials 
 

This section is organized into three parts.  In the first, we show that when the likelihood 

function, p(r|s), belongs to the exponential family with linear sufficient statistics, optimal 

cue combination can be performed by a simple network in which firing rates from two 

population codes are combined linearly. Moreover, we show that the tuning curves of the 

two populations don’t need to be identical, and that the responses both within and across 

populations don’t need to be uncorrelated.  In the second part, we consider the specific 

case of independent Poisson noise, which provides an example of a distribution 

belonging to the exponential family with linear sufficient statistics. We also consider a 

distribution that does not belong to the exponential family with linear sufficient statistics, 

namely, independent Gaussian noise with fixed variance. We show that, for this case, 

optimal cue combination requires a nonlinear combination of the population codes. In the 

third part, we describe in detail the parameters of the network of conductance-based 

integrate-and-fire neurons.   

 

1. Probabilistic Population Codes for Optimal Cue Combination 

1.1  Bayesian inference through linear combinations for the exponential family 

Consider two population codes, r1 and r2 (both of which are vectors of firing rates), 

which code for the same stimulus, s. As described in the main text, this coding is 

probabilistic, so r1 and r2 are related to the stimulus via a likelihood function, p(r1,r2|s). 

In a cue integration experiment, we need to construct a third population code, r3, related 

to r1 and r2 via some function: r3=F(r1,r2). Given this function, p(r3|s) is given by 

 

 ( ) ( ) ( )( )3 1 2 3 1 2 1 2| , | , .p s p s F d dδ= −∫r r r r r r r r  (SM1) 

 
When F(r1,r2) is not invertible (r3 does not uniquely identify both r1 and r2), such a 

transformation could easily lose information. Our goal here is to find a transformation 

that does not lose information. Specifically, we want to choose F(r1,r2) so that 

 

 ( ) ( )( ) ( )3 1 2 1 2| , | , |r F r r r rp s p s p s= ∝  (SM2) 
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where all terms are viewed as functions of s and the constant of proportionality is 

independent of s. If Equation (SM2) is satisfied, then Bayes’ rule implies that p(s|r3) is 

identical to p(s|r1,r2), and one can use r3 rather than r1 and r2 without any loss of 

information about the stimulus. A function F(r1,r2) that satisfies Equation (SM2) is said 

to be Bayes optimal. 

Clearly, the optimal function F(r1,r2) depends on the likelihood, p(r1,r2|s). Here 

we show that if the likelihood lies in a particular family – exponential with linear 

sufficient statistics – then F(r1,r2) is linear in both r1 and r2. This makes optimal 

Bayesian inference particularly simple. 

We start by considering the independent case, p(r1,r2|s) = p(r1|s)p(r2|s); we 

generalize to the dependent case later on. As stated above, we consider likelihoods in the 

exponential family with linear sufficient statistics, 

 

 ( ) ( )
( ) ( )( )| expk k

k k k
k

p s s
s

φ
η

= Tr
r h r  (SM3) 

 
where the superscript “T” denotes transpose and k=1, 2. Given this form for p(rk|s), we 

show that if h1(s) and h2(s) can both be expressed as hk(s)=Akb(s) for some stimulus 

independent matrix Ak (i=1, 2), then optimal combination is performed by the linear 

function  

 

 ( )3 1 2 1 1 2 2, T Tr F r r A r A r= = +  (SM4) 

 

In other words, we show that when r3 is given by Equation (SM4) with A1 and A2 chosen 

correctly, Equation (SM2) is satisfied. Moreover, we show that the likelihood function 

p(r3|s) lies in the same family of distributions as p(r1|s) and p(r2|s). This is important 

because it demonstrates that this approach – taking linear combinations of firing rates to 

perform optimal Bayesian inference – can be either repeated iteratively or cascaded from 

one population to the next.  Finally, in section 1.2 below, we show that the stimulus 
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dependent kernel functions, hk(s), are related to the tuning curves of the populations, fk(s), 

via the relationship 

 

 ( ) ( ) ( )k k ks s s′ ′=f Σ h  (SM5) 

 
where ( )k sΣ is the covariance matrix and fk(s) is the tuning curve of the populations 

i=1,2. 

