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Mutual information, |, givesusa powerful
tool answering the question:

what aspects of a spiketrain areimportant?

| = -% P(R) log P(R) + % P(S) % P(R[S) log P(R|S),

=H(R) - H(R[S)
S = stimulus,
R = response (typically spiketrains),

H(R) = entropy of responses,
H(R|S) = conditional entropy.



For example:

S = pictures shown to a monkey
R = neuronal responsein V1, consisting of:

———————————

A. R=spikecountin | (bits)=12/+|10;
300 ms window o |
B. R=precisespike | (bits) :34126
timesin 300 ms I

window

Spiketiming
IS important

Well, maybe not ...



Themoral: to make a meaningful
comparison, one must

A. Accurately estimate entropy,
B. Provideerror bars.
Theholy grail:

e Gilven data/,\D, find an unbiased
estimator, H(D), such that

(D)= H,, e
wher e Ll.Lindicates an average over
experiments.

« Computethevariance of the
estimator.



Why isthisa hard problem?

Theshort answer :
when you collect data from a distribution
with long tails, you don’t samplethetails.
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Hnaive = -3 (nj/N) log(n;/N) = 5.8 bits (N=1000)
Hirue = -2 |:}IogpJ = 8.6 bits



An example
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Biasin naive estimate of entropy

50 mswords, 10 msletters, inhomogeneous
Poisson process, mean rate= 10 Hz
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] For conditional

L LR entropy, younesd to
1| present the same

| | | ”'l |'| ” stimulus many times.

[0 ||§| | | "Many" corresponds

1

2
3

to several hundred.

i That’s because each

stimulusis several

1500 LI Il 1l | seooncsiong and

I— recordingslast ~hours.




Observations:

1.

Small errorsin entropy can causelargeerrors
In mutual information, since mutual information
Isthe difference between two entropies.

Thereisno unbiased estimator of entropy, since
a finite amount of data does not tell you about
thetails of thedistribution.

Thereisno estimator with a consistent upward
bias, sincethe entropy can beinfinite (e.g.,

n ~ Vilog?j).

What one can do:

1. Know your data -- if you know something about

thetails of thedistribution, i.e., how R behaves
as| — oo, thereishope of coming up with a
decent estimator.

Strategy: find an estimator that provide, on
average, lower and upper bounds on the entropy.

rigorous / \ model dependent



Our estimators

Data:

n,= number of occurrences of element | (e.g., word j).

Definitions:

N = Z n, = total number of elements sampled.
M = nUmber of non-zero n;.
M, = number of n; = 1.

Example:
n; =(4,5,0,1,4,1,0,2)
N = 17
M= 6
M= 2

Estimators (LB = lower bound; UB = upper bound):

H g =g> (n/N)log (/N)4+(M-1)/2N In 2

naive Treves and Panzeri
correction (NC 7, 1995)

Hyg=H_ g +M,l0gN/N

—_

pulled moreor less
out of thin air.



bias =[H FH ;o

= 5 H(n) P(np) - (- plog p)

P(n|p) = multinomial = N! [] pj”i/nj!
J

A little algebra:

N o1
LH, gL Htrue_N JZf(pj)

h -1
THye Hyrye™ N3 9(R)

f(p) = Z n log (n/N) P(n|p) + [1-p-exp(Nlog(1-p))]/2 In 2

a(p) = f(p) + (log N) Np exp((N-1)log(1-p))

Q binomial = p"(1-p)N-"N!/n!(N-n)!



Upper and lower bounds
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Observations:

1. g(p) and f(p) havea min and max at p = 1/N.
2. f(p) iIsnever positive.
3. g(p) goes negative at p = /N2



Doesthislittle negative

. portion on g(p) (a supposed

e o upper bound) matter?

.M _ Nl
Recall: [H ;L-H, =N JZg(pj)

$o(R) - Jdia(g) = fdlogp g(p)|dlog pic|”

Everything depends on how p dependson |.

A reasonable model for the wordg/letter s approach
to computing entropy: If nisthe number of letters
(word length), and the spike train has no temporal
correlations, then (seelast page of poster):

R = pexpl[-(pnt)*"]
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50 mswords, 10 msletters, inhomogeneous
Poisson process with correlations,
mean rate=10 Hz
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100 mswords, 10 msletters, iInhomogeneous
Poisson process with correlations,
mean rate= 10 Hz
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Open guestions:

1. How well doesthis method work with
real data? Answeringthiswill require
extensive ssmulations with surrogate
data designed to match the properties
of real data.

2. How well can we estimate the variance?
Our current estimates for the variance
tend to betoo small by 10-30% . Better
estimates ar e needed.

3. Aretherebetter estimatorsfor the upper
and lower boundsthan the ones presented

her e?



The probability distribution of words, p,; (see pg. 12 of poster)

To estimate entropy from a finite data set, it is crucial to know the properties of the underlying probability
distribution from which the data was sampled. Specifically, for a probability distribution, p;, the entropy
computed from a finite data set depends strongly on the behavior of p; when j is large. (Here and in what
follows we rank-order the p;, so that p;j;1 < p;. Thus, large j corresponds to the tails of the distribution
p;-) As we showed in the poster, the estimate for an upper bound of the entropy becomes worse as the tails
of the distribution become flatter. Moreover, for tails that are too flat, the upper bound can even turn into
a lower bound, rendering the estimate useless.

Here we estimate the dependence of p; on j when p; are word probabilities, as calculated using the
“direct” method [1] (see also poster page 5). We know of no rigorous way to estimate p; in general, so we
provide a really rough estimate. We do this by assuming that there are no temporal correlations in the
spike train; that is, we approximate the spike count probability in each bin as independent of all other bins.
Letting pr(!) be the probability of observing ! spikes in bin k& (out of n bins), the independence assumption
allows us to write

k=1

where p(ly,...,1,) is the probability of observing [), spikes in bin k, k = 1,...,n, and each of the p(ly, ..., 1,)
corresponds to a distinct p;. To find out how p; depends on j, we first solve the inverse problem — we find
J(p), the number of words with probability greater than p — and then invert j(p) to find p,.

The quantity j(p) is the number of configurations of the Iy such that p(l1,...,1,) > p. Taking the log of
both sides and using Eq. (1), this expression becomes

> —logpk(lx) < —logp. (2)
k

To determine the number of configurations of the I that satisfies Eq. (2), j(p), it is useful to think of

(—logpi(l1),—logpa(l2),...,— logpy(l,)) as points in an n-dimensional space. Then, j(p) is simply the
number of points below the plane ), x; = —logp, where the x; are coordinates in the same n-dimensional
space as the — log pg (I)-

We now make a second approximation, that the points points (—logp;(l1), —logpa(ls), ..., —logpn(ly))
are approximately evenly spaced; that is, logpg(l) — logpr(l + 1) = Ay, approximately independent of
[. In that case, j(p) is proportional to the volume bounded by the n + 1 hyper-planes ), zx = —logp
and zp = —logpk(0), kK = 1,...,n, with the constant of proportionality equal to [n!]], Ak]fl. Defining

[I; Ak = po, we thus have

() = [~logp+ 3, logpk (0)]"

Jp 3
Inverting this expression and enforcing the normalization fooo djp; = 1, we arrive at
p; = po exp[—(pontj)'/"]. (4)

This expression, which is identical to the one on page 12 of the poster, should provide a rough estimate
of Dj-
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