 To demonstrate these three properties, we use Equations (SM1) and (SM4), along 

with hk(s)=Akb(s), to compute the left hand side of Equation (SM2), 
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 (SM6) 

 
where ( ) ( ) ( ) ( )3 3 3 1 1 2 2 1 1 2 2 1 2d dφ δ φ φ= − −∫ T Tr r A r A r r r r r   and ( ) ( ) ( )3 1 2s s sη η η= . 

Meanwhile, the right hand side of Eq. (SM2) is given by 
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 (SM7) 

 

Comparing Equations (SM6) and (SM7), we see that both equations have the same 

dependence upon s, which implies that Equation (SM2) is satisfied, and thus information 

in preserved. Therefore, we conclude that optimal cue combination is performed by 

Equation (SM4), regardless of the choice of measure functions 1 1( )φ r  and 2 2( )φ r .  While 

conditional independence of the two populations is assumed in the above derivation, this 
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assumption is not necessary. Rather (as we show below), it is sufficient to assume that the 

joint distribution of r1 and r2 takes the form 

 

 ( ) ( )
( ) ( ) ( )( )1 2

1 2 1 1 2 2

,
, | exp T T T Tr r

r r b A r b A rp s s s
s

φ
η

= +  (SM8) 

 

for any ( )1 2,φ r r  (see Equation (SM21)). 

 So far we have assumed that the likelihood, p(r|s), is a function only of the 

stimulus, s. In fact, the likelihood often depends on what is commonly called a nuisance 

parameter – something that affects the response distributions of the individual neural 

populations, but that the brain doesn’t care about. For example, it is well known that 

contrast strongly affects the gain of the population and thus strongly affects the likelihood 

function.  Since contrast represents the quality of the information about the stimulus but 

is otherwise independent of the actual value of the stimulus, the gain of the population, in 

this context, represents a nuisance parameter. To model this gain dependence, the 

likelihood functions for populations 1 and 2 should be written as p(r1|s, g1) and p(r2|s, g2) 

where gk denotes gain of population k. Although we could apply our formalism and 

simply treat g1 and g2 as part of the stimulus, if we did that the likelihood for r3 would 

contain the term exp(bT(s, g1, g2) r3) (see Equation (SM8)). This is clearly inconvenient, 

because it means we would have to either know g1 and g2, or marginalize over these 

quantities, to extract the posterior distribution of the stimulus, s.   

 Fortunately, it is easy to show that this problem can be avoided if the nuisance 

parameter does not appear in the exponent, so that the likelihood is written  

 

 ( ) ( ) ( )( )| , , exp Tr r h rp s g g sφ= , (SM9) 

 
which is Equation (6) in the main text.  When this is the case, either specifying g or 

multiplying by an arbitrary prior on g and marginalizing yields a conditional distribution 

p(r|s) which is in the desired family.  If h(s) had been a function of g then this would not 

necessarily have been the case.  Note that the normalization factor, η(s,g), from Equation 

(SM8) is not present in Equation (SM9).  This is because, marginalization of p(r|s,g) with 
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respect to an arbitrary prior p(g) will only leave the stimulus dependent kernel h(s) 

unchanged when the partition function, η(s,g), factorizes into a term which depends only 

on s and a term which depends only on g, or equivalently, when 

 

 

( )
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However, when g is the gain, ( ) ( ),s g g s=f f , where ( )sf  is independent of g.  This 

implies  
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0 d s g s
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s s
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h f
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. (SM11) 

 
However, since  

 

 ( ) ( ) ( )Tlog ,d s g s g s
ds

η ′= h f  (SM12) 

 
we can conclude (by combining SM11 and SM12) that when g is the gain, η(s,g) only 

factorizes when it is independent of s.  Fortunately, this seemingly strict condition is 

satisfied in many biologically relevant scenarios.  For example, this is the case if the 

function ( , )gφ r  and h(s) are both shift invariant, a standard assumption in theoretical 

studies of population codes. Here shift invariance means that  

 

 
( ) ( ), ,
( ) ( )

g g
s k s s

φ φ=

+ ∆ =

Sr r
h Sh

  (SM13) 
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where the N dimensional matrix S takes the form sij = 1 when mod(i-j-k,N)=0 and is zero 

otherwise,  k is an integer which tells us how much the indices are shifted, and N is the 

number of neurons.  Note that Equation (SM13) guarantees translation-invariant kernels,  

 

 ( ) ( ),i ih s h s s= −  (SM14) 

 

and also translation invariant tuning curves and covariance matrices. Using the definition 

of the partition function, η(s,g), and noting that det(S)=1, we see that 
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Since k was arbitrary, ( , )s gη  must be independent of s, and therefore is constant and any 

g dependence can be absorbed into φ(r,g).  

Alternatively, we could also have concluded that ( , )s gη  is independent of s by 

simply assuming that silence is uninformative, i.e. p(s|r=0,g) is equal to the prior p(s), i.e. 
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Since the second term in the product on the right hand side is only a function of g 

equality holds only when ( , )s gη  is independent of s. As shown in Fig. 3 in the main text, 

this condition can hold even when the tuning curves are not perfectly translation invariant.  
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1.2 Relationship between the tuning curves, the covariance matrix and the stimulus 

dependent kernel h(s) 

In this section, we show that our approach works for a very wide range of tuning curves 

and covariance matrices. This follows from the combination of two facts 1) optimal 

combination via linear operations requires only that the stimulus dependent kernels, h1(s) 

and h2(s), be drawn from a common basis, i.e. hk(s)=Akb(s) and 2) the tuning curves and 

covariance matrix are related to the stimulus dependent kernels h(s) through a simple 

relationship (Equation (SM18) below). The first of these was shown in the previous 

section; the second we show here. 

 For any distribution of the form of Equation (SM9) , a relationship between the 

tuning curve and the stimulus dependent kernel can be obtained through a consideration 

of the derivative of the mean, f(s,g), with respect to the stimulus, 
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 (SM17) 

 
Here Σ(s,g) is the covariance matrix and we have expressed the partition function ( , )s gη  

in its integral form. Clearly, since the covariance matrix may depend upon the stimulus, 

there is a great variety of tuning curves which may be optimally combined.   

 When the gain is present as a nuisance parameter, this relationship may also be 

used to demonstrate that the covariance matrix must be proportional to the gain. This is 

because we can rewrite Equation (SM18) as 
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 ( )1( ) ( , ) ,h Σ fs s g s g−′ ′=  (SM18) 

 
This corresponds to Equation (7) in the main text. As noted above, the kernel h(s) must 

be independent of gain for the optimality of linear combinations. Since ( ) ( ),s g g s′ ′=f f  

where ( )sf  is independent of gain, this occurs if the covariance matrix is also 

proportional to the gain. Since the diagonal elements of the covariance matrix correspond 

to the variance, the constant of proportionality gives the Fano factor. The precise value of 

the constant of proportionality, and thus of the Fano factor, is not important, so long as it 

is independent of the gain.    

 

1.3 Constraint on the posterior distribution over s 

The basis from which h(s) is drawn not only determines whether or not two populations 

may be optimally combined, but also places some restrictions on the set of posterior 

distributions that can be represented.  These restrictions, however, are quite weak in the 

sense that, for proper choices of the kernel h(s), a very wide range of posterior 

distributions can be represented.  

For instance, consider the case in which the partition function, ( ),s gη , is 

independent of s, so that the posterior distribution is simply 

 
 ( ) ( )( )| exp Tr h rp s s∝  (SM19) 

 
Thus, the log of the posterior is a linear combination of the functions that make up the 

vector h(s), and we may conclude that almost any posterior may be well approximated 

when this set of functions is “sufficiently rich.”  Of course, it is also possible to restrict 

the set of posterior distributions by an appropriate choice for h(s). For instance, if it is 

desirable that the posterior distribution be constrained to be Gaussian, we could simply 

restrict the basis of h(s) to the set quadratic functions of s. Equation (SM20) also 

indicates why gain is a particularly important nuisance parameter for distributions in this 

family: an increase in the amplitude of the population pattern of activity, r, leads to a 

significant increase in the sharpness of the posterior through the exponentiation. 
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1.4 Neural variability and the exponential family with linear sufficient  statistics 

In the above derivation we made no explicit assumptions regarding the covariance 

structure of the joint distribution of r1 and r2. Fortunately, as with the Gaussian 

distribution, there are members of this family of distributions which are capable of 

modeling the first-order and second-order statistics of any response distribution, as long 

at the tuning curves depend on the stimulus.  A complete set of restrictions can be 

obtained through a consideration of the higher s derivatives of either the tuning curve or 

the partition function.  However, as with the Gaussian distribution, these restrictions 

concern only the third and higher moments.   

Together with Equation (SM18), these arguments indicate that a broad class of 

correlation structures between populations can also be incorporated into this encoding 

scheme. Specifically, in Equation (SM18) we did not specify whether or not the 

responses referred to one or two populations. Thus, the vector mean and covariance 

matrix of Equation (SM18), could have referred to a pair of correlated populations, i.e.,  

 

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )

1 11 12 1

2 21 22 2

, , ,
, , , , and .

, , ,
f Σ Σ h

f Σ h
f Σ Σ h

s g s g s g s
s g s g s

s g s g s g s
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

(SM20) 

 

When this is the case, the two populations may be optimally combined, provided h1(s) 

and h2(s), as obtained from Equations (SM18) and (SM21), are independent of g and 

linearly related, or more generally, drawn from a common basis.   

 

 
2. An example showing explicitly that a linear combination is optimal (Poisson 

neurons), and a second example showing that a linear combination is not optimal 

(Gaussian neurons).  

2.1 Independent Poisson neurons 

We now consider an example of a distribution that belongs to the exponential family with 

linear sufficient statistics, namely the independent Poisson distribution. We also assume 
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that the neurons have Gaussian tuning curves which are dense and translation invariant, 

i.e., ( ) ,i
i

f s c=∑ where c is some constant. For this case, we have  
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 (SM21) 

 
Here hi(s) = log(fi(s)) and g represents, as usual, the gain. Clearly, this likelihood function 

satisfies Equation (SM9). The stimulus dependent kernel h(s) in this case is simply the 

log of the tuning curves. Moreover, it is easy to show that if we marginalize out the gain 

we obtain a likelihood function, p(r|s), that satisfies Equation (SM3) regardless of the 

prior on g. In other words, for independent Poisson noise, optimal cue combination only 

involves linear combination of population pattern of activity. Moreover, for Gaussian 

tuning curves, the log of each fi(s) is quadratic in s, implying that the resulting posterior 

distribution is also a Gaussian with a variance, ( )2σ r , that is inversely proportional to 

the amplitude, i.e., 

 

 
( )2 2

1 .i

i i

r
σ σ

= ∑r
 (SM22) 

 
Here, iσ  is the width of the ith tuning curve.   

 

2.2 Gaussian distributed neurons 

In the above example, the assumption that the tuning curves are dense insures the 

parameter g can be marginalized without affecting the stimulus dependence of the 

likelihood function. This is not, however, always the case.  For example, consider a 
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population pattern of activity that has some stimulus-dependent mean gf(s) that is 

corrupted by independent Gaussian noise with a fixed variance σ2, i.e., 
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 (SM23) 

 

Here, h(s) = f(s)/σ2 and the density of the tuning curves implies that f(s)Tf(s) is constant, 

independent of s.  Unlike the independent Poisson case, it is now impossible to 

marginalize an arbitrary prior on the gain without affecting the stimulus dependence of 

the likelihood function.  Of course, if the gains of two such populations are known, 

optimal Bayesian inference is performed by the linear operation, 

 

 3 1 1 2 2.g g= +r r r  (SM24) 

 

However, if the gains of both populations are not constant across trials, then the use of 

Equation (SM25) requires that the weights of the linear operation be changed on a trial by 

trial basis.  That is, the gain of each population must be approximated, presumably from 

the activities of the populations themselves, such that  

 

 ( ) ( )3 1 1 1 2 2 2.g g= +r r r r r  (SM25) 

 

Thus, for additive Gaussian noise, optimal cue combination cannot be performed by a 

linear operation.  

 
 
3. Simulations with simplified neurons 
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This simulation (summarized in Fig.3 of the main text) illustrates the optimality of our 

approach for a network with different types of tuning curves in the input layers. Here we 

provide the details of those simulations. 

 The input contains three layers, with N neurons in each. One of the layers has 

Gaussian tuning curves; the other two have sigmoidal tuning curves; one monotonically 

increasing and the other monotonically decreasing. In all cases the noise is independent 

and Poisson. We generated the tuning curves using a two step process. First we generated 

the kernels, hk(s), for each input layer (k=1, 2 or 3) by combining linearly a set of basis 

functions, denoted b(s), using three distinct matrices, A1, A2 and A3. We then used the 

exponential of these kernels as input tuning curves. This is the correct choice of tuning 

curves when the noise is independent and Poisson.  

 The activity in the output layer was obtained by summing the input activity 

multiplied by the transpose of A1, A2 and A3  (as specified by Equations (SM4) and 

(SM29); see below). This procedure ensures that the kernel of the output layer is simply 

the basis set, b(s), used to generate the input kernels. 

 

Generating the input kernel hk(s) and input tuning curves fk(s) 

We first generated a set of N basis functions defined as 

 

  ( ) ( )2

2log exp
2

i
i i

i

s s
b s M c

σ

⎡ ⎤⎛ ⎞⎛ ⎞−⎢ ⎥⎜ ⎟⎜ ⎟= − +
⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

 

 

with N = 51, M = 1, σi
2 = 32, ci = 0.1 and si = -400+16*i. These basis functions were 

combined linearly to obtained the kernels in each of the input layers 

 

  ( ) ( )k ks s=h A b       (SM26) 

 

where again k=1,2 and 3 (corresponding to the three input layers), and Ak is a matrix of 

coefficients specific to each input layer. The matrices Ak were obtained using linear 
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regression with a regularizer (to keep the weights smooth and small). Specifically, we 

used  

 

  *

1T k
k d

−
⎡ ⎤= +⎣ ⎦b bh

A C I C       (SM27) 

 

where Cb is the covariance matrix of the basis set b (across all values of s, assuming a 

uniform distribution over the range [-400, 400]), Ck
bh* is the covariance between b and 

the target kernel h* for input layer k, and I is the identity matrix. The parameter d (the 

regularizer parameter) was set to 1.   

The ith target kernel in the Gaussian input layer was given by 

 

  ( ) ( )2
*

2log exp
2

i
i i

i

s s
h s M d

σ

⎡ ⎤⎛ ⎞⎛ ⎞−⎢ ⎥⎜ ⎟⎜ ⎟= − +
⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

 

 

with N = 51, M = 1±0.5, σi
2 = 32±16, di  = 0.1±0.1 and si = -400+16*i±4. In all cases, the 

notation ± means that the parameters were drawn uniformly from the corresponding 

range of values (e.g. 32±16 = [16, 48]). The random components were added to introduce 

variability in the width, position, baseline and amplitude of the input tuning curves.

 For the monotonic increasing sigmoidal input layer, the ith target kernel was given 

by, 

 

  ( ) ( )( )
* 1log

1 exp /i i
i

h s M d
s s t

⎡ ⎤⎛ ⎞
⎢ ⎥= +⎜ ⎟⎜ ⎟+ − −⎢ ⎥⎝ ⎠⎣ ⎦

 

 

with N = 51, M = 1±0.5, t = 32±16, di  = 0.1±0.1 and si = -400+16*i±-4. The same 

equation and parameters was used in the monotonic decreasing sigmoidal input layer, 

with a reversed sign in the exponential. The input tuning curves, fk(s), were then obtained 

by taking the log of the input kernels, hk(s).  
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 Note that because of the approximation introduced by the linear regression step 

(Equations (SM27) and (SM28)), the input tuning curves are not exactly equal to the log 

of the target kernels. Nonetheless, they are quite close and, as a result, the tuning curves 

in the first input layer were indeed Gaussian, while the tuning curves is the other two 

layers were sigmoidal (see Fig. 3a in the main text). 

 

Generating one trial 

The activity in the input layers on each trial (see Fig. 3b in the main text) were obtained 

by drawing spike counts from a multivariate independent Poisson distribution with means 

fk(s). The resulting activities, r1, r2 and r3, were then combined to obtain the activity in 

the output layer according to (see Equation (SM4)): 

 

  1 1 2 2 3 3o

+
⎡ ⎤= + +⎣ ⎦

T T Tr A r A r A r       (SM28) 

 

where the rectification []+ is defined as [x]+= max(0,x).  This rectification is used to 

ensure that all component of ro are non-negative (as is the case for neural activity).  This 

introduces a slight approximation in our scheme but, as can be seen from Fig. 3 in the 

main text, this has virtually no impact on our results.  

 

Decoding the probability distributions 

For a given pattern of activity, rk, in a layer k, the corresponding probability distributions 

is obtained through 

 

  ( ) ( )( )1| expk k kp s s
Z

= Tr h r  

 

Z is chosen to ensure that the integral of p(s|rk) with respect to s is equal to 1. Note that in 

the output layer, the ith kernel in the output layer is given by bi(s). 

 

 

4. Simulations with conductance-based integrate-and-fire neurons 
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The objective of the simulations was to demonstrate that networks of conductance-based 

integrate-and-fire neurons can perform near-optimal Bayesian inference. As a case study, 

we used a cue combination task in which the network combines two cues whose 

reliabilities are systematically varied from trial to trial.  

 

 

Network architecture 

The network consists of two unconnected input layers and one output layer. Each input 

layer contains 252 independent excitatory neurons firing with near-Poisson statistics. The 

output layer contains 1008 excitatory and 252 inhibitory neurons. The preferred stimuli 

of the neurons in each layer are equally spaced and uniformly distributed. An excitatory 

neuron in the output layer receives 24 connections from neurons in each input layer, an 

inhibitory one receives 16. Connections are drawn randomly without replacement from a 

Gaussian probability distribution over the stimulus, centered at the preferred stimulus of 

the output neuron and with a width of σkernel. Specifically, the probability of making a 

connection from neuron j to neuron i, denoted pij, is given by 

 

 

( )

( )

2

2
kernel

2

2
kernel

exp
2

exp
2

i j

ij

i j

j

s s

p
s s

σ

σ

⎛ ⎞−⎜ ⎟−
⎜ ⎟
⎝ ⎠=

⎛ ⎞−⎜ ⎟−
⎜ ⎟
⎝ ⎠

∑
 (SM29) 

 

All connection strengths are equal and constant with value w for a given input layer. 

Within the output layer there are two types of lateral connections: inhibitory to 

excitatory and excitatory to inhibitory. Each excitatory neuron receives 30 connections 

from inhibitory neurons, and each inhibitory neuron receives 40 connections from 

excitatory neurons. These are randomly drawn without replacement from a uniform 

distribution, and the connection strengths are all 1.  

 

Input layers 
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Neurons in the input layers fire at a constant rate, except that there is a refractory period 

of 3 ms. More specifically, the probability of firing in any small interval dt is a constant 

times dt, except within 3 ms of a previous spike, in which case the probability of firing is 

0. As a result, the variance of the spike counts of an input neuron across trials is 

approximately equal to their mean. The rates are obtained from a Gaussian distribution 

centered at a given stimulus, with width inputσ , plus a baseline set to a fraction of the 

amplitude (peak rate minus baseline rate), 

 

 
( )2

2
input

exp .
2

i
i s

s s
r g c

σ

⎛ ⎞⎛ ⎞−
⎜ ⎟⎜ ⎟= − +

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 (SM30) 

 

We used σinput and 0.1c = . The gain, g, is fixed on any given trial. In the case of the 

visual system, the amplitude would be related to the contrast of a presented image. The 

higher the contrast, the higher the input gain, the higher the output gain, and the less 

variable the estimate of stimulus. 

 

Output layer 

The output layer consists of conductance-based integrate-and-fire neurons. The 

membrane potential, ( )iV t , of output neuron i as a function of time t is described by 

 

( ) ( )( ) ( )( ) ( )( )i
L i L iE i E iI i I iA i A

dVC g V E g t V E g t V E g t V E
dt

= − − − − − − − −  (SM31) 

 

where C is the capacitance of the membrane and EE, EI, EA, and EL are reversal potentials. 

The conductance ( )iEg t  contains the contributions of the spikes from all excitatory 

presynaptic neurons. If neuron i is of type a (which can be E or I), then this conductance 

is given by 

 

 ( ) ( ),a

k
ia ij aj j ij

jk
g t w g t t dτα= − −∑  (SM32) 
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where ajg  is the peak conductance following a single incoming spike from the jth 

excitatory presynaptic neuron, ijw is the conductance weight defined above (1 for E→I 

and I→E connections, 0 for E→E and I→I connections, and w for connections from the 

input to output layer), k
jt  is the time of the kth spike from neuron j, and dij is the synaptic 

delay between neurons i and j. The effect of a spike on the conductance is given by an 

alpha-function, 

 

 ( ) exp 1 , for  0,  and  0  otherwise.t tt tτα
τ τ

⎛ ⎞= − >⎜ ⎟
⎝ ⎠

 (SM33) 

 

The synaptic conductance at an excitatory neuron caused by spikes from inhibitory 

presynaptic neurons follows an expression analogous to Equation (SM30). 

 The after hyperpolarizing conductance, ( )iAg t , is induced by the cell’s own 

spikes: ( ) ( ),A

k
iA A i A

k
g t g t t dτα= − −∑  with Ad  a delay, k

it  the time of the cell’s own kth 

spike. The leak conductance, Lg , is constant. When the membrane potential exceeds the 

spike threshold (-55 mV), a spike is emitted, the potential is reset to -60 mV, where it is 

held for an absolute refractory period. This refractory period is 3 ms for excitatory 

neurons and 1.5 ms for inhibitory neurons. Moreover, the spike threshold is elevated by 

10 mV and exponentially decays back to -55 mV with a time constant of 10 ms; this 

mimics a relative refractory period. 

 

Parameters 

The reversal potentials are mV0=EE , mV70−=IE , mV90−=AE , and 

mV70−=LE . The time constants for the conductances are ms1=Eτ and 

ms2== AI ττ . Excitatory neurons have mF5.0=C , nS25=Lg , and nS40=Ag . 

Inhibitory neurons have mF2.0=C , nS20=Lg , and nS20=Ag . The synaptic delays, 

ijd , between inhibitory and excitatory neurons in the output layer are randomly drawn 



 18

from a zero-bounded normal distribution with mean 3 ms and standard deviation 1 ms, 

with no delay exceeding 6 ms; the delay Ad is 1 ms. The peak conductances are given as 

follows: 12 nSajg =  if a E=  and j refers to a neuron in the input layer; 10 nSajg =  if 

a I=  and j refers to a neuron in the input layer or if a E=  and j refers to an inhibitory 

neuron in the output layer; 3 nSajg =  if a I=  and j refers to an excitatory neuron in the 

output layer. 

For each combination of gains in the input layers we ran 1008 trials. Each trial 

lasted 500 ms. The equations were integrated using the Euler method with a time step of 

0.5 ms.  

Three networks were tested: 

• σinput =20, σkernel =15, and w=1 for both input layers; 

• σinput =15, σkernel =20, and w=1.78 for input layer 1, while σinput =25, σkernel 

=10, and w=0.77 for input layer 2; 

• σinput =15, σkernel =15, and w=1.78 for input layer 1, while σinput =25, σkernel 

=15, and w=0.45 for input layer 2. 

 

Estimating the mean and variance of the posterior distribution 

Ideally, one would like to use Bayes’ theorem to estimate, on every trial, the mean and 

variance of the posterior of the distribution encoded by the excitatory neurons in the 

output layer. Unfortunately, this requires that we first measure the likelihood function, 

( | )p sr . Estimating a probability distribution over 1008 neurons is in practice impossible 

unless the neurons are independent, which is not the case in these simulations.  

 Instead, we used an approach which is very similar to the one used in human 

experiments 1,2. On every trial, we estimated the mean of the distribution by decoding the 

output pattern of activity. We then used the mean and variance of this estimate over 1008 

trials as estimates of the mean and variance of the posterior distribution. This method will 

converge to the right values when all distributions are Gaussian and the decoder is 

optimal. Unfortunately, the optimal decoder also requires knowledge of ( | )p sr . 

Therefore, we used a (potentially) suboptimal decoder instead. Specifically, for the mean, 

we estimated the value of s by applying a least-squares fit of a Gaussian to the population 
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pattern of activity on a single trial, with the amplitude, width, and peak location as 

parameters. (We also fit Gaussians with fixed width and amplitude and used only the 

peak location as a parameter; the results were the same.) The value of the peak location 

was used as an estimate of s. We repeated these steps over 1008 trials, and reported the 

estimate averaged over all trials, as is common in psychophysics. Because our decoder is 

not optimal, our estimates of the mean are not as good as they could be. However, we use 

the same estimator when only one input is active and when both are active, so a 

difference in optimality is expected to cancel. To estimate the variance, we used a locally 

optimal linear estimator 3. We also computed the variance of the estimates themselves; 

these were nearly identical. 

 

Comparing network performance to the predictions of optimal Bayesian inference 

We first simulated our network with only input layer 1 active. Spike trains were 

generated in the input layer as described above, with a Gaussian profile centered at 

s2=89.5 with gain 1g  (Fig. 3a). The gain could take any integer value between 3 and 18 

spikes per second, in increments of 3 spikes/s. For a given gain we performed 1008 trials, 

and for each trial we measured the spike counts over 500 ms for every neuron and 

estimated the mean of the posterior distribution (denoted µ1) as described above. We 

repeated these steps with only input layer 2 active. Spikes in the input layer followed a 

Gaussian profile centered at s2=95.5 with gain 2g  (Fig. 3a). Note that we introduced a 

cue conflict of 6º, which is fairly large. Again we computed the mean (µ2) of the posterior 

distribution encoded in the output layer. Finally, we performed simulations with both 

input layers active, using all combinations of gains, for a total of 36 (6×6) conditions. We 

used the same input spike trains as the ones generated when only one input layer was 

active. The output spike counts were used to compute estimates of the mean of the 

encoded distribution (µ3).  

After collecting all data, we computed a locally optimal linear estimator from 

25,000 trials randomly chosen from all combinations of gains. The weight vector 

obtained in this manner was subsequently used to estimate the variances in every single 

condition. For each combination of gains we thus obtained estimates of 2
1σ (only input 
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layer 1 active), 
2
2σ   (only input layer 2 active), and 2

3σ  (both input layers active). 

Importantly, we did not train a different estimator for every single combination of gains, 

but only an overall one. The intuition behind this is that the nervous system does not have 

the luxury of using specialized decoding circuitry for every possible contrast level of an 

incoming stimulus. 

We then plotted 3µ  against 
2 2
2 1

1 22 2 2 2
1 2 1 2

σ σµ µ
σ σ σ σ

+
+ +

 (Equation (4), main text), 

and 2
3σ against  

2 2
1 2

2 2
1 2

σ σ
σ σ+

(Equation (5), main text) for each combination of gains. If the 

network is performing a close approximation to Bayesian inference, the data should lie 

close to a line with slope 1 and intercept 0. This procedure was followed separately for 

each of three networks described above. As can be seen in Fig. 3c,d, it is clear that the 

network is indeed nearly optimal for all combinations of gains tested, in all three 

conditions.   
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